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ACOUSTIC RADIATION AND RADIATION DRAG IN CONNECTION WITH THE MOTION 

OF A SOURCE IN A STRATIFIED MEDIUM 

V. Ya. Eidman UDC 551.596 

The radiation of acoustic gravity waves is investigated. In contrast with previ- 
ous papers, correct allowance is made for the fact that the expressions for the 
Fourier components characterizing the wave can contain singularities in the upper 
half-plane of the complex variable ~ (the radiation frequency). The method used 
here makes it possible, in particular, to determine correctly the energy losses 
of the source in the fast acoustic wave in the case M < i (M is the Mach number), 
whereas previously losses were assumed to be absent. An important consideration is 
the possibility of the case in which the source absorbs energy developed in takeoff 
during the course of uniform rectilinear motion. 

The radiation of acoustic gravity waves by moving sources has been discussed in a great 
many papers (see, e.g., [i, 2]). In these papers, however, a solution of the problem is 
sought by the Fourier method without regard for the fact that the derived expressions for 
the Fourier components of the quantities characterizing the radiated wave, i.e., the ex- 
pressions for the pressure 

P~. = (2~) -4 ~ P ( 4 R )  exp [ - - i ( k R  ' ~t)] dtdR,  

p(t,R)= fp~,exp [i(kR--~t)]d~d~, R = {x,  y ,  z l ,  (1) 
r={x,y, 0}, r=Vx~+y2 
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and the analogous expressions for the velocity v and the density O can contain singularities 
in the upper half'plane of the complex variable ~. For example, in the case of a mass 

source ascending with a constant velocity V (V < c, where c is the sound velocity) in an 
isothermal atmosphere, such a singularity is the point ~ i ~ i V / H ( 1 - - M  2) (H is a scale of 

the height of a homogeneous atmosphere, and M = V/c). The disregard of this fact can lead 

to incorrect results, because for ~ > 0 the path of integration in the complex plane of 
in the causally stated problem (see below) must bypass the point ~ = is above, rather than 
merely enclose the real axis as has been done previously. 

Attention must be called to another circumstance. The causal formulation of the prob- 
lem makes it possible to explain the role of interaction between the source and the acoustic 
field attributable to variation of the properties of the medium (for a subsonic velocity of 
the source). It has been assumed earlier that energy losses in sound generation are absent 

for M < i. In reality, it follows from the ensuing discussion that the situation is far 
more Complicated here. In the ascent of a mass source, when V~ g (g is the acceleration 
of gravity), transient acoustic losses exist for M < i, and their energy is proportional to 
the large parameter in(Z/a) (Z and a are the length and transverse width of the source, re- 
spectively). In the case of the motion of a source:in a stratified medium in the direction 
of increasing density, when V ~ g, M<l, the bulk of the acoustic energy developed during 
takeoff of the source is absorbed. 

The given problem is also interesting from another standpoint isofar as it is possi- 
ble, with a certain change of notation, to describe the energy losses by an exponentially 
varying [according to the law y(t)~e~V~/2~] source moving with a constant velocity in a 
homogeneous medium. An important aspect of this situation is the fact that, unlike a moving 
oscillatory source, an exponentially varying source moving with a constant velocity (either 
for M < I or for M > I) by and large excites only disturbances with a positive projection 
of the wave vector onto the direction of motion. Associated with these considerations is 
an exponential growth of the disturbance in a certain time interval for ~ > 0, i.e., for 

M < i when V~g, or for M > I when V ~ g. 

In the present article we use a method that permits the above-mentioned singularity to 
be taken into account correctly. Moreover, we take into account the finite width of the 
source, and this enables us, onithe one hand, to obtain a finite expression for the energy 

losses by the source in the fast acoustic waves and, on the other, to include effects as- 
sociated with energy losses in a medium with variable parameters. We proceed from the lin- 

ear equations for the perturbed values of p, p, v in a gas situated in the field of gravity: 

Ov 8p v~ 
Po O--t = - -  VP + OK, Ot H Po + p o d i v v  = q (t, R),  

ap v, = c~ (ap v~ ) 
o - T -  po -#  Po �9 

(2) 

Here po:Pooe -z/u, 9o-~-pooe-Z/~ are the equilibrium values of the pressure and density, Po-~-gH@ol 
i.e., the force of gravity is directed antiparallel to the z axis, and qQ, R) is a mass 
source (other sources of disturbance are not considered in this article). Of course, the 
investigated system can only afford a very approximate model of a real medium. In particu- 
lar, this model is invalid for large positive and negative values of z. In the ensuing dis- 

cussion, therefore, we consider only disturbances localized in a finite region of space and 
time. Accordingly, the source can be started up only in a bounded time interval (in the 

case of a moving source its track must be of finite length). 

We use Eqs. (2) for an isothermal atmosphere. Expanding all variables in Fourier inte- 

grals, after suitable transformations we obtain 

p ( t ,  R)  = - -  ic2 .  " d r  .I d~ {dkzdo~x~ (o)2g _ o~=) q~k exp I i (-- cot + kR)I/A (% k)}, 
0 0 - r  

(3) 

where ~g is the Brunt--Vgisgl~ frequency, ~ = (E/H)(l--gH/ca) = (?--l)g~/~, ?= c~/cv is the 

specific-heat ratio, 

(| k)  = o,~ c ~  ~ (le' i le , IH ) + 0~2 ~=,.~ 
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~t ~ 
tm L 

L 5 ~ 5  

= g ~(2-M) Vt ~ s 

Fig. i. M <  1, tt(z)-----zlV, t2[z)=(z--t)lV, t3(z)=z/c~-l(1--M)/V, 
t ,  ( z )  = ( z  - -  t ) le .  

q~k ---- (2=) -4 J q (t, R) exp [-- i (kR -- ot)] dtdR, 

k - {kx, ky, k~], z : {kx, ky, O} : z { c o s ~ , s i n ~ , O } .  

Inasmuch as the integrand in (3) can contain singularities in the domain Im0)~z > 0, 
the investigated system outwardly resembles a system with an instability. For this reason, 
the indicated facts must be included in the statement of the problem, i.e., the source q 
must be considered to be localized in a finite domain of space and time, 0 < t < t m. Prior 
to startup of the source, i.e., for t < 0, all disturbances are absent. [Consequently, the 
path of integration Le with respect to ~ in (3) must be drawn above all singularities of the 
integrand (3) as a function Of e, i.e., it can be assumed that ~2 is large along L~ (m = 
0~l + iw2).] It must also be borne in mind that q(t, R) determines p(t, R) through expression 
(3) in the form of a convergent integral. In accordance with the foregoing discussion, we 

specify the expression for the source in the form 

q ( t , R )  : qon( t , z )~(r- -a) /2~r ,  l ~ 0 ,  a ~ a, all-+ O, (4) 

where 5(r--a) is adelta function, U(t,z)~l for l<z<Vt~, (z--l)/V<t<z/V and H(t,z)~---O for 
all other values of t, z [the domain in which H(t,z)-----] is shown hatched in Fig. i], i.e., 

qoA(~a) (1 -- exp(--  i~[[V)) {exp [i (-- k~ + m]V)Vt~] -- exp [ i ( "  k z + ~]V) 1]}, 
q ~  = (2~)~ ~ ( k ,  - ~ l V ~  ( 5 )  

where ]0(za) is a Bessel function. This form of the source expression allows for the fact, 
in particular, that the source is not activated to total discharge of its mass instantan- 
eously, but in a time I/V. Extending the integration with respect to the variable • in (3) 
in the usual way to the domain --oo < z < co and making use of Eq. (5) we find 

p (r > a ) =  16 q~ ~ S d~176 (t~a/c)HC~ (t~r/c)(1-- exp(--i~l/V)) X 
LoJ LIe z 

(6 )  

Here 

,o, !o~ - c~ [~k, - -  i l 2 H ) ~  + U4m'q } 
~ COg -- tO2 ' g 

(7) 

Im~-----~2>0, H~ ~ (~r/c) is a Hankel function, and the path of integration Lkz runs along the 
real axis. We note first of all that the integral in (6) associated with the c .... ~ro~. term 
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in the braces has a nonzero value only for 

| 

-~o ~ 
Fig. 3 

t>t,,--Uv. For the effects investigated here, 
we can restrict the problem to the time interval t<tm--~V, l-+O, and, as a rule, this will 
be assumed below. Also, inasmuch as our primary concern is to determine the energy losses, 
it is mainly required to calculate the pressure in the vicinity of the track of the source 
( r = a ~ 0 - + 0 ) .  We consider the integral (for Zl>0)  

- o o  

C l e a r l y ,  i t s  c o m p u t a t i o n  i s  r e d u c i b l e  t o  i n t e g r a t i o n  a r o u n d  t h e  p o l e  kz==m/V (me>O, mz i s  
large) and integration along both sheets of the cut of the logarithmic branch point 

k i |//-~o' 1 i 6~] ( | / ~  1 ~ ) :*=~-~+  - . . . .  as m-~oo, m2>O 
I / c 2 4 H  = 2 H  \ V c = 4 H  2 c 

(Fig. 2), since 

Ho ") (x) = (2i/~) Jo (x) In (x/2) + R, (x), larg x[ < ~, 

where Ri(x) is a function that is regular as x § 0 (see, e.g., [3]). 
sheets of the cut (for zi>0, r=auco-+o) yields 

I~ - -  2 eXPv(iZ:o/V) ~ e:_~ d~ = 2_V exp (izp/V) Ei (~o), 

w h e r e  ~'o= ( i&/V) [--oaq- V (i/2H q-n) ] ~-r ~l -+ m/c a s  m:-~oo, m2>O, 
e x p o n e n t i a l  f u n c t i o n .  We n o t e  t h a t  f o r  r ~ O  

(9) 

Integration along the 

(io) 

and Ei(~o) is the integral 

kj 

1 ~ = - - 2  j" etkz~Jo(l*r/c)Jo(~a/c)(t~ zV) -1dkz, Iml~>O, 
lco+Re~ 

r>a .  

Making use of (i0), we obtain from (6) the corresponding expression for Pl, which takes the 
form 

oo + i t% (~ 

Pl- 8~'q~ ~ do~ei~.(l_exp(_io~f/V)) ~d~,  
- o o + i %  - ~ + 1 r  

or, after integration by parts (~--'----t~-z/V, ~l-~---t--l/V-~z/V), 

' P1=q~ 2 i ~ exp [i(-~t~ + ~zl)] (1~ exp(-~iod/V)]q / X 
Lm 

X ( ' i  ) ]-~do~ qnexp(--z~/2H) (_~ Q~) - - v + , ,  = + 1 c%]L 8=~i T( ' 
Q,=~exp[i(--~oq-~-~zO] ( t - ~ )  [~247 

L~ q=t--l/V, z,>O. 

(11) 

(12) 

1.079 



We direct the cuts in the ~0 plane from the branch points co~-+_coo, r as indicated in 
Fig. 3, where these cuts are represented by heavy lines. Then the integrand in Eq. (12) 
does not have any poles on the selected sheet of the Riemann surface Eor M > I, and it has 

one pole in the case M < I: ~0=/~, ~--V/H(I--MZ)I Consequently, 

p~(M<l)  qo [ - ~  ( ! ~ . ) e - ~ '  1 (t  _~ I z,)] ( _ ~ )  ( l  z ,)(13 ) 
4,~ 1 tl . . . . . . .  ~ V C , AV P'sti 1 tl - -  " P s t 2  1 ,[1 --k -V - -  --c 

i 1 ([~ zt ll, r  and pst l(ti--zi/c) where ~I >> =/v, I~,1 >> ~/v, - -  C = /0, i, CZ,/C' 1 -- Pst~ 
\ 

are the integrals in (12) along the sheets of the cuts from the points ~-------+o0 (Fig. 3)." 

p, (M > 1) ..= Pst~ 1 (t, -- zdc ) -- Pstz ([1 -~ qV - z, lc), t<t~-- l /v .  (i4) 
The expression for Pst i is readily obtained for large values of t and z by the stationary- 
phase method. As a result, we have 

q o e_x p( -_7 z,/__2/-/!. ~'/~ cV ~ % 

-- -- COS -- ~ X 
2H 

{ [ t~176 ( t , c - -  Mz,)a~ - V2/4H*] -'} X 1 (~, -- Zl/C ) t~C z -- Z~ 

{.~ CtO o 

(15), for ]/t~c 2 - z ~ z i  we have Psti--Zl3tL 

(i5) 

We cannot make the transition According to 
to the case of a homogeneous medium (H § ~) in (15) (this fact is evinced by the need to 

observe the condition t~c 2 I/tic ~- Z~72[-I~ >> I), i.e., the method is invalid for a homogeneous 
medium. It also follows from (15) that Pst I has the structure of a spherical disturbance 
diverging from the point zl = 0. To obtain the expression for Pst 2 it is necessary to re- 
place t by t + Z/V in the expression for pstl (see (6)]. 

We now determine the contribution to the pressure expression from the pole kz=~/V 
[I2 in (8)]; this expression can be written in the form [see (6) and Fig. 2)] 

p~ (t, r, z) iq~ ' ( E  

Lm 

>((1-- exp(--ioJl/V))e i~, t > [~ -- l/V; 

~, = ~ k~ = ~ - - -  ~ r--~a+O--~O.  
tO 2 -- Oj2 * 

g 

We also analyze relation (16) only for the case r-+a-~-O-~O. The integrand in (16) has four 

singularities (o=0, -----of, is) in the ~ plane [see (8)]. 

Under the conditions r---~a-~O--~O, I/a-+oo, we restrict the computation of (16) tothe de- 
termination of the principal part of the excited disturbance, which contains the large pa- 
rameter in(k/a) in the expression for the radiation drag (see below). The occurrence of 
this parameter, as in the case of a homogeneous medium, is associated with the fact that if 
the dimensions of the source are small, the drag is rendered large by a high-frequency sound 
field. With the indicated reservations and with allowance for (9), we readily carry out the 
integration in (16). Assuming that r--~a--~O-+O, we obtain 

p~ (t ,  z) -=- ~q~ ~ 2 s l n  ~ -g'2 -[- 1 + e  - ~  ~ 2 s i n  2 2 + 1 - k e  -~' '  , (18) 
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Equation (18) is applicable either for the case M > 1 or for the case M < I. The total pres- 
sure is p = Pl + Pe [see Eqs. (13), (14), and (18)]. For the ensuing discussion it is con- 

venient to distinguish the expression for the pressure exclusive of Psti and Pst2, i.e., 

�9 q o  4 ! (  )sin 2 + 41 (-- ~,) sin~ q._ Pk (M < 1) = p --  P s u - - P s =  = 4= ~.a 2 

e - ~ l  q - -  1 t +  . . . .  ( l + e  -~)  + ( l + e - ~ , ) ~  , 
~ c c ~ ~ 

(].9) 

z>l ,  t / V ( l - - m ) < t <  t~--l/V; 

4~ ~ 2 ~1 2 ~ ~1 J 

z > l, l lV  < t < t ~ - - l , ~ .  ( 2 0 )  

It follows from Eqs. (19) and (20) that Pk comprises two distinctparts. The first 
part (which depends on mg and does not have a singularity as t-+0, ~i-+0) is associated with 
the radiation of slow internal waves, which occurs both for M > i and for M < i. The second 
part of (19)-(20) (which does not depend on mg) is associated with energy losses of the 
acoustic field and for M > i is similar in some measure to acoustic radiation in a homogen- 
eous medium, except that important differences from the case of a homogeneous medium exist 
here. First, the indicated losses in a stratified medium also exist for M < i (see below). 
Moreover, the expressions (19) for the pressure in the fast acoustic wave contain terms 
with c e-~,  e -~ , .  

For M < i, after passage of the front z = ct, the disturbance at a given point begins 
to grow exponentially with time. This growth continues as long as z > Vt (we neglect small 
quantities, I § 0). For z~--_Vl the growth of the disturbance with time ceases at the given 
point. 

We now consider the stated fact somewhat more in detail. If we set ~g = 0, Eqs. (12) 
and (18) will then correspond to the solution of the equation 

1 0 : p ( l j  p(U Oq(t, R) 
c 2 dt z Ap0) --k 4H-~. ~ = exp (~2H)  Ot (21) 

as r § 0. Here p(~)=pexp (z/2H) and q([,R) is given by Eq. (4). We note that the left-hand 
side of (21) is analogous to the equation for the magnetic field in an isotropic plasma 
(with Langmuir frequency oe =c/2H and dielectric constant 8=I--c~/4H2~)i Making use of 
Eq. (21), we can readily explain the exponential growth of p with time for M<I, z/c<l<z/V. 
Thus, we infer from (6) and a subsequent analysis that the disturbance from the source 
(z>0, t<tm) in the investigated system propagates in the positive z direction, since the 

only contribution to Pk is from values of ~o/V. The right-hand side of (21) increases 
exponentially with t. Therefore, disturbances emitted by the source at an earlier time 
will contribute less to the wave pressure at a given point than disturbances emitted later. 
For M < I, disturbances emitted at earlier times by the source arrive earlier at a given 
point. For this reason, the pressure Pk at the given point grows exponentially with time 
for M < i. For M > I, on the other hand, waves emitted by the source at later times t 
(but t < z/V) arrive earlier at a given point z~ As a result, Pk decays with time (z/V < 
t < z/c) at the given point for M > I. 

Using Eqs. (19) and (20), we can find the drag acting on the source. It is determined 
from the expression for the work done by the source on the disturbance generated by it, i.e., 
from 

~-- ~ qpdR~o.  (22) 

We note the following in connection with Eq. (22). From (2) we obtain 

,oodv~/dt = --Op/ar. (23) 
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Accordingly, for r-+a+O in the given approximation 

V r ' ~ - -  q----9---O [I (t--~l-- I (t-}- l 
2~por , V #.l / j , t )) l/V. (24) 

Consequently, the work described by Eq. (22) is readily perceived to be equal to the energy 
flux S r across a cylindrical surface of small radius a+0, a-+0, the axis 'of which coincides 
with the z axis: 

vt+z 
S ~ =  2xr j' pv~dz, r = a + O .  (25) 

Vt 

This result appears to be very significant, because it implies that the variation of the 
acoustic energy in the above-indicated cylinder of small radius can be neglected under the 
conditions described. 

For the case of supersonic motion we obtain the following by means of Eq. (22) after 
suitable calculations : 

A (m > s)--- q~V (1 + iF4 ) z .o~,,,2_g .~ 
In-- + 

2~po (Vt) a 8~p0 (Vt) V 

O < t < tm -- l/V, 2>2l, lla ~ l, ogl/c << l, 

l /H < 1, 1~,I Z/V << 1, In I/a >> [~[ (H/V), 

(26) 

where p0(Vt) is the value of the unperturbed density at the point z = Vt, i.e., p0(Vt)= 
p~ exp ( - -V~H).  

The f i r s t  te rm in  Eq. (26) d e s c r i b e s  t h e  r a d i a t i o n  of  a c o u s t i c  waves ,  and t he  second  
te rm c h a r a c t e r i z e s  i n t e r n a l  waves ( the  c o r r e s p o n d i n g e x p r e s s i o n  f o r  a p o i n t  s o u r c e  a p p e a r s  
t o  have been  f i r s t  d e r i v e d  i n  [ 1 ] ) .  

Inasmuch as Eq. (20) i s  v a l i d  f o r  lgl>>a/V, ]gtl>>a/V , Eq. (26) i s  t h e r e f o r e  a p p r o x i -  
m a t e l y  derived. On the other hand, this approximation is entirelY satisfactory, because it 
merely disregards quantities that are small in comparison with ]n ~a>>l. Of course, this is 
true only of the expression for acoustic radiation. Equation (26) contains an increment of 
the order of Z/H, which is associated with acoustic radiation in a medium having variable 
parameters. This increment could obviously be obtained only by taking into consideration 
the finite dimensions of the source. The presence of the large parameter In(I/a) indicates 
that radiation at high frequencies provides the main contribution to the radiation of fast 
acoustic waves by sources of small dimensions. 

Using Eqs. (19) and (22), we obtain the following for a subsonic source: 

q~ Vl  In l /a 02 02 lz 
~0  g 

A (M < 1)----- 4=Po (Vt) H 4- 8~po(Vt)V " 

InI/a >> laI (H/V), lnl/a>> l. (27) 

I t  i s  seen  t h a t  t he  e x p r e s s i o n  f o r  the  work done by d r a g  on i n t e r n a l  waves�9 f o r  M < 1 has  
t h e  same form as  f o r  M > 1. Th i s  f a c t  i s  a c o n s e q u e n c e  o f  the  e x i s t e n c e  o f  the  r e s o n a n c e  

f r e q u e n c y  ~ = o g  i n  t h e  i n v e s t i g a t e d  s y s t e m  [ see  Eqs.  (7) and ( 1 7 ) ] .  

E q u a t i o n s  (26) and (27) i n v o l v e  e x p r e s s i o n s  a s s o c i a t e d  w i t h  t he  e n e r g y  l o s s e s  o f  t he  
s o u r c e  i n  i t s  m o t i o n  t h r o u g h  t he  s t r a t i f i e d  medium, which  v a n i s h  i n  a homogeneous medium 
( H +  ~) .  I t  i s  i m p o r t a n t  to  n o t e  t h a t  t h e s e  l o s s e s  a l s o  e x i s t  f o r  t h e  c a s e  of  s u b s o n i c  
s o u r c e  v e l o c i t i e s .  I n  t h i s  c a s e ,  Eq. (27) d e s c r i b e s  t he  p r i n c i p a l  l o s s e s  a s s o c i a t e d  w i t h  
r e s t r u c t f l r i n g  o f  t he  s t a t i c  f i e l d  [ see  ( 1 9 ) ] ,  whence i t  f o l l o w s  t h a t  o n l y  t he  s t a t i c  f i e l d ,  
which does not depend on the time in a coordinate system moving with the source (M < i, 
Vt>>l)' is taken into account nearthe soumce for sound. Restructing takes place as a result 
of the slow variation of the velocity field described by Eq. (24), corresponding to a loss of 
energy by the source due to the variation of the quantity 
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1 S v~ p~ ~" q2~ l l = 2 " " 

Since I-~0, l/a-~.oo, the energy losses in sound generation are dominant both for M > 1 and for 
M < 1 (for internal waves A ~ 12). 

It has been assumed above that t < tm, i.e., radiation associated with shutdown of the 
source has been disregarded. It is difficult to carry out a corresponding analysis analogous 
to the preceding. In particular, an equation similar to (15) is obtained. We shall not 
pursue this problem in :the present article, however, 

The foregoing discussion applies to the case in which the density of the medium de- 
creases in the direction of motion of the source. We now look briefly at the description of 
a system in which the density of the medium increases in the direction of the source velocity. 
To derive the corresponding expressions it is necessary, as a rule, to replace g by --g and 
to replace H by --H in the equations used above (H l =--H for HI < 0, and Hi = H for Hx > 0). 
Here, by analogy with the preceding situation, we have in place of (19) and (20) 

tog~ 4 tog ~ 
p ,  (.3,4 < l j  - -  - -  q~ 4 s in '  - -  l ( - - ~ ) + - - g l n  t 1 ( - - ~ , ) - -  

4-'~ - - T  2 ~, T 

1 (-- ~) (1 + e -~)  + 1 (-- ~,.____~) (1 + e-"~,) + 

+ 1 ( t ,  z , /c)  1 (t -4- ( l - - z ) l c ) ]  
" t~ J ' 

z > l ,  l < t < ~ r , , - -  l a a v o - m )  ~-, I~1>>~, Ihl>>~-; 
_ tog___~ 4 tog~, 

p ;  ( M  > 1) = qo _4 sin2 I ( - -  ~) + - -  , in* - -  1 ( - -  ~,) + 
4~  ~ 2 E.~ 2 

[, - 

x [ , ( ,  
l 

h 

+ -. - - 1  ( - - ~  , 
C , 

X 

(28) 

(29 )  

a 
t < t . -  iv' > V '  

a 
z > 4  V O - - M - D  < I~,1>> -~ .  

It must be noted in connection with Eqs. (28) and (29) that after the replacement of H by 
--H the integrand in (12) has one pole (m = 0) for M < 1 and two poles !o---0, o-~io~-~iV/H(M z- 
I)] for M > i; the positions of the cuts in the complex plane of w are the same as for Hz > 0 
(Fig. 3). In contrast with the case of entry of the source into a medium with a density 
decreasing in the direction of the velocity (H1 > 0), it follows from Eq. (28) that for 

H~ < 0 the pressure grows exponentially with time in the interval z/V<t<z/c, l--~O for a super- 
sonic source. This result is associated with the fact that the right-hand side of, (21) 
decreases exponentially with time for HI < 0 and waves radiated later contribute less to the 
pressure at a given point than waves radiated earlier [see (21) and the accompanying discus- 
sion], 

It is instructive to calculate the total takeoff energy losses of sound generated by 
the source in the small time interval O<t<I/V(I--M)(M<I) or O<t<I/V (M>I) (see Fig. i). 
In these intervals the intensity of the losses varies mainly as a result of the power varia- 
tion of the source itself [(Aexp (Vt/H1)depends on t]. Setting 2~_Vt in (12), we find 

[ '( 'I] qo - L 1  t , -  + ~ 1  t + -  1~ i - -M) ,  P' -~ ~ ~ c 
(30) 

1, M < I  
I ( I - -M) - - - - -  O, M > I  ' 
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whereupon we obtain the following for acoustic waves [see (28) and (29)]: 

.... k c V 

This formula is valid either for HI < 0 or for ~x > 0. 
(startup) energy losses [see (22)] are equal to (M < i) 

+ , -  1 , , _  . c  

(31) 

Accordingly, the total takeoff 

Ast = qo S pdzdt/p~ 
A B C D  

( 3 2 )  

where the integration is carried out over the trapezoid ABCD (Fig. i), 
comprising two subdomains (z--I) /V<I<2/c+I(I--M)/V, l<z<l  (2 M)/(1--M) 
z<Vf, l /V<t<I/V(1--M). Consequently, [(i/H)lnl/a<<l!], 

i.e., over a domain 
and ct--I ( M-~ -- 1) < 

. I t I 2 M  - -  11 Ast(M < 1) - -  q~l I n - - ,  In - - )>  
4~p ,  o a a 1 - -  M 

The analogous Ast is obtained for M > I: 

(33) 

A s t ( M >  1)"~'~ q~l In / (1 3 l )  
2 --7 7 (34) 

Only quantities of the order of In(l/a) are included in (33) and (34), in accordance with 
the order of accuracy of the analysis. 

The takeoff radiation energy for an internal wave is determined [see Eqs. (28.), (29), 
and Fig. i] by the intervals O<l<I/V, l<z<Vl~-I and is equal to (for M > I and M < i) 

Ast-  TM = ~ o  g ~ , ~ v  e',,o- ( 3 5 )  

It is interesting to note that the time interval in which the takeoff disturbance is gen- 
erated for M < 1 differs for the slow and fast waves. In the case of the slow wave, as 
mentioned, this interval is O<l~I/I/, and for the fast wave in the case M < 1 it is 
O<[<l/V(1--M). 

We can use Eqs. (28) and (29) to determine the interaction of the acoustic wave [ Im> 
t>I/H (I--M), M<] ] and the slow wave (tra>l>I/V) with the moving source. As a result, we 
obtain (Hi < 0) 

At .ac (M < I)----_-- q~~ In / , 
4~poo H a 

2 ~ V t i H  ) A t . ~  (M < 1) ---- q~176 exp (--  . (36) 
8~P~o V 

~ ra tm 

At(M < 1) = At.ac+ At .  sW---- Ax.ac at + ~ At.swdt = 
tlV(I--M) l/V 

-- 4~Poo . I n - - +  , Vlm/H>>l, I/Hlnl/a<<l. 
a 2V a ] 

(37) 

It follows from Eqs. (36) and (37) that for HI < 0, M < 1 the work At.at corresponds 
to absorption by the source rather than to the loss of energy from it. This means that along 
the given path the source absorbs the energy developed in takeoff [see (33)]. The total 
energy losses are 

2 2 2 2 A (M < 1) = Ast (M < 1) + A t (M < 1) --, qo~gl HI8=pogV. (38) 

Equation (38) does not contain an expression for the acoustic radiation energy. This 
fact indicates that the energy losses in acoustic radiation are relatively small (the large 
parameter in(I/a) does not enter into the expression for these losses). 

For M > i, by analogy with (36) and (37), we have (HI < 0) 
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q~v (t - l lH)  exp ( -  VtlH) A t . a c ( M  > 1)---- 
2"~po o 

n 2 0)2 19 
A:t.sw(M > 1) ---- ~o ,~ ~- exp ( - -  V t / H )  

8 ~?oo V 

l 
In --, 

a 

(39) 

A t ( M > I ) - - - -  " At .  a c d / +  At  s w d t =  1 - -  In ~ Vtr, , /H>> 1. 
tlv " " '2~po. -H a 4 V  t ' 

(40) 

It follows from a comparison of Eqs. (26), (27) with (36)-(40) that when the source moves in 
the direction of increasing density of the medium, the energy losses are greatly diminished 

in comparison with the case of the source moving in the direction Of decreasing density of 
the medium. 

l, 

2. 
3. 

4. 

LITERATURE CITED 

G. I. Grigor'ev and V. P. Dokuchaev, Izv. Akad. Nauk SSSR, Ser. Fiz. Atm. Okeana, 6, 
No. 7, 678 (1970). 

V. D. Lipovskii, Izv. Akad. Nauk SSSR, Ser. Fiz. Atm. Okeana, 17, No. Ii, 1134 (1981). 
I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series, and Products, Academic 
Press (1966). 
V. L. Ginzburg and V. N. Tsytovich, Usp. Fiz. Nauk, 126, No. 4, 553 (1978). 

ANALYSIS AND SYNTHESIS OF A MODULATED RODDED STRUCTURE EXCITED 

BY ELECTRIC AND MAGNETIC CURRENTS 

S. P. Skobelev UDC 621.396.67 

An infinite modulated rodded structure under both periodic and aperiodic excita- 
tion is analyzed. An expression is Obtained for a partial beam pattern of the 
structure; by selecting the positions of the~short-circuiting devices a synthesis 
is effected of the partial beam pattern which is close to tabular. The results of 
the synthesis show the possibility of the use of rodded structures in phased an- 
tenna arrays for finite scanning. 

Currently, in uhf electronics and antenna engineering rodded structures are finding a 
number of important practical applications, among them reflective arrays, impedance antennas, 
decoupling devices, and others, 

It is of interest to consider the possibility of using rodded structures in phased an- 
tenna arrays (PAA), in particular in PAA used for finite scanning [i]. As is well known, 
the latter are traditionally constructed so that between the control elements and the radia- 
ting array a passive multipole is placed, the purpose of which is the formation of a tabular 
partial beam pattern (BP) of a width equal (in the ideal case) to,the width of a given scan- 
ning sector. 

A disadvantage of the traditional method of constructing PAA for finite scanning is the 
presence of a complex feeder power supply system, which increases the weight and dimensions 
of PAA and decreases their reliability. However, the use of an appropriate rodded structure 
with specially selected parameters and excited by the field of a radiator array with a simple 
power supply system would eliminate this disadvantage to a significant degree. 

The present article examines the possibility of using rodded structures in large finite- 
scanning PAAbased on the example of a two-dimensional model: an infinite modulated rodded 
structure excited by a given distribution of electrical and magnetic currents. The Gaussian 
system of units and a time function of the form exp(--i~t) are used. 
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