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AMPLITUDE AND POLARIZATION EFFECTS IN SELF-FOCUSING OF LASER 

RADIATION IN MEDIA WITH SPATIAL DISPERSION OF NONLINEARITY 

A. A. Golubkov and V. A. Makarov UDC 621.373 

The phenomenological theory of the propagation of beams with Gaussian transverse 
intensity profiles in isotropic media with spatial dispersion of nonlinearity 
is developed in the aberrationless approximation, using the method of moments. 
The self-focusing threshold is determined and different propagation regimes are 
identified in the case of elliptically polarized incident radiation. The latter 
are illustrated by analytically and numerically obtained dependences of in- 
tensity, polarization, degree of ellipticity, and rotation angle of the polar- 
ization ellipse of the output light along the beam axis as functions of propaga- 
tion coordinate. 

i. More than 25 years have passed since the possibility of self-focusing of laser ra- 
diation was first demonstrated [I]. Since this time a large number of theoretical and ex- 
perimental papers have been published, dedicated to the study of various aspects of this phe- 
nomenon. The results of these investigations have been reflected in review articles [2-6]. 
However, practically all of these works considered only the cases of linear and circular po- 
larization of the incident radiation, which was assumed to be constant during the process 
of propagation, and only a few contain results of experiments or numerical investigation of 
self-focusing of elliptically polarized light [7-9]. 

Recently, the relatively recently [13] predicted phenomenon of nonlinear optical activ- 
ity, which is, in essence, the analog (in the case of strong light fields) of the classical 
effect of natural optical activity, has been experimentally detected [i0] and theoretically 
investigated in detail [ii, 12]. It is associated, in particular, with the existence of 
spatial dispersion of nonlinearity - the nonlocality of the optical response of the medium 
to an external influence, and takes place in many crystals, isotropic liquids, and liquid 
crystals. The phenomenological theory of this phenomenon which has been developed at present 
[11-13] does not take into account the spatial boundedness of the laser radiation. The ro- 
tation angle of the polarization ellipse in this ease grows linearly with increasing intensity 
of the incident wave and the length of the sample. This permits us to assume that self-focus- 
ing of laser radiation in media with spatial dispersion mus be accompanied by strong varia- 
tion of polarization of the propagating wave, i.e., that growth of intensity along the beam 
axis, associated with variation of beamwidth, will lead to a sudden rotation of the polariza- 
tion ellipse. 

In the present paper a phenomenological theory of the propagation of laser radiation 
in nonabsorbing, isotropic media with spatial dispersion is developed, which takes into ac- 
count the finite width of the light beam. For arbitrary values of the parameters of a non- 
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linear, gyrotropic medium and the linearly polarized radiation incident on the sample, ana- 
lytic dependences of the nondimensional widths of the partial beams on the propagation co- 
ordinate are obtained, which are easily subject to analysis and permit the intensity and de- 
gree of ellipticity of the transmitted light to be determined. The rotation angle of the 
polarization ellipse is also found. All of the characteristics in the case of elliptical 
polarization of the light upon entrance to the medium were determined by numerical methods. 
The results obtained are valid if the duration of the incident pulse is many times greater 
than the relaxation time of the nonlinearity and demonstrate the influence of self-focusing 
effects on nonlinear optical activity. 

2. Amplitude and polarization self-action of light beams in a isotropic, nonabsorbing 
medium with weak spatial dispersion of cubic nonlinearity is described by a system of para- 
bolic equations for slowly varying amplitudes of circularly polarized waves Ai = A x • lay 

dA~ q_~kA~A• = i 1 •  p0_  ( ~ ~p , ) ]A•177  (1) 
dzt 

which d i f f e r s  from t h a t  c o n s i d e r e d  in [12] by the  p r e sence  of  the  t r a n s v e r s e  Lap lac ian  41 = 
32/0x 2 + 82/~y 2. Here k = ~ / ~ / c  i s  the  modulus of  the  wave v e c t o r  p a r a l l e l  to  the  ax i s  z l ,  
o l , 2  = 2 ~ 2 X z , 2 / k c  2, X1,2 a re  a s s o c i a t e d  wi th  the  nonzero components of  the  cubic  n o n l i n e a r -  
i t y  t e n s o r  ( in  the  absence  of  f r equency  d i s p e r s i o n ,  Xl = 2X2), P0,1 = 2 ~ 2 X 0 , 1 / c 2 ,  and X0,z 
a re  the  p s e u d o s c a l a r  c o n s t a n t s  o f  l i n e a r  and n o n l i n e a r  g y r a t i o n .  In o r d i n a r y  o p t i c a l l y  ac-  
t i v e  media [12] [ p i / o i [  << i. 

The propagating radiation is completely characterized by intensity 

7(X, y, zt) = (IA+t ' + IA-IZ) /2  , (2 )  
degree of ellipticity 

~I (x, y, z,) = (IA+I ~ --[A-12)/([A+I ~ + [A,I ~) (3) 

and the rotation angle of the polarization ellipse 

~(x ,  y, zt) = Arg (A+At)/2. 

Assuming t h a t  a beam of  Gaussian shape 

T(r, O) "= (E~/2) exp ( - -2 r ' / r~ )  , r = ,= x 2 + y2, E~ = E~+ +E'  (4) 

with ellipticity M 0 = M(r, 0) = (E$ - E=~E=-, 0, where E• = IA• 0, 0) l , is incident at the 
boundary of the medium z: = 0, we will seek a similar solution of Eq. (i) in the following 
form: 

A• ---- ~E• exp [ --r~f~r' ikr' df• q- iT+(zl) + iP~ dzt - - (5) 

The nondimensinal  wid ths  of  the  p a r t i a l  beams f •  s a t i s f y  the  boundary c o n d i t i o n s  
f• = i, f~(0) = 0. The lack of collimation of the incident beam can be easily taken into 
account in analogy with [14]. We find the equation for the nonlinear rotation angle of the 
polarization ellipse in the center of the beam T(z I) = ~(0, 0, z l) - p0zl by substituting 
Eq. (5) into Eq. (i) and equating the terms in the expansion of the latter in powers of r: 

Here L = kr~/2 and z = z!/L. Intensity 
axis, taking Eq. (5) into account, have 

I (z) = 

(2) and degree of ellipticity (3) along the beam 
the forms 

7(o, 0, z) ,= m+/2/$ + E l / 2 / '  ; (7) 

(8) M (2) = M (o, o, z) =. ( ~ + / 1 5 -  E L I / ~ ) I 2 [  ~) 
r e s p e c t i v e l y .  

For a n a l y s i s  o f  the dependences of  T, I ,  and M on the parameters of  the r a d i a t i o n  and 
the medium, i t  remains to  ob ta in  equat ions f o r  f •  We m u l t i p l y  Eq. (1) r e s p e c t i v e l y  by BA~/ 
3z I and take the sum of these expressions with their complex conjugates. Substituting Eq.- 
(5) into the thusly found equalities and integrating the latter over the transverse coor- 
dinates (i.e., using the methods of moments [15]), we obtain the following system of equa- 
tions for f• 
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dZ/.......~ -- m~ n (1 ~ Mo) /•  
2 Lr$ + I'_)' ' ( o ) 

where m• ffi 1 - (o I ~ 2pl)LE~/4 and n = (o I + 2ob)LE ~. Note that Eq. (9) possesses symmetry 
properties. Its solution does not change when Pl, f• and M0 are exchanged, respectively, 
for -Pl, f• and -M 0. This allows us to restrict our consideration to the case Pl > 0. 

It is evident from Eq. (9) that f+(z) ~ f_(z) for arbitrary values of the parameters of 
the radiation and the medium. As a result, already in the approximation of the similar solu- 
tion for A• the transverse distribution of the total intensity loses its Gauss• shape in 
the process of propagation. Use of the integral definition of beamwidth 

r] ~ (z) = ~ T(r, z)~dr/~ 7(r,z)tdr (10) 

in t h i s  case can lead to i nva l i d  resu l ts .  Thus, for  exmaple, i f  f+ >> f_, but IMol << 1, 
then fi ~ f+" But close to the beam axis, where, especially, our treatment also has mean- 
ing, A+ gives a practically constant background, and the narrower beam actually determines the 
width. It is advantageous to use a second definition for the effective beamwidth f~ = E~/ 
2I(z). In accord with this, fe is the dimension to which the light beam incident on the sam- 
ple should be focused (or defocused), while still preserving its Gauss• shape, in order 
to provide the intensity along the axis which the partial beams give when taken together. 
Such an approach gives reasonable results for f• >> f~ as well as for f+ ~ f_. In accord 
with the definition of fe, we will understand by self-focusing unbounded growth of I(z). 

Spatial dispersion of nonlinearity, and also ellipticity of the incident radiation, sub- 
stantially influence the amplitude and polarization characteristics of the propagating light 
and the effective beamwidth fe" Thus, for example, Pl gives a quite complicated contribu- 
tion to all three terms of Eq. (6). For comparison ws recall [12] that in the case of propaga- 
tion of plane waves in the media under consideration M and I remain constant, and �9 = (Pl + 
obM0)E2zl/2. 

3. If the radiation incident on the sample is circularly polarized (E_ = 0 or E+ = 0), 
then its polarization, as can be seen from Eqs. (i) and (9), is conserved during propagation. 
The nondimensional width of the laser beam both in this case and the other case varies ac- 
cording to the law f~ = 1 + m+z 2. For 01 > 0 the beam is focused if its nondimensional power 
E~oIL/2 exceeds the threshold-value 2oi/(o I ; 2pi) , and for o I < 0 defocusing takes place 
for arbitrary parameters of the incident light. Thus, for IM01 = i, spatial dispersion does 
not have any effect on the qualitative picture of self-action; however, it varies the thresh- 
old conditions differently for oppositely oriented circular polarizations. 

In the general case IM01 ~ i, system (9) has two integrals 

(I + Mo)/$ + (I -- Mo) / i  --  Cz' + 2 -- r (z, C); (11) 

(I + Mo)(df+/dz)' + (I -.mo)(a/_/az), + + moy/$ + - Mo)//L - . 0  - + / i )  - c, 

(12) 

where the constant C depends on the ellipticity of the incident light 

C (M0) = m+ ( 1 + M0) +~n_ ( 1- -M0)--n  (1--M~)/4. 

Us ing  t h e s e  two i n t e g r a l s  and t r a n s f o r m i n g  t o  new v a r i a b l e s  u+ = (1 + M0)f~ /@(z ,  C),  one can  
f i n d  ( f o r  a r b i t r a r y  v a l u e s  o f  t h e  p a r a m e t e r s  o f  t h e  r a d i a t i o n - a n d  t h e  medium) a n a l y t i c  d e -  
p e n d e n c e s  o f  t h e  n o n d i m e n s i o n a l  w i d t h s  o f  t h e  p a r t i a l  beams f+ on t h e  p r o p a g a t i o n  c o o r d i n a t e .  
The latter are expressed in terms of elliptical integrals (including also those of the third 
kind). The cumbersomeness, and also the abundance of partial cases, render the analytic so- 
lutions for f• in their general form not particularly revealing. We display them for the 
case, which is of practical importance, of linearly polarized light (M 0 = 0) incident to the 
medium (see Table i). Given specific values of the nondimensional power of the incident ra- 
diation P = IoIILE~/2 and o~, and choosing the appropriate case from the far left column of 
the table, we find f~, the normalized intensity I n = Io11LI (and, consequently, also the 
effective width fe) and the ellipticity M along the beam axis. Dependence of the generalized 
coordinate q on z for various values of oz, 2 and P is given in the far right column of the 
table. The following notation has been used in the table: 

Co = C(O), ~ ( z )  = r  Co), a = sign ((~O P - -  4. 
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TABLE i. Analytic Solution for f~, In, and M in the Case of 
Incidence of Linearly Polarized Radiation into a Medium 
with Spatial Dispersion of Nonlinearity 

P, (h f~ ,  In,, M P, or;, ~I (z) 

~,>0, 

P>4 

e~>O, 

P=4 

or 

u~>O, 

P<4 

2P 

M = -- 2p, Psh' (F'a"~/2)/,:l ,', 

si+a2<0 
or 

P(o,+o,) - -  <2 

[L  = {1 •162 

In= 2P/((I--4p~'rl'/a~) ~o) 
M =, "2ps 

o, + oz>O, 

P (o, + (:r2) 
- - - - - - - 2  

la, I 

/$={! 2hP 

2P  
In  = 

M=2psP sin: (]/--a Tl/2)/Im la 

oI+~>0, 

P (o, + ~) 
>2 

",1 = ~ 2/Co x 

x zl !/2") 

Vl=Z 

= y 21c0 x 

XArth(u Co X 

xzfr~ 

L~/L z 

i -  T 

o ; T - r  Mo 
-" - % / ( 6 t 4 6 2 )  -p,/e~ 

a 

b 

L~/L z 

I ! 
o ~ o  iMo 
- -.%/6 2 i 

a 

~/L2 

oI J, 
- ~ -~4/6z 

b 

Fig. 1 Fig. 2 

Fig. i. Regions of values of the radiation parameters (M0 and 
(Ln/L) 2) corresponding to various regimes of beam propagation: 
a) oi > O, o z < O, oi + 2o= > O, 4o 2 + 01 > 2pl; b) ol, 2 > O. 

Fig. 2. Regions of values of the radiation parameters (M 0 and 
(Ln/L) 2) corresponding to various regimes of beam propagation: 

a) oz > O, 01 + 2o2 < O; b) oi + 2o2 > O, oi < O. 
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Fig. 3. Dependences of the parameters of the output 
radiation on the length of the nonlinear, gyrotropic 
medium (regions 1 and 2). 

Substituting fi in Eq. (6), we obtain (after integration) the following expression for 
the rotation angle of the polarization ellipse along the beam axis: 

2'V'---~ V ' ~  Arth V" 1 - - ~  th ~ ]/1 

where a = 2piP/[o1[a and 8• = i + (02 • @1)P/lot1. In writting out Eq. (13), use has been 
made of the identity [16] th(ix) = i tan x, arctan(ix) = i Arth(x). 

Not dwelling in detail here on the threshold conditions, which are presented below for 
the general case of elliptical polarization of the incident light, we will consider by way 
of an example typical regimes in the absence of frequency dispersion (G I = 2a=). In a de- 
focusing medium (o I < 0) M(z) varies monotonically with increasing z, tending toward the con- 

stant value M(z.-~)------2ptPsin2(a?P-]-4/2~3P-]-4) ([Gi[ (P + 4))-'. In a focusing medium (oi > 0) 
oscillatory as well as monotonic variation is possible along the beam axis. The former takes 
place only if P < 4, whereby the character of the oscillations is different for P < 4/3 and 
P > 4/3. 

For M0 ~ 0 it is more convenient to solve Eq. (9) numerically, at the same time finding 
~(z) with the help of Eq. (6). 

4. Before displaying typical dependences of In(z), M(z), ~(z), and fi(z), found by nu- 
merical methods, we will subdivide the space of radiation and medium parameters into regions 
with monotypical character of beam propagation. 

Analysis of the equations for u• which are easily obtained from Eq. (9), with the help 
of integrals (ii) and (12) shows that the main features of variation of the parameters of 
the propagating radiation (oscillatory or monotonic character of dependence of M(z), presence 
of self-focusing or its absence), as a rule, are determined by the signs of the derivatives 
d2f• 2 as f• + 0, and also by the sign of C. The indicated values become negative at 
powers of the incident radiation P = L2/L~ which exceed the following values, respectively: 

P~ = (L/LEp = 4[~,F((1 • Mo)(~, T 2pl)) > 0 ; (14)  

Po = (L/Lo)' = 21a,[/(*a + *2 - -  M~,= --  2M,,p,) > O. (15)  
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Sometimes the sign of the quantity D = K 2 + 8MoCm_(where K = M0(l + M0)n/2 + (i + M0)m+ + 
(i - 3M0)m_) also plays an important role , determining the region of variation of the vari- 
ables u• It can be easily seen that D = 0 is a quadratic equation in P. It is possible 
to show that for those values of M 0 for which its discriminant is positive, two branches of 
the roots are necessarily located between P~ and P~, and that in finding the boundaries only 
the lower of these two branches P3 = (L/L3) = is important. In media with o I > O, o I + 2o 2 < 0 
the threshold of self-focusing coincides with P~ = (L/L4) 2, determined by the condition 

2 dz = 1 q. Me "-b 2M~.u_ 17 

O(z, C) " . (1 + M e - -  2u_)(2M. Cu!+K( lWMo)u- - -m- ( l+Mo) '  du_, (16)  
0 0 

where  t h e  n m o t a t i o n  which  was i n t r o d u c e d  above  has  been  u s e d .  

A n a l y s i s  o f  gq.  (6 )  p e r m i t s  u s ,  in  a d d i t i o n ,  t o  i d e n t i f y  t h e  r e g i o n s  w i t h  c h a r a c t e r  o f  
v a r i a t i o n s  o f  ~ ( z )  known t o  be m o n o t o n i c .  I n  t h i s  c a s e  t h e  f o l l o w i n g  v a l u e s  o f  t h e  power  
are the limiting values: 

P~ == (L:'L~)' = l : , ] ' ( ( |  �9 Mo) ( ;P ,  - -  a,)) > O. ( 1 7 )  

In the final analysis it is possible to determine five regions p (p = 1-5) in which the de- 
pendences In(z), M(z), and ~(z) differ qualitatively. Their boundaries in the plane of the 
variables (Ln/L) 2 and M 0 for various values of the parameters of the nonlinear, gyrotropic 
medium are shown in Figs. 1 and 2. Curves I-VII In Figs. 1 and 2 represent schematically 
the dependences of (L0/L) 2, (L~/L) 2, (L~/L) 2, (L3/L) 2, and (L4/L) 2, respectively, on the 
values of M0 lying in the interval -i to i. Here only those parts of the curves have been 
kept which divide regions with substantially different regimes of beam propagation. Figure 
la depicts the cases G I > 0, o 2 < 0, oi + 2o2 > 0, 4a 2 + o I > 2Pz; Fig. ib depicts the cases 
o I > 0 and o 2 > 0; Fig. 2a depicts the cases ~ > 0, oz + 2a2 < 0, and az + o2 + p2/o2 > 0; 
and Fig. 2b depicts the cases o I < 0, om + 2o2 > 0, o I + o= + p~/c 2 > 0. Here it has also 

been assumed that Pl < 1o21. 

Region 1 is distinguished by pronounced oscillatory variation of M, and also by the 
largely nonmonotonic dependence of I n and T on sample length. Collapse of the partial beams 
in this region occurs simultaneously, although Af = f+ - f_ for small z can be quite large. 
Region 2 is characterized by initial growth of T, followed by abrupt decrease near the focus, 
while I n and M vary monotonically. A partial focusing of the partial beams take place here 
(one of them collapses for finite values of the width of the other one), and Af grows con- 
tinuously with growth of z. Regions 3 and 5 are distinguished by monotonic variation of the 
rotation angle of the polarization ellipse, whose rate of change grows with approach to the 
focus. In region 3 the growth of I n takes place during the entire course of the process of 
self-focusing, while in region 5 it is preceded by a moderate decrease. Here there takes 
place a focusing of one of the partial beams and defocusing of the other, and Af grows 
monotonically. A general tendency towards decrease of intensity is characteristic of region 
4. However, variation of In(z) can also be nonmonotonic. Dependences of M and T on sample 
length here have a largely oscillatory character, and, in the process of defocusing, the 
quasiperiod of the oscillations increases. Nonmonotonicity of variation of all character- 
teristics grows significantly with approach of the incident powers to the threshold values. 

The indicated differences are illustrated by dependences, characteristic for re- 
gions 1-5, which were found by numerical methods, of the quantities f• I n , M, 
and T on the length of the nonlinear medium. They are shown in Figs. 3-5. The 
solid curves represent the dependences f+(z), and the dashed curves, f_(z). The 
numbers which label the curves are the numbers of the regions (two curves 4a and 4b be- 
long to region 4). For all the figures, ~i > 0. For Fig. 3, o2/o I = 0.75 and pz/ol = 0.25. 
Curves 1 and 2 correspond to the cases P = 3.9, M 0 = 0.6 and P = 3.65, M0 = 0.2. Dependences 
3-5 in Figs. 4 and 5 correspond to the following parameter values: 3) o2/o I = -0.35; Pl/ 
o I = 0.05; P = 2.5, M 0 = -0.6; 4a) ~2/az = 0.75; pz/az = 0.25; P = 1.66; M 0 = 0.6; 4b) 
a2/a I = 0.75; pz/am = 0.25; P = 0.9; M0 = 0.2; 5) o2/o I = --0.58; Oz/om = 0.25; P = 5.7; 

M0=0.4. 

Regions p' are analogous to regions p with interchange of f+ and f-. Their existence 
is determined by the sign of the quantity 

= 

= k az,/: =, _, + (18) 
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In regions p' we have A < 0. It can be easily seen that for Pl > ja21 regions of type p' 
are absent. We note also that the straight line M 0 = -pl/o2 (for Pl < Io21) not only sepa- 
rates region p from region p', but also intersects the parabola I at its vertex. 

If o= + p~/o 2 + o I < 0, then the vertex of parabola I in Fig. 2 will be located below 
the M0 axis. Then for o I < 0, o I + 2o 2 > 0, p~ < Jo=J the picture will differ from Fig. 2b 
by the absence of regions i and i' Regions 4 and 4' become substantially larger. If 
o I > 0, o I + 2o 2 < 0, then the location of the various regions will be analogous to that 
shown in Fig. 2a with the difference that regions 3 and 3' decrease and regions 5 and 5' 
osculate the M 0 axis. Curve VII, defined by condition (16), is the upper boundary of region 
5 in Fig. 2a. It is also well known that it passes through the points with coordiantes 
((o I • 2pl/2JolJ, ~i) and the vertex of parabola I. It was found numerically for a number 
of values of the parameters of the radiation and the medium (see below). 

If 4o 2 + o I < 2pl, then parabola I in Fig. la intersects the straight line V (Ln/L ~ = i), 
which leads to the appearance between them of region 5. There also occurs a narrowing (with 
respect to M 0) of region 1 and the disappearance of region 2. In the case when 4o 2 + o I + 
2p I < 0, parabola I on the right side of Fig. la intersects straight line IV (Ln/L ~ = i). 
Region 5' appears between I and IV, region i' diminishes, and region 2' disappears. 

Finally, if Pl > o2, then there takes place still one more qualitative variation in 
Fig. ib in addition to the absence of regions 0': region two no longer osculates the M 0 axis 
(at M0 = i) and region 3 arises under it. Its upper boundary is determined by the relation 
(Ln/L) 2 = (i - M0)(pl - o2)/Jo21. 

As immediately follows from Eqs. (i) and (9), there exist three values of the ellip- 
ticity for which for any P the beam propagates as a whole: • -01/c2, and which corre- 
sponds to the boundaries of regions with various propagation regimes. The question naturally 
arises as to how abruptly the transition takes place from one regime to another. Numerical 
investigations show that practically alwaysit is smooth (some exceptions are associated with 
regions 3 and 3' for o~ + 2o 2 < 0). 

5. Self-focusing of light in a nonlinear, gyrotropic medium takes place in the regions 
lying below curve I in Figs. 1 and 2, and also in region 5. Consequently, the condition 
L n = L0, where L0 is given by Eq. (15), determines the threshold of self-focusing for o I + 
2o 2 > 0 and o I < 0, 4o 2 + oi > 2pl, or o I < 0. In this case, widespread opinion notwith- 
standing [2], the threshold power for linearly polarized radiation P0 = 21oll/(ol + c2) does 
not depend on the spatial dispersion of nonlinearity. For P0,1 = 0 and c 2 = 3ol, the de- 
pendence of P0 on the ellipticity (P0 = 2/(4 - 3M~)) which we have found is in good agreement 
(especially for IN0! ~ 0.3 and iN01 ~ 0.85) with the results of [9], obtained on the basis 
of numerical integration. 
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If o, + 2o2 < 0 and ~i > 0. Self-focusing of light can also take place for L n > Lo (see 
Fig. 2a, region 5). Figure 6 illustrates the form of the threshold curve (~ > 0, o2/a, = 
-0,75), given in this case by Eq. (16). Here SOlid lines represent the dependence (found 
by numerical methods) of the threshold power on Mo, the dashed lines represent Po(Mo), and 
the dot-dashed line correspond to Mo = --0,/~. The curves in Fig, 6a are constructed for 
Ol = 0 (the absence of spatial dispersion), and those in Fig, 6b for 0,/o2, Regions 5 and 
5' lie between the dashed and the solid curves, while regions 4 and 4' lie below the latter. 
The threshold in this case strongly depends on the parameter which characterizes the spatial 
dispersion of the nonlinearity. For light which is linearly polarized at z = 0, the threshold 
decreases with growth of 0~. 

In media whose parameters satisfy the inequalities al > 0, o 2 < 0, 01 + 2o2 > 0, and 
4o 2 + o I ~ 2pl < 0, for certain values of M0 self-focusing also occurs for powers P < P0 
(region 5 appears), and for radiation with initial ellipticity less then 1 + (o I + 201)/ 
202 (or greater than -i - (o I + 2pi)/2o 2) the threshold power is equal to P~ (here P~ < P0) 
and also depends on Pl. 

6. Experiment is promising in the isotropic phase of cholesteric liquid crystals (CLC's) 
far from the mesophase transition temperature. Unfortunately, concrete data on pl, oi, and 
o 2 in these media are very limited. However, they can be estimated partly, using the well- 
established similarity of the microstructures of CLC's and nematic liquid crystals, which 
have been studied in greater detail [17]. Self-focusing in the latter has been investigated 
in detail [6]. It is easily realized experimentally, since the threshold powers are only 
a few hundred watts. Therefore self-focusing in CLC's, where, in contrast with nematics, 
P0.1 # 0, should also take place for practical powers of laser radiation. Nonlinear rotation 
of the polarization ellipse, whose magnitude varies from i0 -5 radians [i0] to tens of degrees 
[18], has been reliably determined by contemporary, high-sensitivity technology. 

Stability of self-focusing of light in a nonlinear, gyrotropic medium with respect to 
spatial stratification of the beam into individual threads has been investigated in [19]. 
In this article it is shown that in the overwhelming majority of cases perturbations whose 
ellipticity is different from that of the main beam are the most stable. 

The authors are grateful to S. A. Akhmanov and K. N. Drabovich for helpful discussions. 
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