The remaining integral does not contribute to the pole term.

Collecting together all the terms, we have

16 1
+— 3+ 0(1)=——+0(1).

1 % drz(5z-3)
j Yi-z € 3 &

o

Calculating similarly the asymptotic behavior of J , we finally obtain I .= 8mm/e. For I,, integrating by
means of Egs. (A.1) and (A.2), we obtain I = 27 /me. Thus,
S m Aym

PP.T, =—w— n0 .
nde 8n2e

Besides the graph of Fig.4c, it is necessary to take into account the contribution to ) of the
graphs of Figs. 4d and 4e, in which the cross denotes the vertices corresponding-to P.P. I‘él) and P, P, I‘z(l).
The calculation shows that their contribution to T‘i(l) completely compensates the contribution of the graph of
Fig.4c and, therefore, a, = 0.
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GENERALLY COVARIANT THEORIES OF GAUGE FIELDS ON SUPERSPACE
V.P. Akulov, D.V. Volkov, and V.A. Soroka

Different variants of a generally covariant theory of superfields with nonzero values of the
curvature and torsion tensors are discussed from the point of view of the holonomy group.
A study is made of the example of a Lagrangian that is quadratic in the torsion tensor in the
linear approximation of weak fields with interaction switched off and includes free fields
with spin 2 and Rarita—Schwinger fields with spin 3/2.

1. After the introduction of the concept of supersymmetry [1-3] and the construction of the simplest
supersymmetric theories as field theories on superspace [4-7] the problem arose of finding gauge and
generally covariant generalizations of these theories. The searches for such generalizations have been made
and are currently being made in essentially two directions, depending on the type of projection operators that
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are used to separate the physical and unphysical states.

In one of these directions, one uses projection operators that directly select a value of the superspin
of particles in such a way that superfunctions with other values of the superspin play the role of gauge trans-
formations. In this direction, we have the important papers of Ferrara and Zumino [8] and Salam and
Strathdee [9], in which a supersymmetric generalization of the Yang—Mills theory was obtained, and of
Ogievetskii and Sokatchev [10], who use a vector superfield to construct a supersymmetric generalization of
the theory of gravitation. The recent papers of Freedman, van Niewenhuizen, and Ferrara and Deser and
Zumino [11], in which a unified supersymmetric description of the gravitational field and the Rarita—
Schwinger field is proposed, belong, as regards their physical content, to this direction, although from the
technical side the construction of gauge transformations with projection operators corresponding to a definite
value of the superspin was not undertaken.

The other direction in the search for gauge and generally covariant generalizations of supersymme-
tric theories proceeds from attempts to construct various kinds of connection on superspaces in close
analogy with the schemes that use connections to describe the Yang~Mills and Einstein fields in ordinary
space. The projection operators that then arise are related to the operation of exterior differentiation. Such
an approach was proposed for the first time in [12] with the only exceptional feature that the action integral
was taken in the form of an invariant integral over a four-dimensional surface in superspace. It is obvious
that the possibility is not precluded of taking the action integral in the form of an invariant integral over a
six-dimensional surface in superspace.

The direct generalization of Einstein’s equations to the case of an eight-dimensional Riemannian
superspace was proposed by Arnowitt, Nath, and Zumino [13, 14] and somewhat later for the case of an
arbitrary connection with nonzero curvature and torsion tensors by Zumino [15] and the present authors [16].

The basic ideas relating to the possibility of constructing the theory of a gauge superfield in closer
analogy with the ordinary theory of Yang~Mills fields were recently formulated in the review [17] by
Ogievetskii and Mesincescu, and a concrete variant of such a theory was proposed in [18] by Ogievetskii and
Sokatchev. As is noted in {18], the proposed variant of the theory of the gauge superfield is clearly not free
of difficulties associated with the appearance of redundant field components when an interaction is present.

As will be shown in the present paper, similar difficulties arise when one considers generally
covariant theories, and the question of their consistent elimination-is at the present open.

In this paper, in more detail than in [15,16], we consider the formalism for introducing connections
on superspace, emphasizing the importance for physical applications of the specification of a definite holonomy
group. * We consider examples of generally covariant action integrals and some of their consequences.

2. An arbitrary superspace with coordinates z°=(z*, ¢% ¢%) is described by the Cartan structure
equations [16]
dA0*(8) Fw®(8) ATz*(d) ="1a"(8) A (d)Scs*, 1V

d/\.FAB(‘S) +PAC(‘5) /\PCB (d) =l/2ﬁ)c(5) /\ﬁ)D (d) RDC, AB, (2)
where the differential forms o*(d)=dz*e.* define the transition from the natural local coordinate system
associated with the coordinates z*=(z¥, ¢%, ¢%) toan arbitrary local frame (we shall denote the components of
tensors in an arbitrary local frame and in a natural local coordinate system by upper case and lower case
letters, respectively), I',?{d) are the differential forms of the connection, and Sc* and Ry, 4®are the
torsion and curvature tensors. i The differentiations and products of forms in the expressions (1) and (2) are
exterior and are defined in the same way as for the case of ordinary spaces by alternation of the differentials

d and 9.
The form of the torsion and curvature tensors follows from Eqs. (1) and (2):
Sest=] (=) EX X 0,04+ esA] - (—) [ B+ Cl, &)
Roc s*=[(—) "X X0 5+ (=) 2T HH I T ] — (=) P [C+> D], 4)

* The holonomy group is the group of transformations of the frame when it is taken in parallel transport
around an infinitesimally small closed contour.

i The invariant contraction with respect to tensor indices is defined in the Appendix.
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where the matrix X4 is the inverse of the matrix w.,*: 0.*X,*=8,", and T',;* and Tr;* are the coefficients of
the decomposition of the differential forms of the connection with respect to dz’ and w¥(d), respectively,

T5*(d) =da'Ts* =0 (d) Trs.

The torsion and curvature tensors and the forms of the connection, as follows from the Cartan equations (1)
and (2), have the following properties of symmetry with respect to permutation of indices:

SCBA=— (")CBSBCA’ RDC, BA="‘ (“) DCRCD. BA,
and with respect to Hermitian conjugation:

-A(_) (D4C4+BY{A+B)+(D+E)C4D
B ’

(I"EA (d))+=1"'§4(d) (_)B(A+B)’ (SCBA +=Sé’3.A(_)C(A+B+G)+B(A+B)’ (RDC_ BA)+=Rij"
where A={y, a, a), if A=(p, a, ¢). Under spatial reflection, the spinor subscripts of T';*(d), Sc;* , and Rope, s*
transform with sign opposite to the ordinary transformation of spinors, whereas the spinor superscripts

transform in accordance with the usual law.
We define the covariant differential of vectors in the form
DV4=dz'D;VA=dV4+V?®*Ts*(d), DV ,=dz'D;V s=dV ,—T ,®(d) V3,
where DfVA and D fV ', are covariant derivatives:
DVA=0,VA+(—) PV 3%, D;Va=0;V,—TI"*Vs.

These formulas can be readily generalized to the case of covariant differentials and derivatives of products of
vectors and a tensor and have the form, for example, in the case of the covariant derivative of the product of
three vectors

D (VAUWe)=(D, V) UsWt (=) VD Us) Wt (=) P VAU(D,W )
or, in the case of the covariant derivative of a third-rank tensor,
-D_f VABC =afVABC+ (_) F(A-{-F)I‘!FA FBC—‘ (_) A(B+F)PIBFVAFC'— (_) <A+B)(C+F}I‘ICFVABF-

The choice of the holonomy group of the space is the decisive question for the determination of the
physical content of a theory that uses the idea of a generally covariant treatment. As an example, we can
point out the treatment of Einstein’s unified field theory with torsion, and also Kibble’'s theory [19]. The
holonomy group of the space uniquely determines the geometry of the tangent spaces, for which it is the group
of motions. In particular, it determines the metric properties of the tangent spaces. The holonomy group
actually coincides with the gauge group of transformations, since in the cases when the gauge group is larger
than the holonomy group the redundant transformations of the gauge group can be eliminated by the choice of
the gauge by virtue of the holonomy theorem [20,21}. All that we have said applies equally to the choice of
the holonomy group of superspace when the generally covariant theory is generalized to the case of super~
space. Considering the generally covariant generalizations of supersymmetric theories, in the choice of the
holonomy group of superspace, it is obviously sensible to be guided by correspondence, on the one hand, with
Einstein’s theory, and, on the other, with the ordinary variants of supersymmetric theories. In the case
of Einstein’s theory, the holonomy group of Riemannian space is the Lorentz group, the invariant tensors of
which include the Minkowski metric tensor Sy and the Dirac y* matrices. The presence of the latter lead
to the possibility of first-order equations for fermions.

In the generalization of the generally covariant theory to the case of superspace carried out in [13, 14],
the holonomy group of the Riemannian superspace is the pseudo-orthogonal group on eight-dimensional super-
space, which leaves invariant the metric tensor

g O 0
8AB = 0 Saﬂ 0 +
0 0 e

af
where g, is the ordinary Minkowski metric tensor and e« and e, are matrices that lower spinor
indices. The detailed treatment leads to certain difficulties: first, second-order equations are obtained for
bosons and for fermions, and, second, ordinary supersymmetric theories do not satisfy the resulting
equations. The first of these difficulties is associated with the circumstance that the holonomy group of the
Riemannian superspace chosen in [13, 14] does not have invariant tensors of the type of the Dirac y* matrices,
or at least not for the representations used in [13, 14]. The second difficulty indicates that such a holonomy
group does not correspond to ordinary supersymmetric theories.



In our paper, we adopt as holonomy group of the considered superspace the Poincaré group augmented
by translations of the spinor variables. The invariant tensors of this holonomy group are the Minkowski
metric tensor g, the tensors e., and €y which serve to lower spinor indices, and the tensors o} =(1,
—0),5, where ¢ are Pauli matrices. The metric tensors g,  and gA B which raise and lower indices in
accordance with the rule

VA=g22Y, and V,=V?gg,,

can be chosen in our case in the form

(% 0 0 gwv 0 9
gap={ 0 —aey 0 |, g4B= ( 0 e#f/a O ),
0 0 —bey 0 0 &%p

where a and b are arbitrary constants. The metric tensor has the obvious symmetry properties
gas={—)"*"gna,

and satisfies the relations
gCAgAl;:GCB a_.nd‘gBAgAC(_'-) ASSBC,

& 0 0
85 = (—)°B8s" = 0 &F 0 |,

0 0 &b

where

and &, 8., and ¢&* are ordinary Kronecker symbols.

Because the homogeneous holonomy group of our superspace is in our case the Lorentz group, only
the components T'(d), [.*(d) , and I.*(d) of the differential form of the connection are nonzero, and they
satisfy relations that are a consequence of the constancy of the tensors g, , and ;" for the given group:

F.u (d)+(—)AEFBA (d) =O, (5)
T (d) = (0,0) o*Tp% (d) + (0,);, PT;(d), (6)

where Tap(d)=T,°(d)ges, and (o.)q* and (o), are defined in the Appendix. The relations (24) and (25) lead
to the following symmetry properties of the curvature tensor with respect to the second pair of indices:
Rpe, sa=—(—)*®Rpe, an, and the relations

i

Roc, w= (Ouv) a.BRDC, ﬁ""l' (Guv)fRDcAB.a,
where Roc, sa=Rsc. ngm-

The invariant action integral for the superfields that determine the differential forms wA(d) and
I'4(d) is constructed in the general case in the form

j z(R,S)WHdzﬂ', (7)

where Z (B, S) is an invariant function of the curvature and torsion tensors* and W=det 0.*.

In the case when Z (R, S) is a linear function of the curvature and torsion tensors, the expressions
for the variations of these last have the form

SenW={[—&c"Ses*+ 12 (=) s Ses +/2Scs@e*+ (—) AB+F®CASBFF+TCBA] —(=)®*[BC}W, (8)
NI - -
RI)C. qurz{['—fDDFRpc, BA+1/2(")FG)FFRDC, EA'_ (—) FSDFFFCBA+1/28D0FPFBA]_(—)CD[C‘—*D]}W, (9)

where on the right-hand sides of the expressions (8) and (9) we have omitted the terms that are total covariant
derivatives. The tilde above quantities denotes their variation, and ©.°=X."&," and I‘BCA=XBZ’f‘l,CA are
covariant variations. In the derivation of (8) and (9), we have used the following expressions for the variations
of X4 and W:

X=X, W= (=) &:W, (10)

and their covariant derivatives:

* The properties of determinants of matrices that have anticommuting matrix elements is discussed in {13, 14]
(see also the Appendix).
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DaXAb=_ (_) a(A+f)XA! (Dam!F) XFb’ DW= (___) a(F+N+FY f (Da(s),«F) Ww.

In the linear approximation of weak fields, all quantities are expanded with respect to the ordinary
supersymmetric superspace [2, 5]:

0 [1]
0 =0." (654 hs* (2) ), Xa®=(04F—ha¥(2) ) X%
where

[+] A GVP. 0 0 . 0 a Gy.v 0 0 o
Ga = (ia(cp"c*‘)s 8% 0 ) A= oo, X, = (- i (¢ O 0>, a =58
, ; a=(v, B, B), . i 4= oo

ia(o*e)y O Bé“ (v, B+ B) —ia(o'gp), O 6&‘*

L] [}

The matrices o, and X,* are the values of the matrices o, and X,* in the case of the ordinary super-
symmetric superspace, and the superfields hg(z) describe small deviations from the ordinary supersymme-
tric superspace. In this approximation, the torsion and curvature tensors (3) and (4) are represented in the
form

0 0 [ ] 0o ,0 0 0 0
Scs* = {Dohs .+ (=)°P (X5 (Dow; 1) (85 + ke *) — (ha "X# Dc 4 Xi'he "Dryo,*] 4 Tep} — (=2 {C < BY,
0 [i] 0 0 .
Rpc, 5™ = [Dples? + (—)" " X (Dpof) Irs 4] — (—)"C1C - Dy,

0 0
where D,=X."d, are quantities known in supersymmetry theories as covariant derivatives [6-9], and they
anticommute with the generators of the supersymmetry transformations. These quantities satisfy the

following commutation relations: o o
{Da, Dﬁ} = Zia()'sa ”69.

When one considers the generally covariant theory in the tetrad formalism, there are two groups of
gauge transformations: a) the group of generally covariant coordinate transformations z¥=f(z), b} the
group of frame transformations o* (d)=w0"(d)L:*' (z). Since the transformations of both gauge groups leave
the observable physical quantities unchanged, unimportant unphysical components can be eliminated by the
choice of the gauge. In the linear approximation of weak fields, we shall consider infinitesimally small
transformations of these groups so as not to destroy the approximation. Under intinitesimally small generally
covariant transformations of the coordinates z=z°th%(z) the transformation of the differential forms

04 (d)=aw®(d) (6s*+hs*) in the linear approximation reduces simply to a transformation of the small superfields
ha(z):
B 5% (2) =hs* (2) +06hs*(2).

The increments 6h4(z) can be expressed in terms of infinitesimally small functions of the transformations
of the coordinates h%z) as follows:

" " o . " 0 0 . N
8h," = 0,HY, 8ho" = DoH" 4 2iao ;*h8, Sk — D H" + 2iac, 2, 8hs™ = Dah®, 8hs® = DAk, (11)
where H'=h*+ia(hto*o—g*ta*h).

Infinitesimally small frame transformations o*'{d)=0(d) (8:*' +&,*'(z)) lead to the following trans-
formations of the small superfields h4(z):

K 5" (z) =hs*(z) TEs* (2},

where the matrices &.*(z) satisfy the relations E,,(z)+(—)*%E4s(z) =0, where E.5(z)=E.(2)gcs

f. As an example, let us consider a Lagrangian in the linear approximation of weak fields propor-
tional to the following quadratic combination of the torsion tensor:

TM>—T 2T, (12)
with the additional covariant gauge conditions
SABEV=SABQ.=S=¢B“=S&[;=SVDH=O 13
and )
Su&p = Spa" = Swa P.GIL = Sv&}LUP-aB =0, e

where T,%= 09T o ¥ and

1

: . . vy b . " g )] "
Tap® = Sep " — 200004 = 2ia [0,5"h)" — (a0 " + hy 90, ")] -+ Doy * + Dyha!
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is the difference between the torsion of the considered superspace in the presence of gauge fields and the

0
constant vector torsion §,;*=2ias ;* of the ordinary supersymmetry superspace in the absence of gauge
fields, i.e., 7,4 is the contribution of the gauge fields to the torsion S,;*

In the Lagrangian (12) with the additional conditions (18) and (14) we in addition set equal to zero the
connections T'4x°, which corresponds to switching off the interaction and considering only the kinetic parts
of the fields in the Lagrangian, i.e., to considering the spectrum of the fields that are present. It is a con-
sequence of the conditions (17) that the superfields h4(z) can be represented in the form

0 _ . 0 _g — 0 .. . ) 0 _ -
ha® = DaR% k¥ = DgR", b = 0, ko' = DuH" + 2iako, ¥, h¥ = Dy (H' 4 2iako, ",
where R R*=(F*)*,F*, and H* are certain new superfields.

We use the freedom associated with the gauge transformations (11) and choose a gauge in which
h*(z) = 0. Then the vector torsion T, in this gauge can be expressed in terms of the new superfields as
follows-

@ ] 9 " . [ ] [} "
T(lﬂ ={D¢1 Dﬁ}X +L[Déa DG]Y ' (15)

where XF and Y* are the Hermitian components of the superfield H*=X*+i¥* Substituting into (13) the
expression (1£) for T, and using the additional conditions (14), we find that the Lagrangian* can be
expressed solely in terms of the single Hermitian superfield Y¥(z):

4 0.
THY-TH T ~Yre ,wp;ﬁ”D"‘czé*D" Yo, (16)

In deriving the expression (16) for the Lagrangian, we have used the following relation between the ot
matrices:
Eupr0" =1 (8060~ Bufvo—BvGuo T Touv) -

The action (7) with the Lagrangian (16) can be expressed in terms of ordinary fields by substituting into (16)
the decomposition of the superfield Y!(z) with respect to the ordinary fields:

¥*(5) = 4" @)+ Xo* @06 + 0" (@) + B @) 9ut” -+ (B @) oy + aF @ 900 + [8a" () — 5 X (@)’ X
F0u0° + [0 @) + S @0.X" (), gate 16 @) + [0 A° ()] dar0s 0
and integrating in (7) with respect to the anticommuting variables in accordance with the rules
j‘ o® doP=e**, J' dg*=0.
In the linear approximation, it is necessary to replace det w{z‘ by det (g,;*=1. As a result, we obtain

0 [
S Y”epvmﬁ"Dacaﬁ A DBYvdA.Td‘;(P = S(L2 —+ Lal'z -+ Ll) d4.’l',

where
L2=—a (a“‘w’ Da(m}—Za(""}agavd(vm‘i‘ Zau"6°0"a(vp,—ap"mavv)

is the Lagrangian that gives the equations for a free field with spin 2,
Ly =g (0*) T0*0°6°
the Rarita—Schwinger Lagrangian for a field of spin 3/2, and
Li=a(a™0g ., +2a"10,0"01v) TC*& e

a Lagrangian whose part within the brackets would describe the so-called notoph, i.e., a vector particle with
helicity equal to zero [22]. However, the presence of the last term in the Lagrangian L1 means that Ay

has the structure
a[}w]=ap,bv—()vbu- (17

And since the Lagrangian of the notoph is invariant under gauge transformations:

Appv1 = pv) +aubv—avbm

* That a Lagrangian of the form of the expression on the right-hand side of (16) contains ordinary fields with
spins 2 and 3/2 was pointed out to us by V. 1. Ogievetskii and E. Sokatchev (see also [10,22]).
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the structure of (17) for afuv] leads to the actual absence of the notoph. Thus, this Lagrangian in the linear
approximation effectively contains the free Lagrangians for the gravitational field 7,1 and the field o, with
spin 3/2. We have not examined the interaction of these fields. However, it should be noted that for the
interaction it is not in advance obvious what are the gauge groups that ensure the absence of the redundant
components in the case of the free fields.

We are very grateful to V. I. Ogievetskii and E. Sokatchev for a helpful discussion and a number of
valuable tips.

Appendix

The invariant contraction over tensor indices in eight-dimensional superspace can be defined in two
different ways, which in the simplest case of the product of two vectors have the form

VAU 4=VWU,+ Vol +VoU,; (first method), U.VvA=VAU,(~)A=VU,~VeU,—V2U; (second method).
We adopt the first method of defining the invariant contraction.

Note a simple but very useful rule concerning grading factors. All the calculations can be made
without bothering about the grading factors, which can be readily reinstated by following this rule. We

illustrate it by the example of the expression for the variation of the torsion, S:B/A;V. The order of the tensor
indices in this case is ;3', and the grading factors of the different terms on the right-hand side of (8) take
into account what permutations of the indices must be made in each term in order to establish the order of the
indices 7, and to each transposed pair of indices, say E and F, there corresponds the factor (-)ZF, where
the indices in the exponents take the values 0 for boson values and 1 for fermion values. The indices over
which the summation is performed must be placed next to.one another and in the order corresponding to the
adopted definition for the invariant contraction. This rule works in all expressions, including the expressions
for the volume and its variation discussed in [13], in which the determinant of the matrix M#Z, which contains
anticommuting matrix elements, is defined as ‘

det M=exp Tr(ln M}, -

and the trace of these matrices in the form TrM=(-)*M.+ In particular, one understands the grading factors
(-)4 in the definition of the trace of the matrix or a product of matrices, for example, M."N:°Lc4(-)4, and in
the expression (10) for the variation of the volume W= detw.?, W= ()X a%0.AW.

We should point out a fundamentally different possibility of generalizing the volume for the case of
superspace. For this we note that in the case of ordinary space the volume can be expressed in the form of
the exterior product of Cartan forms:

@®(do) Aot (dy) Aw?(dy) A (ds). A1)

If generalizations are made in accordance with (A.1} and the volume in superspace is expressed as an
exterior product of eight Cartan «w forms, then because of the equation

04 (d) Ao (8) = — (=) *Po®(d) Aa4(f)

it can be seen that the exterior product of the spinor forms is a symmetric tensor, in contrast to the spatial
forms, which are antisymmetric tensors. Therefore, this volume in superspace is a tensor, in contrast to
the case of an ordinary space, in which it is an invariant. Such tensor volumes in superspace can obviously
be used when one is considering generalizations of generally covariant theories to the case of superspace.

The entities (o.)% and (ow);f are defined as follows:

(0u)%g = % (?;pcy —EVO’P_)“ g (), B=— % (0,0, — cv&;)& B,
where .
(O'y,)é‘ﬁ——‘ (1: G)Qﬁ = O}L(-Zﬁ' (UP,)QB = (1, _G)aﬁ = G}L op

and o are the ordinary Pauli matrices. The transition from the vector representation to the spinor repre-
sentation in the case of the antisymmetric tensor 4,.,= -4, is made in accordance with the formulas

L. 1 . 4 TR
Ay, = 045" + (04, BAB“, Af = (Op)a P4, 4B = o (O f 4.

It is helpful to note the following properties of (o.)*s and (o), with respect to permutation of indices:

291



where

(G;J-v)a b= (o'pv)8 o (G}lu)&f} = (a}lv)ﬁ'dv

(Ou) aP=eaae® (0) o (0,) % = 6% &0 (0),, %

with respect to complex conjugation:

((GLW) ‘zﬁ) = (qu);l B

and spatial reflection:

)(1

« . .
(Gpv) B (qg;)& Bv (O'p,v\}dﬁ — - (0}1; B’

where the subscript I means that the spatial components of the quantity with subscript I have signs opposite
to the spatial components of the quantity with subscript u, i.e., Vi=(¥, V), if ya=(¥, V).

Do

O QW ~J & N =~ ro

[y
(=}

=
-t

12.

13.
14.
15,
16.
17.
18.
19.
20.
21.
22.
22.
24.

292

LITERATURE CITED

Yu. A. Gol’fand and E. P, Likhtman, Pis’ma Zh. Eksp. Teor. Fiz., 13, 452 (1971); Problems of
Theoretical Physics (collection dedicated to the memory of I. E. Tamm) [in Russian], Nauka (1972).
D. V. Volkov and V. P. Akulov, Pis’ma Zh. Eksp. Teor. Fiz., 16, 621 (1972); Teor. Mat. Fiz., 18
29 (1974).

Wess and B. Zumino, Nucl. Phys., B70, 39 (1974).

Wess and B. Zumino, Phys. Lett., B49, 52 (1974).

. Salam and J. Strathdee, Nucl. Phys., B76, 477 (1974).

Ferrara, J. Wess, and B, Zumino, Phys. Lett., B51, 239 (1974).

. Salam and J. Strathdee, Phys. Rev., D11, 1£21 (197%).

Ferrara and B. Zumino, Nucl. Phys., B79, 413 (1974).

. Salam and J. Strathdee, Phys. Lett., B51, 353 (1974).

. I. Ogievetskii and E. Sokatchev, Proc. of the Fourth International Symposium on Nonlocal Field
Field Theories, Alushta, USSR (1976); JINR Preprint E2-9985, Dubna (1976).

D. Z. Freedman, P. van Niewenhuizen, and S. Ferrara, Phys. Rev., D13, 3214 (1976); S. Deser and
B. Zumino, Phys. Lett., B62, 335 (1976).

D. V. Volkov and V. A. Soroka, Pis’ma Zh. Eksp. Teor. Fiz., 18, 529 (1973); Teor. Mat. Fiz., 20,
291 (1974).

Arnowitt, P. Nath, and B. Zumino, Phys. Lett., 56B, 81 (1975).

Arnowitt and P. Nath, Phys. Lett., 56B, 177 (1975).

Zumino, CERN Preprint TH. 2120 (1975).

P, Akulov, D. V. Volkov, and V. A. Soroka, Pis’ma Zh. Eksp. Teor. Fiz., 22, 396 (1975).

I. Ogievetskii and L. Mezincescu, Usp. Fiz. Nauk, 177, 637 (1975).

1. Ogievetskii and E. Sokatchev, Pis’ma Zh. Eksp. Teor. Fiz., 23, 66 (1976).

W. B. Kibble, J. Math. Phys., 2, 212 (1961).

Nomizu, Lie Groups and Differential Geometry, Math, Soc. of Japan, Tokyo (1956).

. Lichnerowicz, Théorie Globale des Connexions et des Groupes d’Holonomi&, Kome (1955},
Sokatchev, Nucl. Phys., B99, 96 (1975).

. I. Ogievetskii and I. V. Polubarinov, Yad. Fiz., 4, 216 (1966).

. I. Pakhomov, Mat. Zam., 16, 65 (1974).

b

<p LB nE S

SEMpPRRSLSUR



