
The remain ing  integral  does not contr ibute  to the pole t e r m .  

Collecting toge ther  all  the t e r m s ,  we have 

i 
i t .  d x  x ( 5 x - 3 )  4 16 i 

], = - - |  + - -  + o ( l ) = - - - -  + o(l). 
e J y l -x  e 3 e 

0 

Calculating s i m i l a r l y  the asympto t ic  behav ior  o f 3 2 ,  J ' we finally obtain I s = 87rBm/e. F o r  I,, in tegrat ing by 
means  of Eqs .  (A. 1) and (A. 2), we obtain 12 = 2v~ Thus,  

A 2 m  p .p .  ~ : i ) =  _ .,.~m, +. _ _  

y~a8 8y~28 

Besides  the g raph  of F ig .4c ,  it is n e c e s s a r y  to take into account the contribution to F (~) of the 
g raphs  of F igs .  4d and 4e, in which the c r o s s  denotes~ the v e r t i c e s  cor responding . to  P . P .  F~ 0 and1 P . P .  F ~ 0  
The calculat ion shows that the i r  contr ibution to i-'~ 0 comple te ly  compensa t e s  the contr ibution of the g raph  of 
Fig.  4c and, the re fo re ,  a01 = 0. 
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GENERALLY COVARIANT THEORIES OF GAUGE FIELDS ON SUPERSPACE 

V . P .  A k u l o v ,  D . V .  V o l k o v ,  and V . A .  S o r o k a  

Different  va r i an t s  of a genera l ly  covar ian t  theory  of super f ie lds  with nonzero values  of the 
cu rva tu re  and tors ion t en s o r s  a re  d i scussed  f r o m  the point of view of the holonomy group.  
A study is made of the example  of a Lagrangian  that is quadrat ic  in the tors ion  t ensor  in the 
l inea r  approximat ion  of weak f ields with in teract ion switched off and includes f r ee  f ields 
with spin 2 and R a r i t a - S c h w i n g e r  f ields with spin 3/2.  

1. After  the introduction of the concept  of s u p e r s y m m e t r y  [1-3] and the construct ion of the s imples t  
s u p e r s y m m e t r i c  theor ies  as field theor ies  on supe r space  [4-7] the p r o b l e m  a r o s e  of finding gauge and 
gene ra l ly  covar ian t  genera l i za t ions  of these theor ies .  The s e a r c h e s  for  such genera l iza t ions  have been made 
and a re  cu r r en t ly  being made in essen t ia l ly  two di rec t ions ,  depending on the type of project ion o p e r a t o r s  that 
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a re  used to separate  the physical and unphysieal s tates.  

In one of these direct ions,  one uses  project ion opera tors  that direct ly  select  a value of the superspin 
of par t ic les  in such a way that superfunctions with other values of the superspin play the role of gauge t r ans -  
format ions.  In this direction,  we have the important  papers  of F e r r a r a  and Zumino [81 and Salam and 
Strathdee [9], in which a supe r symmet r i c  general izat ion of the Yang-Mil ls  theory was obtained, and of 
Ogievetskii and Sokatchev [10], who use a vec to r  superfield to cons t ruc t  a supersymmet r i c  general izat ion of 
the theory of gravitat ion.  The recent  papers  of Freedman,  van Niewenhuizen, and F e r r a r a  and Deser  and 
Zumino [11], in which a unified supe r symmet r i c  descr ipt ion of the gravitational field a~nd the R a r i t a -  
Schwinger field is proposed,  belong, as regards  their  physical  content, to this direction, although f rom the 
technical side the construct ion of gauge t ransformat ions  with project ion opera tors  corresponding to a definite 
value of the superspin was not undertaken.  

The other  direction in the search  for  gauge and general ly  covar iant  general izat ions of s u p e r s y m m e -  
trie theories  proceeds  f rom at tempts to cons t ruc t  var ious  kinds of connection on superspaces  in close 
analogy with the schemes that use connections to descr ibe  the Yang-Mil ls  and Einstein fields in ordinary 
space. The projection opera tors  that then a r i se  are  related to the operation of ex ter ior  differentiation. Such 
an approach was proposed for  the f i r s t  time in [121 with the only exceptional feature that the action integral 
was taken in the fo rm of an invariant  integral over  a four-dimensional  surface in superspace.  It is obvious 
that the possibi l i ty is not precluded of taking the action integral in the form of an invariant integral over  a 
s ix-dimensional  surface in superspace .  

The direct  general izat ion of Eins te in ' s  equations to the case of an eight-dimensional Riemannian 
superspace  was proposed by Arnowitt, Nath, and Zumino [13, 14] and somewhat la te r  for the case of an 
a r b i t r a r y  connection with nonzero  curva ture  and torsion tensors  by Zumino [15] and the present  authors [16]. 

The basic ideas relating to the possibi l i ty of construct ing the theory of a gauge superfield in c lose r  
analogy with the ord inary  theory of Yang-Mil ls  fields were recent ly  formulated in the review [17] by 
Ogievetskii and Mesincescu,  and a concre te  variant  of such a theory  was proposed in [18] by Ogievetskii and 
Sokatehev. As is noted in [18], the proposed var iant  of the theory of the gauge superfield is c lea r ly  not f ree  
of difficulties associa ted  with the appearance of redundant field components when an interaction is present .  

As will be shown in the present  paper,  s imi l a r  difficulties a r i se  when one considers  general ly  
covariant  theories ,  and the question of their  consis tent  elimination is at the present  open. 

In this paper,  in more  detail than in [15, 16], we cons ider  the fo rma l i sm for  introducing connections 
on superspace,  emphasizing the importance for  physical applications of the specification of a definite holonomy 
group.  * We cons ider  examples of genera l ly  covar iant  action integrals  and some of their  consequences.  

2o An a r b i t r a r y  superspace with coordinates  z~=(x ~, q;', ~p~') is described by the Cartan s t ructure  
equations [16] 

dA(o" (6) +~o ~ (6) AF."  (d) ='/2ca B (6) A o) c (d) So. A, (1) 

dA FA" (6) +Fa c (6) AFc ~ (d) = '/2c0 c (6) A (o" (d) T/Do. A', (2) 

where the differential fo rms  0)* (d) =dz"(o;* define the transit ion f rom the natural local coordinate sys tem 
associated with the coordinates  z"=(x  ~, (p~, (~) to an a r b i t r a r y  local f rame (we shall denote the components of 
tensors  in an a r b i t r a r y  local f rame and in a natural local coordinate sys tem by upper case and lower case 
le t ters ,  respectively),  F~B(d) are  the differential fo rms  of  the connection, and Sc;  ~ and B,e,A B are  the 
torsion and curva ture  tensors .  ~ The differentiations and products  of fo rms  in the express ions  (1) and (2) are  
ex te r io r  and are  defined in the same way as for the case  of ord inary  spaces by alternation of the differentials 

d and 6. 

The fo rm of the tors ion and curvature  tensors  follows f rom Eqs. (1) and (2): 

S~.~= [ ( - )  c(~+~)xjx~'o,o~; '+r~ ~] - ( - )  ~'~ [ B  - ~  C ],  ( 3 )  

[ ( - )  +.xo,xo'o,r,o'+ ( - )  ( - )  ~o [ C .-~ D ], ( 4 )  

* The holonomy group is the group of t ransformat ions  of the f rame when it is taken in parallel  t ranspor t  
around an infinitesimally small c losed contour.  

-~ The invariant contract ion with respec t  to t ensor  indices is defined in the Appendix. 
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where the matr ix  X~ is the inverse  of the matr ix  (0~: 0),~ AXA b=5ob, and F~, A and FF~ ~ are  the coefficients of 
the decomposit ion of the differential fo rms  of the connection with respect  to dz '  and w F(d), respect ively,  

F ~ A ( d) =dz1F !.A=o~ ~ ( d) F F~ A. 

The torsion and curva ture  tensors  and the fo rms  of the connection, as follows f rom the Cartan equations (1) 
and (2), have the following p roper t i e s  of s y m m e t r y  with respect  to permutat ion of indices: 

and with respect  to Hermit ian conjugation: 

(r~ A (d)) + = r  B~(d) (--) ~(~+~, (Sc~ A) +--z- .X ~-~ c(~+~+~+~r (R . . . .  A) +=R" " BX (--) (~+~+,HA+~+(o+~)~+~, 
- - ~ C B  ~. / , D C ,  

where A=(~t, d, a), if A=(~t, a, d). Under spatial reflection, the spinor subscr ipts  of F~(d) ,  S~ A , and R~c. ~ 
t r ans fo rm with sign opposite to the ord inary  t ransformat ion  of spinors,  whereas the spinor supersc r ip t s  
t r a n s f o r m  in accordance  with the usual law. 

We define the covariant  differential of vec to rs  in the fo rm 

DV~'=dzID~VA=dVA+ VBFs a (d), DVA=dztDjVA=dVA--F f f  (d) Vs, 

where D/V ~ and D/Vn are  covar iant  der ivat ives:  

DiV~=OjW'+ (--)  t~V~F!~ ~, DjVa=OjVA--F~ffV~. 

These formulas  can be readily general ized to the case of covar iant  differentials and derivat ives  of products  of 
vec to rs  and a tensor  and have the form,  for  example, in the case  of the covar iant  derivative of the product of 
three vec to rs  

Dj (VAUBWc) = (Dr V "~ ) U~Wc+ (--) '~V ~ (DIU.) Wc+ ( - )  1(.~+.~ VAUB (DIWc) 

or,  in the case  of the covar iant  derivat ive of a th i rd - rank  tensor ,  

o 

The choice of the holvnomy group of the space is the decisive question for  the determination of the 
physical  content of a fheory that uses  the idea of a general ly  covar iant  t reatment .  As an example, we can 
point out the t rea tment  of Eins te in ' s  unified field theory with torsion,  and also Kibble 's  theory [19]. The 
holonomy group of the space uniquely determines  the geomet ry  of the tangent spaces,  for  which it is the group 
of motions. In par t icular ,  it de termines  the metr ic  proper t ies  of the tangent spaces.  The holonomy group 
actually coincides with the gauge group of t ransformat ions ,  since in the cases  when the gauge group is l a rge r  
than the holonomy group the redundant t ransformat ions  of the gauge group can be eliminated by the choice of 
the gauge by vir tue of the holonomy theorem [20, 21]. All that we have said applies equally to the choice of 
the holonomy group of superspace  when the genera l ly  covariant  theory is general ized to the case of supe r -  
space.  Considering the genera l ly  covariant  general izat ions  of supersymmet r i c  theories,  in the choice of the 
holonomy group of superspace,  it is obviously sensible to be guided by correspondence,  on the one hand, with 
Eins te in ' s  theory, and, on the other,  with the ord inary  var iants  of super symmet r i c  theories ,  in the case 
of Eins te in ' s  theory,  the holonomy group of Riemannian space is the Lorentz group~ the invariant tensors  of 
which include the Minkowski metr ic  tensor  g#u and the Dirac yP mat r ices .  The presence  of the la t ter  lead 
to the possibil i ty of f i r s t - o r d e r  equations for  fermions .  

In the general izat ion of the genera l ly  covariant  theory to the case  of superspace  ca r r i ed  out tn [13, 14], 
the holonomy group of the Riemannian superspace  is the pseudo-orthogonal  group on eight-dimensional  super -  
space, which leaves invariant the metr ic  tensor  

[g~. 0 0 \ 
g A ~ = | O  ~ 0 ) ,  

\o 0 sat~ 

where gpu is the ord inary  Minkowski metr ic  tensor  and e~ and e ~  are  mat r ices  that lower spinor 
indices.  The detailed t rea tment  leads to cer ta in  difficulties: f i rst ,  s econd-orde r  equations are  obtained for 
bosons and for  fermions ,  and, second, ord inary  supe r symmet r i c  theories  do not sat isfy the result ing 
equations. The f i rs t  of these difficulties is associa ted  with the c i rcumstance  that the holonomy group of the 
Riemannian superspace chosen in [13, 14] does not have invariant tensors  of the type of the Dirac yP matr ices ,  
o r  at least  not for  the representa t ions  used in [13, 14]. The second difficulty indicates that such a holonomy 
group does not cor respond  to ord inary  supe r symmet r i c  theor ies .  
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In our paper,  we adopt as holonomy group of the considered superspace the Poincar~ group augmented 
by t ransla t ions  of the spinor  var iables .  The invariant  tensors  of this holonomy group are  the Minkowski 
metr ic  tensor  gp~, the t ensors  e:~ and ~ ,  which serve to lower spinor indices, and the tensors  o ~ = ( l ,  
-a)h~, where a a re  Pauli mat r ices .  The metr ic  tensors  g A B  and g~iB, which ra ise  and lower  indices in 
accordance  with the rule 

V*~g*~V~ and Va=V~g~. ,  

can be chosen in our  case  in the fo rm 

~ p.v 

where a and b are  a r b i t r a r y  constants .  

and sat isf ies  the relat ions 

where 

- -  a ~  = ~r162 ~ , 

The metr ic  tensor  has the obvious s y m m e t r y  proper t i es  

g . . = ( - ) * ' g ~ . ,  

gCAgas=6cB a_nd gBAg At(=) *=6Be, 

o ) 
6 /  = (-)cBt /=12 62 , 

0 686. 

and 6. ~, 6~ ~ , and s163 a re  ord inary  Kronecker  symbols.  

Because the homogeneous holonomy group of our  superspace is in our case  the Lorentz group, only 
the components r / (d ) ,  r J (d )  , and [~'?(d) of the differential fo rm of the connection are  nonzero,  and they 
sat isfy relat ions that are  a consequence of the constancy of the tensors  gAB and a;~ ~ for  the given group: 

F. .  (d) + ( - )  *~F,. (d) =0, (5) 

r..  (d) = (o,~) ~r~ ~ (d) + (o~v)k Ors h (d), (6) 

where r . . ( d ) = r . C ( d ) g c . ,  and (a~)~ ~ and (~.~)~ a re  defined in the Appendix. The relat ions (24) and (25) lead 
to the following s y m m e t r y  proper t ies  of the curvature  tensor  with respect  to the second pai r  of indices: 

.c, , ~ . - -  ( - )  .c, .~, and the relat ions 
( 

where R.c, , , .=R~c..~g~a. 

The invariant action integral for  the superfields that determine the differential fo rms  c~A(d) and 
r ~ ( d )  is const ructed in the general  case in the fo rm 

~ .~  (R ,S )  W I I  dz~ , (7) 
a 

where ~f(R, S) is an invariant  function of the curvature  and torsion tensors*  and W=det r 

In the case when ~(R,  S) is a l inear  function of the curvature  and tors ion tensors ,  the express ions  

for  the var ia t ions  of these las t  have the fo rm 

S .,--'~; ~r ~ ~S * + "  ~ ' ~ )  ~S A + .  S ~ ~'+ ( ~.~,~+F- ~'S ~'+'~ ~ ( - ) ' ~ [ B + . + C ] } W ,  (8) CB Yu ~ [ - - ( U C  FB ] r  F C~ [ 2  CB ~J'IR �9 " - - ]  ~ C  BF J-CB J - -  

. . . . .  =lt--0)v Fc, B*-F1/~(--)r'ff)TR.c, . _  ( _ ) r S D T ~ c , . ~ + l / 2 S . o i ~ a ] _ ( _ ) o r ~ [ C ~ + - D ] } W ,  

where on the r ight-hand sides of the express ions  (8) and (9) we have omitted the t e rms  that are  ~ total covariant  
der ivat ives .  The tilde above quantities denotes their  variat ion,  and ~).'=X.~'~)o ~ and F~c*=X.bF~,c ~ are  
covar iant  var ia t ions .  In the derivation of (8) and (9), we have used the following express ions  for  the var ia t ions  

Of x~, and W: 
. ~  =-o )A  X~,  W=(-)~:~) , :W,  (10) 

and their  covar iant  der ivat ives:  

* The proper t i es  of determinants  of ma t r i ces  that have anticommuting matr ix  elements  is d iscussed in [13, 14] 

(see also the Appendix). 
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D,,X.,,~=-(--)~(x+nX,,' (D~c%")Xr ~, D,W=(-)~(;+~)+eX~t (Doo~f) W. 

In the l inear  approximation of weak fields, all quantities are  expanded with respec t  to the ordinary  
supe r symmet r i c  superspace  [2, 5]: 

0 0 

o)o~=o)2 (~.~+h.A (z) ), X 2 = (  ~ 2 - h 2  (z) ) Z .  ~ 
whe re 

(% =[ia(~+o~)p 6f~ ~ 0 , A = ( 9 ,  a , a ) , X x  =[_ia( (p+o~)~  62 , a=(v,[] ,~),  
6a a = (v, p, p),  A = (~ ,  a ,  ~). 

0 0 
The mat r ices  c0~ x and X2  a re  the values of the ma t r i ces  c0~ ~ and XA ~ in the case  of the ord inary  super -  
symmet r i c  superspace,  and the superfields hA(z ) descr ibe  small deviations f rom the ord inary  s u p e r s y m m e -  
tr ic  superspace.  In this approximation,  the tors ion and curvature  tensors  (3) and (4) are  represented  in the 
f o r m  

0 A 0 0 0 F o 0 0 p O  0 A 
Sc~A_= {DahB . + (__)C(B+I) [X~ (Dco]] ~.) (6 / t  + h~, ~) - -  (hB X /  Dc -~- X J h c  D~) o)] ] + FeB A} __ (__)CS ~C ~-~ B}, 

A o X ( )D(C+I)~C, 0 0 ~ -- ( )DC[C.~D], RDC, B = [DDFcB 2 c - -  (D~(o: ) F~e A] __ 

0 0 

where DA=X,r are  quantities known in s u p e r s y m m e t r y  theor ies  as covariant  der ivat ives  [6-9], and they 
ant icommute with the genera to r s  of the s u p e r s y m m e t r y  t ransformat ions .  These quantities sat isfy the 
following commutat ion relat ions:  

0 o 

{Do, D~} = - -  2 ia~  ~0~. 

When one cons iders  the general ly  covar iant  theory  in the tetrad formal i sm,  there  a re  two groups of 
gauge t ransformat ions :  a) the group of genera l ly  covar iant  coordinate t ransformat ions  z~ b) the 
group of f rame t ransformat ions  o) ~' (d)=(o" (d)L, ~' (z). Since the t ransformat ions  of both gauge groups leave 
the observable physical  quantities unchanged, unimportant  unphysical components can be eliminated by the 
choice of the gauge. In the l inear  approximation of weak fields, we shaI1 cons ider  infinitesimally small 
t ransformat ions  of these groups so as not to des t roy  the approximation.  Under int ini tesimally small general ly  
covar iant  t ransformat ions  of the coordinates  z~'=z~+h:(z) the t ransformat ion  of the differential fo rms  
(o'~(d)=~S(d) (6,x+h. x) in the l inear  approximation reduces  simply to a t ransformat ion of the small superfields 

h~(z): 
h',A (z)=h;~(z)--t-6h,A(z). 

The increments  6hA(z ) can be expressed  in t e rms  of infinitesimally small functions of the t ransformat ions  
of the coordinates  ha(z ) as  follows: 

6h,; = O~H I~, 6h~ ~ = D~H + 2ia(~ b~h~, 6ha '~~ = D&H + 2ia(~&p~h ~, 6hA ~ = DAh a, ~hA ~ ~ DAh c~, (11) 

where H"=h~+ia(h+o~--cp+o~h). 

Infini tesimally small  f rame t ransformat ions  ~a'(d) =o) s(d) (6 ,~ '+~  A'(z)) lead to the following t r a n s -  
format ions  of the small superfields h A (z) :  

~',~ (z) =h~ ~ (~) +~"  (z) ,  

where the ma t r i ces  ~s~(z) sat isfy the relat ions ~s.r where [a,(z.)=~,,c(z)gc~. 

~ o  

tional to the following quadratic combination of the tors ion tensor :  

v p v T, T~ T~ T~ , 

with the additional covar iant  gauge conditions 

S As ~ = S  A~ ~ = S ~ = S ' . ~  "=S~p"=O 
and 

S~h ~ = S ~  ~ = S~ ~cl~ ~si = S~&~ ~ = O, 

where T, = ~ b T ~  ~, and 

S �9 '~ - -  2iac~o~ 1~ ~ I~ o o Tcr ~ = ~ = 2ia [%~ h, - -  (h~(~ ~ ~ -+- hb ~o~E~)] + D~hb ~ + D~h~ ~ 

As an example,  let us cons ider  a Lagrangian in the l inear  approximation of weak fields p ropo r -  

(12) 

(14) 
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is the d i f ference  between the tors ion  of the cons idered  supe r space  in the p r e sence  of gauge f ields and the 
0 

constant  vec to r  tors ion  S , ~ = 2 i a z , ~  of the o rd inary  s u p e r s y m m e t r y  supe r space  in the absence  of gauge 
f ields,  i . e . ,  T,~, is the contr ibution of the gauge f ields to the tors ion  S ~  ~. 

In the Lagrangian  (12) with the additional conditions (13) and (14) we in addition set  equal to ze ro  the 
connect ions FA~ c , which c o r r e s p o n d s  to switching off the in te rac t ion  and cons ider ing  only the kinetic p a r t s  
of the f ie lds  in the Lagrangian ,  i . e . ,  to cons ider ing  the s p e c t r u m  of the f ie lds  that  a r e  p re sen t .  It is a con -  
sequence of the conditions (1F) that the super f ie lds  hA(z ) can be r ep re sen t ed  in the f o r m  

0 _ . 0 _ &  o - - t ~  " ___ 0 _ 
hA (z = DAh~,, hAa. = DAh , h,,t" = O,,~t,., h v" = D,~H + 2iah'V(~it~ ~, hh ~ D a (H~)+ + 2i~'cLv~ ~, 

where  h% ~ = ( ~ ) + ,  ~", and H ~ a r e  ce r t a in  new superf ie lds .  

We use  the f r e e d o m  assoc ia t ed  with the gauge t r ans fo rma t ions  (11) and choose a gauge in which 
~-/~(z ) = 0. Then the v e c t o r  tors ion  T,~" in this gauge can be e x p r e s s e d  in t e r m s  of the new superf ie lds  as 
fo l l ows  o 0 o o 

T~  ~ = {O~, D~} X ~ + i [D~, D~] Y~, 

where  X g and Y/~ a r e  the Hermi t i an  components  of the superf ie ld  H~=X'+~Y ~. Substituting into (13) the 
expres s ion  (1~) fo r  T~  ~ and using the additional conditions (14), we find that the Lagrangian* can be 
e x p r e s s e d  solely in t e r m s  of the single Hermi t i an  superf ie ld  Y/~ (z) :  

0 0. 

TJ'T~'- T,,"T J ~  Y%~..~p~.OPD~eo,~'D ~ Y". 

In der iv ing the express ion  (16) fo r  the Lagrangian ,  we have used  the following re la t ion between the aP 
m a t r i c e s .  

The action (7) with the Lagrangian  (16) can be e x p r e s s e d  in t e r m s  of ord inary  f ields by substituting into (16) 
the decomposi t ion of the superf ie ld  50 u (z)  with r e spec t  to the o rd ina ry  fields: 

Y~ (z) = A ~ (x) + X~ ~ (x) (po: + r ~ (x) + B v" (x) ep~r ~ + (B t~ (x))+c~a(~i~ + a~t' (x) ,~+a~,~ + [O~z ~ (x) _ ~ia (O~Xt~ (x)+a~)o:] • 

�9 i a  ~ ~ 
+ + + [c + A (x)] 

and integrat ing in (7) with r e spec t  to the an t icommut ing  v a r i a b l e s  in accordance  with the ru les  

S eP~ dc~=e ~, S d~=O. 
0 

In the linear approximation, it is necessary to replace det wA by det ~o~ ~=I. As a result, we obtain 

0 0- 

f Y~e~.OPD~ )" DPY'~d~x#~ = I (L~ + L~,.~ + L1) d%, 

where 

(15) 

(16) 

L 2 = - a  (a (~  Dar,~--2a~"P~OpO~ac.,,,)+ 2aj,"OoO"a~,,,,~--aJ,~'i2a~, ") 

is  the Lagrangian  that g ives  the equations for  a f ree  field with spin 2, 

L~7~= e,m (0 F) +(Y~0~0" 

the R a r i t a - S c h w i n g e r  Lagrangian  fo r  a field of spin 3/2, and 

Ll=a ( at~'~JDaE~,~] + 2aCV-~,]OpO~ av~]) +C%~,~p~.Opa t'~'] 

a Lagrangian  whose pa r t  within the b r acke t s  would desc r ibe  the so -ca l l ed  notoph, i . e . ,  a vec to r  par t ic le  with 
hel ici ty equal to ze ro  [23]. However ,  the p r e s e n c e  of the l as t  t e r m  in the Lagrangian  L 1 means  that a[pu] 
has  the s t ruc tu re  

a[,.., ]  =O.b~--O~b.. (17) 

And since the Lagrangian  of the notoph is invar iant  under  gauge t r ans fo rmat ions :  

at,n=aE,,,V~ O ~,b,,-O.,b,,, 

* That  a Lagrangian  of the f o r m  of the express ion  on the r ight -hand side of (16) contains o rd inary  f ie lds  with 
spins 2 and 3/2 was pointed out to us by V. I. Ogievetskii  and E.  Sokatchev (see a lso  [10, 22]). 
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the s t ruc tu r e  of (17) fo r  a[t~u ] l eads  to the ac tual  absence  of the notoph. Thus,  this  Lagrangian  in the l i nea r  
approx imat ion  e f fec t ive ly  conta ins  the f r ee  Lagrang ians  fo r  the g rav i t a t iona l  f ie ld a{p. ~ and the f ield 0~ a with 

�9 t / j -  

spin ~/2. We have not examined  the in te rac t fon  of these f ie lds .  However,  it  should be noted that fo r  the 
in te rac t ion  it is  not in advance obvious what a r e  the gauge groups  that ensure  the absence  of the redundant 
components  in the ca se  of the f r ee  f ie lds .  

We a r e  v e r y  gra te fu l  to V. I. Ogievetsk i i  and E. Sokatchev for  a helpful d i scuss ion  and a number  of 
valuable  t ips .  

A p p e n d i x  

The invar ian t  con t rac t ion  over  t en so r  indices  in e igh t -d imens iona l  supe r space  can be defined in two 
di f ferent  ways,  which in the s i m p l e s t  case  of the product  of two ve c t o r s  have the f o r m  

v~uA=v~u~+v~'u~,+v'~u,; (f i rs t  method), U~V~=VAUA(--)A=WU~--V~'U~--V'~Ui, (second method). 

We adopt the f i r s t  method of defining the invar ian t  cont rac t ion .  

Note a s imple  but v e r y  useful  rule  concern ing  grading  f ac to r s .  All the ca lcu la t ions  can be made 
without bother ing  about the g r a d i n g  f ac to r s ,  which can be r e a d i l y  r e in s t a t ed  by following this ru le .  We 

i l l u s t r a t e  it by the example  of the exp re s s ion  for  the va r i a t ion  of the tors ion ,  sc,.~-~w. The o r d e r  of the t ensor  
indices  in this  case  is  ~a., and the grading  f a c t o r s  of the d i f ferent  t e r m s  on the r igh t -hand  side of (8) take 
into account what pe rmu ta t i ons  of the indices  must  be made in each t e r m  in o r d e r  to e s t ab l i sh  the o r d e r  of the 
indices  ~'BA., and to each  t r ansposed  p a i r  of indices ,  say  E and F,  there  c o r r e s p o n d s  the fac to r  (_)EF, where 
the indices  in the exponents  take the va lues  0 for  boson va lues  and 1 for  fe rmion  va lues .  The ind ices  over  
which the summat ion  is p e r f o r m e d  must  be p laced  next to one another  and in the o r d e r  co r re spond ing  to the 
adopted definit ion for  the invar ian t  contract ion�9 This  rule  works  in al l  e x p r e s s i o n s ,  including the e x p r e s s i o n s  
fo r  the volume and i ts  va r i a t ion  d i s c u s s e d  in [13], in which the de t e rminan t  of the m a t r i x  MAB , which contains  
ant icommut ing  m a t r i x  e l emen t s ,  is  defined as  

det M=exp Tr (In M), * 

and the t r a c e  of these m a t r i c e s  in the f o r m  Tri=(-) '~Ma ~. In p a r t i c u l a r ,  one unde r s t ands  the grad ing  fac to r s  
(_)A in the definit ion of the t r ace  of the ma t r i x  o r  a product  of m a t r i c e s ,  for  example ,  MA'NsCLcA(--) A, and in 
the e x p r e s s i o n  (10) for  the va r i a t ion  of the volume w =  det o,~ .~, IF:  (--)AXA~AW. 

We should point out a fundamental ly  d i f ferent  pos s ib i l i t y  of gene ra l i z ing  the volume for  the case  of 
supe r space .  F o r  this  we note that in the case  of o r d i n a r y  space  the volume can be e x p r e s s e d  in the fo rm of 
the e x t e r i o r  product  of Caf tan  fo rms :  

co ~ (do) A (0 t (d~) A Co ~ (d2) A o) 3 (d3). (A. 1) 

If gene ra l i z a t i ons  a r e  made in accordance  with (A. 1) and the volume in supe r space  is  e x p r e s s e d  as  an 
e x t e r i o r  product  of eight  Car tan  r fo rms ,  then because  of the equation 

r (d) ^ c0" (6) = - ( - )  ~Bco" (d) ~ (0A (~) 

it  can be seen that the e x t e r i o r  product  of the sp inor  f o r m s  is  a s y m m e t r i c  t ensor ,  in c o n t r a s t  to the spa t ia l  
fo rms ,  which a r e  a n t i s y m m e t r i c  t e n s o r s .  T he r e f o r e ,  this  volume in s upe r s pa c e  is a t ensor ,  in c o n t r a s t  to 
the case  of an o r d i n a r y  space ,  in which it is  an invar ian t .  Such t e n s o r  vo lumes  in supe r space  can obviously  
be used when one is  cons ide r ing  gene ra l i z a t i ons  of gene ra l l y  cova r i an t  t heo r i e s  to the case  of s u p e r s p a c e .  

The en t i t i e s  (~.~)~ and (o.~)h~ a r e  defined as  follows: 

(%~)~ ~ = ~- (%% - %%)~' (%~)a ~= - �88 ( ~  - %~)a ~' 

where  
�9 , 

and a a r e  the o r d i n a r y  Paul i  m a t r i c e s .  The t r ans i t ion  f rom the vec to r  r ep re sen t a t i on  to the. sp inor  r e p r e -  
sentat ion in the case  of the a n t i s y m m e t r i c  t en so r  A~,, = -A~ is  made in accordance  with the fo rmulas  

It is  helpful to note the following p r o p e r t i e s  of (~.~)~ and (a..)h> with r e s pe c t  to pe rmuta t ion  of indices:  
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o 

(%~)~ ~ = (%,)~ ~, (%~)4 ~ = (%v) ~, 
where 

. . . .  (%0~, ~i, (~,v) ~= ~,~ '(a~,)  ~'~,, (%0 ~ ~ = ~ 8~. 

with respec t  to complex conjugation: 
( (~)  %)'= (o,~)~ 

and spatial reflection: 

where the subscr ipt  ~ means that the spatial components ~f the quanti~y with subscr ipt  ~ have signs opposite 
to the spatial components of the quantity with subscr ipt  ~, i . e . ,  v~=(v 0, -v),  if v,=(v 0' v). 
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