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Progressively Censored Sampling of Rock  
Joint Traces 1 

Gregory B. Baecher 2 

A number of  sampling problems in geology and engineering geology involve geometric vari- 
ables, and must deal with the almost pervasive biases that accompany geometric sampling. 
Among these biases is the fact that not all elements of  the sampled population are fully ob- 
servable. Some members, usually the largest, are censored. Inferences cannot ignore the cen- 
sored members o f  the sample, because the censoring is often related to the variable being 
inferred-for example, the case of  sampling for feature size. Inferences from samples are 
conceptually straightforward, and for the simple case of  exponential parent distributions, 
mathematically traetible. Maximum likelihood and Bayesian results are given for the expo- 
nential case, and examples are drawn from joint surveys in rock mechanics. 
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INTRODUCTION 

The question of censored observations in sampling from known distributions has 
been recognized for several decades, having arisen in life testing (Epstein, 1954), 
insurance statistics (Fisher, 1931; Hald, 1949) and other fields. In geology, the 
problem has been notable in joint surveys for rock mechanics, in resource esti- 
mation, and other sampling problems invol~g geometric variables. For simplic- 
ity, the present discussion draws examples from joint surveys, but the methods 
are sufficiently general to apply to a range of sampling problems. 

The standard def'mition of joints holds them to be fractures or cracks (in 
rock) along which there has been little movement. Empirically, joints tends to 
form subparallel groups, to be randomly rather than systematically spaced, and 
to have a finite measurable extent. The importance ofjointing to the engineering 
behavior of excavations, openings, and foundations is almost an underlying prin- 
ciple of rock mechanics. Although there is considerable divergence of opinion on 
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the gensis ofjointing (e.g., Price, 1966), for the purposes of engineering this con- 
troversy is somewhat unimportant. 

The geometric properties of jointing are inferred primarily from observa- 
tions in outcrops and openings. While advances in statistical techniques for infer- 
ring fracture patterns from drill cores are being made, from a practical point of 
view these are yet to find application. The observations made in outcrop are of 
joint traces, that is, of the intersections of joint planes with the outcrop. Several 
geometric properties are measured, but of present concern is the distribution of 
trace lengths, from which joint size and persistence are ultimately inferred. 

A number of biases exist in sampling trace lengths and imferringjoint size. 
These have been discussed in Baecher, Lanney, and Einstein (1977a, b) among 
other places and will not be repeated here. The question of censoring involves 
joint traces that are not completely observable. The most common reason a joint 
trace is not completely observable is that it runs off the outcrop, or into a wall 
(Fig. I). Thus, for that particular observation one knows only that the actual 
trace length is longer than observed. Because longer traces have a greater proba- 
bility of being censored than do shorter ones, these incomplete observations can- 
not be ignored. 

The problem of inferring the distribution of trace lengths from a censored 
sample is, in principle, easy. Given a set of observations partitioned into three 
groups: 

x = {x l  . . . . .  Xn}: 

Y = {Yl . . . . .  Ym}: 

Z = {Zl . . . . .  Zk}: 

soil cover 

<YY 

trace lengths with both ends observable, 

trace lengths with one end observable, 

trace lengths with no ends observable 

sampling 

~t ~ ~ ~ .~ line 

/ 

o r 

Fig. 1. Joint traces sampled in construction trench. Note, not  all traces 
have fully observable length. 

(1) 
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and a density function for trace length f(l[O), with parameter 0, the likelihood 
of the observations is simply 

L(x,Y,z[O)=[I  f(xi[ O)X H f (yi[O)dyX N f(zi[ O)dz 
i=1 /=1 i i=1 i 

(2) 

While equation (2) is easily written, its maximum is less easily found. Nu- 
merical solutions by enumeration are possible for any family of density func- 
tions, but closed form solutions are conveniently calculated only for those fami- 
lies having analytical cumulative distributions. This has made the exponential 
family a favored choice, even though empirical evidence sometimes suggests dis- 
tributions more of the lognormal or gamma shape (e.g., Baecher, Lanney, and 
Einstein, 1977a; Epstein, 1954). 

For exponential trace length 

L(x,y, z 10) = (One -OZxi) X (e -Ozyi) X (e -O~zi) (3) 

Equating the derivative of (3) to zero yields the maximum likelihood estimate 
originally due to Epstein (see also Cruden, 1977) 

= n / ( ~ x i  + ~,yi + ~z~) 

= n/£ (4) 

where £ = (2xi + 2Yi + Zzi). 
The simplicity of this estimate is attractive. The difficulty is that the sam- 

piing variance of 0" becomes large as n, the number of two-ended observations, 
becomes small. 

The variance of 0" is found in the normal way 

V[g] --------E -~ {[32 logL(x,y,z[O)]/O0 z} (5) 

= 02 /n  (6) 

showing the sensitivity to n. Since 0 is not known, it is replaced by 0" to obtain 
an estimate from the sample. In this case 0" is easily shown to be biased. Since 
first and second derivatives of equation (3) exist for all 0, the estimator 0" is 
asympptotically normal (Kendall and Stuart, 1973). 

From a Bayesian point of view the natural conjugate to censored Exponen- 
tial sampling remains the gamma distribution, 

f°(O[a,~) o: O'~-l e -~° (7) 

From which the posterior parameters are found by 

~, =~o +z (8) 
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where (a ° , 13 °) are the prior parameters and (a', t3') the posterior. For the non- 
informative prior 

s ° -+0 

/3 0 -~0 (9) 

The predictive density on trace length starting from a noninformative prior 
is 

[ f~ ( l )  = f t ( l lo ) f ' (o  Ix, y,  z) dO (10) 

= (0e -° ')  { [~e"/r ( . ) 10"  - '  e -°£ } dO (11) 

n£ n 
- 6e ÷ l)" +1 (12) 

This can vary substantially from the pdf conditioned on ~, the maximum likeli. 
hood estimate (Fig. 2). However, since the predictive pdf incorporates both nat- 
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Fig. 2. Predictive density ovel trace length and density conditioned on 
m a x i m u m  l i k e l i h o o d  0 (£ = 1 0 0  ft ,  n = 10) .  
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ural and statistical uncertainty it is the appropriate density function for statisti- 
cal prediction and reliability analysis. 

E X A M P L E  

Figure 3 shows joint trace length data collected in outcrops by measuring 
every trace intersecting a sampling circle of fixed diameter.a The data is divided 
according to the number of observable ends, and can be summarized as 

n 

~_, x i = 147.2 
i = 1  

n = 128 

n 

E Yi = 131.2 
i = 1  

m =  64 

Thus, from (3) and (6) 

n 

z i= 25.8 k = 12 
i=1 304.2 204 

0" = 0 . 4 2 1  

V(~') = 0.0014 

CV(g) = 9% 

and the Bayesian posterior pdf is shown in Figure 4. This estimate, of course, is 
much smaller than that obtained merely from the complete observations 

gx = n /~x i  = 0.87 

and is also smaller than that obtained from the uncorrected observations 

0x +y +z = (n + m + k ) /~x i  + Eyi  + Ezi) = 0.67 

The reason is clear: large traces have a greater probability of  being censored than 
do small ones. 

The predictive density function for the data is, 

128 (304.2) 128 f(llz,y,z)= 
(304.2 +/)19-9 

which is compared to the pdf conditioned on • in Figure 5. As n ~ ~o the condi- 
tion pdf approaches the predictive because uncertainty in 0 goes to zero. 

aLength bias is ignored here, although it can be easily accommodated in principle. In prac- 
tice length bias leads to censored gamma sampling with accompanying analyfieal ~ficulties. 
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Fig. 3. Joint trace length data grouped by the number of observable 
end points. Triangles mark sample means. 
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Fig. 4. Bayesian posterior distribution on 0. 
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Fig. 5. Predictive and conditional density of trace length (£ = 304.2, 
n = 128). 

CONCLUSIONS 

While the problem of censored sampling from exponential distributions has 
a convenient analytical solution, certain problems in sampling geometric data re- 
main. Perhaps the most troubling is the fact that many geometric properties dis- 
play lognormal or gamma distributions, and the cumulative functions of these 
distributions do not have nice analytical forms. For a fixed point of censoring, 
tabulated solutions are given by Hald, but otherwise the problem is unsolved. It 
is certainly true that inferences from progressively censored lognormal and 
gamma samples can be made using electronic computers, but these are not al- 
ways available. Another problem is the relation between trace length and joint 
geometry. That is, the trace is an intersection between some two-or three- 
dimensional features and an outcrop. Inferences of the size of the feature itself 
generally require shape assumptions and often lead to mathematical complexity 
(e.g., Baecher, Lanney, and Einstein, 1977 b; Epstein, 1954). Nevertheless, 

because of its simplicity, the exponential model is in wide use in engineering 
geology, and tractable solutions are available for a broad group of sampling 
problems associated with it. 
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