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Delineation and Analysis of Clusters in Orientation 
Data 1 

R. J.  Shanley  2 and M.  A. Mahtab  3 

This paper presents a technique for (l) clustering orientation data with minimum constraint on 
resulting partitions, and (2) testing clusters against a probability distribution defined on the 
unit sphere which admits elliptical symmetry about its mean. The use o f a n  objective fimction to 
highlight certain features o f  the data is discussed. The technique for delineation and analysis 
o f  clusters is applied to an example problem through use o f  a computer code. K E Y  W O R D S :  
cluster analysis, statistics, numerical taxonomy, structure. 

INTRODUCTION 

An understanding of many phenomena in the physical and earth sciences 
necessitates the collection and analysis of orientation data. Examples of such 
data are: axes of crystals and glacial till pebbles and fracture orientations. 
The orientation data may be clustered around one or more modes or statisti- 
cally preferred orientations. Delineation of these clusters (or sets) in the data 
as well as estimation of the mean direction for each cluster (along with 
determining the precision of this estimate) are essential for studying the 
various problems involving orientation data. 

An example in point is the mathematical modeling of a fractured rock 
mass for numerical analysis of boundary-value problems encountered in 
subsurface excavations. I f  these problems are solved using a representative 
volume element (which is an aggregate of many fracture and intact rock 
elements, see Mahtab, 1974), the mean directions (and dispersions) of 
fracture sets are reflected in the resulting mean stresses or strains (and their 
dispersion). John (1968) illustrates the influence of fracture orientations on 
the shape and direction of movement of a wedge of rock in a roadcut; note 
that, near the position of limiting equilibrium, the "safety factor" is sensitive 
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to small changes (of the order of 5 degrees) in the orientations of the fracture 
planes delimiting the wedge. In a study of the influence of fractures on cavabi- 
lity (collapse) of rock mass above "an "undercut" in a block-caving mine 
(Mahtab and Dixon, 1975), the extent of the shear failure zone was shown to 
increase dramatically when the dip of the fracture set permeating the rock 
mass was changed from 15 ° to 0 °. 

Because orientation measurements can be represented conveniently by 
unit vectors, it is natural that cluster-analysis techniques and probability- 
distribution theory be applied to collections of data points on the unit 
hemisphere. 

Several partitions of a sample of orientations are defined using an 
adaptation of Wishart's (1968) one-level mode analysis. An objective function 
is evaluated at each partition. The dusters belonging to partitions near the 
point at which the function assumes its minimum are compared (using the 
chi-square test) with a probability distribution defined on the surface of the 
unit sphere, studied by Bingham (1964), that allows elliptical symmetry about 
the mean of a given cluster. The new technique for delineation and analysis 
of dusters in orientation data described herein affords increased flexibility 
over existing techniques (Mahtab and others, 1972). The authors have 
developed a computer code incorporating the new technique. The computer 
code was made available to potential users in a Bureau of Mines report 
(see Shanley and Mahtab, 1975). An application of the technique is made to 
an example data set composed of orientations of fractures in a porphyry 
copper deposit. 

Axial orientation data can be represented in various manners. Given any 
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Figure 1. Representation of fracture orient- 
ations by points on unit hemisphere. 
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axis (for example, a normal to a fracture plane), we may construct a line in 
three-dimensional rectangular coordinate space which passes through the 
coordinate origin and is parallel to the given axis. The spherical coordinates 
(1, 0, qS) of the point of intersection of the constructed line with the unit 
hemisphere uniquely determine the orientation (but not the position) of the 
axis (Fig. 1). 

The area of concern to the authors is the study of rock fractures and their 
influence on the mechanical behavior of structures excavated in a fractured 
rock mass. To further this study it is necessary to extract, from sets of fracture 
orientation data, information on the preferred orientation and the dispersion 
of fracture sets, if such information exists. 

In general, it is impossible to determine beforehand the distribution of 
orientations of fractures in a fracture set. However, the distribution usually 
does not have circular symmetry about the mean of the set. Elliptical sym- 
metry about the mean may be more common. 

CLUSTERING OF ORIENTATION DATA 

For the aforementioned reasons, a technique used in the delineation and 
analysis of clusters in orientation data (especially fracture orientations) 
should incorporate a clustering algorithm which is unrestrictive as to the 
size and shape of clusters. In addition, the algorithms used for clustering 
should not presuppose the distribution to be fitted to the data points in the 
resulting clusters. Note that the clustering technique presented in this section, 
and the technique for analysis of dusters, using Bingham distribution, 
presented in the next section, can be used independently of each other. 

In what follows, a partition P of a set of orientation data A = {(01, ~bl), 
(02, ~b2) . . . .  , (0n, ~bn)} will be a collection {As) of distinct nonempty subsets 
of A such that each observation in A is contained in some At. The elements 
A~ of partition P will be referred to as clusters. 

Partitioning of Data Using a Modified One-Level Mode Analysis 

To apply the one-level algorithm to a set of orientations A = {(01, 41), 
(02, q~2), • •., (0,, ~b,}, two numbers must be chosen: r, a positive real number, 
and k, a positive integer. In addition, a "similarity" function p (X~, Xj) 
must be defined on the set of all pairs (Xi = (05, ~b~), Xj = (0s., ~bj)) of 
orientations, to measure the similarity of any two axes. Spheres of radius r 
then are constructed about every datum. The centers of those spheres con- 
taining k or more observations are called dense points. 

The remainder of the one-level algorithm consists of two steps: (1) 
partitioning of the dense points, and (2) defining a partition of all of A using 
the nondense elements of A and the partition defined on the dense points. 
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In step 1 we start with the partition P1 (on the set of dense points) in 
which every cluster contains a single point. P1 then is modified, to obtain a 
new partition P2, by combining groups of clusters of P1 into single clusters. 
The rule for determining whether two dense points, v and w say, will belong 
to the same cluster in P2 is as follows: if there are dense points Xo( = v), xl,  
• . . ,  Xm( = W), such that p(Xi,  X~+l)<~r, i = 0,1,2, . . . ,  m - l ,  then v will w 
will be in the same cluster of P2. 

Step 2 consists of modifying P2, thereby obtaining a partition Pa defined 
on A, and not on the set of dense points alone. This is done by adding non- 
dense points to the clusters in Pz until every point in A belongs to some 
cluster. The authors assign a nondense point to the cluster containing the 
nearest dense point. This criterion is the choice of the authors and is not the 
only criterion that could be used (Wishart, 1968, p. 298). The one-level algo- 
rithm stops when P3 has been defined. No dense point may be removed from 
its original partition element, and the number of partition elements may not 
change. 

The strong point of the algorithm is the absence of restriction on size 
or shape of clusters, a restriction present, for example, in hierarchical 
clustering algorithms employing minimum variance as the objective function. 

A drawback of the one-level algorithm, recognized by Wishart (1968), is 
the element of external control involved in allowing user selection of both r 
and k. Furthermore, some clusters might not contain data modes, depending 
on the sample and choice of r and k. These difficulties are due chiefly to the 
arbitrariness of the selection of r and k. For this reason, the authors have 
modified the algorithm by allowing the selection of r to remain arbitrary 
(subject only to r ~> 0) and selecting k by means of a test for randomness 
derived from the Poisson distribution (Mahtab and others, 1972). I f  we allow 
n to be sample size (number of points in A), and c the percentage of the area 
of S (S = {(x,y,z) 1 x 2 + y 2 + z  2 = 1, z~>0}) lying within a sphere of radius r 
centered at a point of S, then k is defined to be the smallest integer K such that 

K 
P ( D > K - 1 )  = 1 -  ~, e -mmJ/ j[  ~<0.05 

j = O  

where m = cn, and P is the probability of occurrence of a random density D. 
According to the Poisson model, k is that integer such that the probability 

of a random grouping of k or more points lying inside a sphere of radius r 
centered at a point of S is less than 5 percent. This modification not only 
mitigates the objectionable external control in user selection of both r and k, 
but also increases the likelihood that dusters defined by the algorithm will 
correspond to data modes. 

It remains to define the similarity measure p. Let X1 = (01, q~l), X2 = 
(02, q~2) be points in A. The coordinates (01, ~bl), (02, q~2) give the attitudes of 
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two (possibly collinear) axes intersecting at the origin. We define the distance 
between these axes to be 

p(X1,X2) = ~, (1)  

where g is the acute angle of intersection of the two axes. Thus p measures 
the "similarity" of any two axes taken from A. 

Selecting Best Partition Using an Objective Function 

In general, two partitions defined by the previously discussed clustering 
technique will be different if the corresponding values of r are sufficiently 
different. In the event that more information than is provided by the analysis 
is desired by the user, an "objective function" may be defined on the collec- 
tion of partitions for the purpose of determining that partition for which the 
function exhibits desired behavior. This usually consists of minimizing or 
maximizing some variable associated with the data, such as variance. The 
objective function offered here is 

M ~% M-1 M 
F(P)=  Z Z d2(X},~J) + Z Y, dZ(.~,,X/) (2) 

j =  1 i =  I i =  1 j = i + l  

where M is the number of clusters in partition P, Nj is the number of points 
in cluster j of partition P, X] is the ith element of cluster j, d(Xi, Xj) is the 
Euclidean distance between X~ and Xj, and )?~ is the center of gravity of 
cluster i, assuming each data point has a unit mass. 

The center of gravity of a set of orientation data C = {(0~, ¢~), i = 1,2, 
. . . .  m} is given, in rectangular coordinates, by 

L = X z,im 
i = 1  " =  i = 1  

(see Fig. 1 and Mahtab and others, 1972, p. 7-8). 
The function F(P) was empirically tested on generated sets of data, 

having circular symmetry about their means, and provided good results in 
that it assumed its minimum at partitions whose clusters were close to the ones 
generated. 

ANALYSIS OF CLUSTERS OF ORIENTATION DATA 

After examining many sets of fracture orientation data, the authors have 
come to the conclusion that requiring the candidate distribution to exhibit 
circular symmetry about the mean is unrealistic. In the majority of situations 
examined, circular symmetry about the mean is not present. However, there 
is a distribution that allows elliptical symmetry about the mean. This distribu- 
tion has been studied by Bingham (1964) and is introduced in the following 
section. 
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Bingham's Distribution 

Bingham's distribution has the form 

exp[(l(gl'x)2+(2(l~2'x)2+(3(P3'x)~]ds/4~zxFi(1/2;3/2;Z) (3) 

where (i, (2. (3 are dispersion parameters and, using Kiraly's (1969) termin- 
ology for P3,/q, and/12, ga is the best axis,/~1 is the axis of best zone, and 
g2 is the axis of a zone containing/~1 and/~3. Also, 

Z =  ~2 
0 ~3 

and 1Fi (1/2; 3/2; Z) is a hypergeometric function of matrix argument. 
Bingham imposes the constraint ~3 = 0 to render the maximum likelihood 
estimate of Z unique. 

If the data are concentrated about a preferred orientation, both (1 and 
(2 will be negative. If (1 + ~2, then ~1 < ~z and the contours of the distribu- 
tion will be elliptical in shape. In this example, the axis/q would be parallel 
to the "minor axis" of the "ellipse," and the axis/~z would be parallel to the 
"major axis" of the "ellipse." The axis/~3, that is, the best axis or the mean of 
the distribution, would be perpendicular to both/~x and/~z. 

Estimation of parameters (ffi,/~i, i = 1,2,3) is discussed by Bingham but 
will be briefly touched on here. Given a set of orientation data 

C = {(01, ~1), (02, ~2) . . . . .  (0., 4.)} 
define x~ by 

Fsin qS, cos0,] 
xi = }sin ~b~ sin 0~J 

LCOS 
The coordinates of the vector x~ are the rectangular coordinates of a point on 
the unit sphere whose spherical coordinates are (1, 0~, ~b~) (see Fig. 1). 

Further, define a 3 x n matrix X of column vectors by 

X = Ix1 ,  x2 . . . . .  Xn] 

Let c01, ¢o2, and 0~3 be the eigenvectors of the matrix 

I 'Zx  2 Zx,y, Zx,z,] 
XX r= Exiy~ y~y2 Zy~zq 

I 

LZx,z, Zy,z, Zz? J 
where 091 <o92 < co a. Then the corresponding eigenvectors are the maximum 
likelihood estimates,/]1, ~2, and ~3, of/~1,/~2, and/~a. Estimates of ~1 and ~2 
are obtained by interpolating in tables given by Bingham (1964), who also has 
provided the information necessary for extending these tables. 
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According to Bingham (1964, p. 49), ,,0-i j2 is the variance of the rotation 
of  _Q (considered as a set of  three axes in space) about the axis Pk, where 
i :t: k ~ j . "  Here, _h~ = [/21, P2,/2a] and 

%2 = 1/2(0-~- %) (cot- %) 

The authors have developed a computer code which computes ~i, ~2,/~1,/22, 
~3, a21, a31, and 0"32 and performs the X 2 test described in the following 
section. 

The Cl~-Square Test 

In this section (0, qS) will denote the spherical coordinates of  a unit vector 
computed with respect to/23 . 

The number of points expected in the spherical quadrilateral 

{(0, ~)lcos,b2 ~<cos ~ <cos ~ ,  o~ < o < o2} 
is 

02 ~ 
[n/4n ~F, (1/2; 3/2; Z)] S S exp [(~1cos20 + ~2sinZ0)sin2qS] sinc~dc~dO (4) 

01 ¢2 

According to Bingham (1964, p. 43), this is the most natural method of setting 
up class intervals if the data are concentrated strongly about/23, which is the 
situation in the sets of orientation data studied by the authors. 

To apply the Z 2 test to the set of orientation data C (previous section), 
we first compute ~a, ~2,/~x, P2, and fi3. We then map the set C onto the unit 
hemisphere by means of a linear transformation which maps the three axes 
/~l,/~2, and/~3 onto the x, y, and z coordinate axes, respectively. The image of  
C is a set of  points clustered about a point having (0,0) as its spherical co- 
ordinates and (0,0,1) as its rectangular coordinates. Next, we compute the 
spherical coordinates of the points in the image of C. Note that ifi3 is represen- 
ted by (0,0,1) in the transformed system. 

Class intervals are constructed in such a manner that each interval has an 
expected value greater than or equal to 5. Geometrically, the unit hemisphere, 
in the transformed coordinate system, is partitioned into a set of  concentric 
circular bands, centered at/23, each of  which is divided into four class intervals. 
The number of  points in each class interval is easily counted. The expected 
value for each class interval is computed by using quadrature formulae to 
evaluate expression (4). The X 2 value thus obtained then is compared with 
tables of  the X 2 distribution. 

NUMERICAL EXAMPLE 

The technique of  delineation and analysis of  clusters in orientation data 
described previously was applied to a set of  fracture orientations measured in 



16 R . J .  Shanley and M, A. Mahtab 

a porphyry copper deposit (San Manual mine, Arizona). The data are listed 
in Table 1, which is divided into three parts corresponding to the three 
clusters in the partition defined for r = 0.0874. Figure 2 shows polar equal- 
area projection of the data of Table 1; an illustrative demarcation of the 
boundaries of the three clusters is sketched by hand. 

The objective function F(P), as seen in eq (2), assumed the value 180.61 
at the partition corresponding to r = 0.0874; this was the smallest value 
assumed over the range 0.0195 ~< r ~< 0.187. A plot of F(P) versus r is shown in 
Figure 3. 

As noted earlier, the objective function offered here was tested on gener- 
ated data (prior to its application to the numerical example) and consistently 
minimized at partitions whose clusters were close to the generated clusters. In 
the example of fracture orientation data treated here, three distinct groupings 
of dense points were observed for a wide range of r values: 0.0437 <~ r ~< 0.187 
(Fig. 4 shows polar equal-area projection of dense points corresponding to 

Table 1. Partition Elements for Numerical Example" 

Cluster No. 1 

e,~ e,~ e,¢ e,~ e,¢ e,¢ 
28,90 36,88 37,85 41,87 44,90 45,87 

50,90 50,90 53,87 56,87 57,87 67,87 

74,90 86,86 93,86 109,85 116,86 220,86 
230,86 230,85 237,87 240,85 240,85 240,87 

243,88 250,87 250,87 251,86 252,86 255,87 

257,86 258,87 270,90 270,85 270,88 274,87 

280,90 286,90 287j90 296,90 30,80 45,83 
62,83 65,80 73,83 75,80 83,82 84s80 

85,80 101,80 105,80 '110,82 210,80 232,82 
232,82 234,82 244,81 248,82 255,82 257,80 

264,80 266,84 276,82 291,80 297,80 84,75 

218,78 240,77 245,79 245,78 247,78 247,75 

250,77 251=78 255,77 279,75 285,75 302,78 
265,73 270,73 270,74 225,67 242,70 248,70 

255,68 277,66 90,65 217,65 220,65 229,64 

244,65 247,63 255,65 263,63 266,65 268,65 

297,65 77,58 228,60 232,60 233,60 244,58 

270,57 281,60 292,57 230,55 235,53 240,55 
270,54 276,54 297j55 301,52 210,47 217,47 
230,50 255,50 216,43 218,45 286,42 291,45 

216,33 247,32 275,35 249,30 254,25 202,75 
199,43 
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Table 1. Continued 

Cluster No. 2 

e,~ 8,~ e,~ e,~ e,~ e,¢ 

7,90 10,90 12,86 13,90 13,85 14,87 

15,90 24,87 136,87 141,86 143,87 147,85 

147,85 150,87 162,88 163,85 167,86 175,87 

182,86 314,90 314,88 315~90 325,86 325,90 

327,90 328,90 341,90 342,88 342,85 343,85 

345,85 345,87 345,88 345,87 346,86 350,86 

350,90 353,85 355,90 356,87 356,85 358,87 

360,88 13,82 150,83 155,80 186,83 186,83 

327,80 327,83 328,80 330,84 331,80 322,82 

336,82 338,80 342,80 350,83 352,80 355,80 

355,84 192,77 343,60 328,78 346,79 351,75 

354,75 354,75 355,75 357,78 360,77 334,72 

344,74 356,74 357,74 6,70 8,70 10,68 

15,67 140,67 147,70 161,70 304,70 314,70 

333,67 334,66 337,70 337,70 341,70 344,70 

344,70 346,70 353,70 360,70 360,70 10,64 

13,63 193,65 340,65 347,62 350,65 9,56 

28,58 149,60 167,57 313,58 328,60 

355,60 304,53 8,47 16,34 308,27 

Cluster No. 3 

168,46 177,46 83,42 106,44 176,43 205,36 

60,37 i18,37 154,40 177,36 181,40 133,35 

30,34 81,32 I05,32 119,32 126,31 20,25 

157,34 62,26 97,28 129,26 167,30 121,20 

25,21 33,20 57,24 70,20 i15,25 260,20 

126,20 127,23 133j20 145,25 158,22 214,18 

267,22 325,20 77,18 111,19 153,16 180,0 

7,15 81,13 85~12 132,6 190,7 

" (1, O, ~b) are the spherical coordinates of an observation (see Fig. 1). 

the partition for r = 0.0874). Therefore, it was concluded that three pre- 
dominant fracture sets were present in the porphyry copper deposit. However, 
the differences between any two of the ten partitions the authors examined 
(for the range of  r yielding three clusters) were small. For example, the 
maximum angular difference between a pair of  best axes,/~3, for cluster 3 was 
3.1 °. The maximum angular differences for clusters 1 and 2 were 1.9 ° and 1.6 °, 
respectively. Such differences, in general, will depend on the number of  data 
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Figure 2. Polar equal-area projection of 
partitioned sample of Table 1, Digits 1, 2, 
and 3 denote clusters to which indicated 
data belong. 
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denote vectors P.1, ~2, and ~.3, respectively. 
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Table 3. Chi-Square Test for Three Clusters of Table 1 

n 

Cluster (degrees of 
number freedom) ZZo.2o(n) X%.1o(n) X%.os(n) Actual X ~ value ° 

1 18 22.760 25 .989  28.869 27.73 
2 14 18.151 21 .064  23.685 17.12 
3 2 3.219 4.605 5.991 4.90 

a Expected value per class interval was between 5 and 6.5 for each cluster. 

points in the given clusters as well as on the scatter of these points. It is noted 
that some care and good judgment, based on previously established character- 
istics of  the orientation data that relate to the problem analyzed, should be 
exercised when using an objective function for selecting a desired or "best" 
partition. 

For the numerical example (data ~ of Table 1), equal-area projections of 
clusters 1, 2, and 3 corresponding to the partition defined for r = 0.0874 are 
given in Figures 5, 6, and 7, respectively. The maximum likelihood estimates 
of the par~tmeters associated with Bingham's distribution, and computed 
from the data points belonging to the three clusters, are presented in Table 2. 
The results of  the ~2 test for the three clusters are given in Table 3; it can be 
seen that the test is nearly significant, for all three clusters of  this example, at 
the 95 percent level, 

SUMMARY 

A technique is presented for clustering orientation data and for testing the 
resulting clusters against a probability distribution defined on the unit 
sphere which allows elliptical symmetry about its mean. Several partitions of 
a given sample of orientations are defined by the one-level mode analysis of 
Wishart. An objective function, F(P), is evaluated at each partition, P. The 
clusters belonging to a partition near the point at which F(P) assumes its 
minimum are compared with Bingham's probability distribution using the 
chi-square test. An application of the technique is made to an example data 
set composed of  orientations of  fractures in a porphyry copper deposit. 
Three clusters were defined in the example data set corresponding to the 
"best"  partition selected by using F(P). The results of analyses of the numeri- 
cal example are listed and polar equal-area projections of the example data 
set as well as of the points in the three clusters are presented. 
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