QUASIPOTENTIAL EQUATION FOR A RELATIVISTIC
HARMONIC OSCILLATOR

A. D. Donkov, V. G. Kadyshevskiti,
M. D. Mateev, and R. M. Mir-Kasimov

In the framework of the quasipotential approach, a study is made of a relativistic generaliza-
tion of the exactly solvable problem of an harmonic oscillator. Quasipotential wave equations
are constructed in the form of expansions with respect to the wave functions of the correspond-
ing nonrelativistic problem. Relativistic corrections to the energy levels arc obtained.

1. Introduction

As the quasipotential approach [1-3] is [urther developed, problems which can be regarded as relati~
vistic gencralizations of well-known exactly solvable problems of quantum mechanics acquire considerable
interest. Thus, the quasipotential formalism is used to study the relativistic Coulomb problem in {4-6] and
the problem of a relativistic particle in a potential well [5-7]. It is then inevitable to ask how one must
formulate the harmonic oscillator problem in the quasipotential theory,

[f the answer to this question is known, one could develop, for example, a relativistic quasipotential
version of the shell model, which could, in turn, perhaps be applied to the quark model,

In nonrelativistic quantum mechanics, the Hamiltonian of a three-dimensional isotropic oscillator is

{8l

_ P me’r
H=omt—5— (1.1)

Because of the symmetry between the momentum and coordinate operators in this expression it is
immaterial whether onc sceks the energy levels and the wave functions of the oscillator in the r or p re-
presentation,

If we choose the p representation, then the first term in (1.1), the kinetic energy of a free nonrelati-
vistic particle, is a ¢ number and the second term, which is responsible for the intcraction, is proportional
to the differential Laplace operutor in the p space:

. &
=—H Pk (1.2)

rﬁ

It should be noted that the expression (1.2) is the Casimir operator of the group of motions of the three-
dimensional Euclidean p space. This circumstance plays a fundamental role in the relativistic generaliza-
tion of the Hamiltonian (1.1) which we develop later.

Let us first recall that in the quasipotential approach the p space can be regarded as a Lobachevskii
space [3]. The corresponding Laplace operator AL is related to the sguarce of the relativistic coordinate
r? by the equation (see [3])

A= — (1 +-’%ir) (1.3)

Taking into account the relation for the energy of a free relativistic particle,
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E = ym'c ¥ pc, {1.4)

we may surmise that the relativistic analog of (1.1} is

—— @R
== Ymic* 4 pe* — S AL (1.5)
In the spherical coordinates
L. mcchy,
34
p = mc sh yn,
(1.6)

n == (sin ¥ cos ¢, sin ¥ sin ¢, cos 8),

the Laplace operator (1.3) is

1 0 a Aog
A == "'—( h: "'_) PO 1-7
= s xa)C +Sh_x (1.7)
where
1 9 E} 1 &
Ay = _._( 0-—) s,
=m0 do\ " o0/ Tein' o agt

The stationary quasipotential Schrédinger equation with the Hamiltonian (1.5) is therefore:

(l)fl 1 2] g Ao.o
2 —— - 1: - }‘l" s Vi =4 ¥
{ me*chy, [Sh_x Y (sL x,ax ) + shzx] (%0,9) = 2E¥ (%, 90,q). (1.8)

Note that in the configuration repr escntatxon Eq. (1.8) gocs over into a difference — differential equa~
tion since the free Hamiltonian H; = V mch—:p ¢ in the r space is [3]
.o
Ho_<{°chz—— f—-——,h _j.--‘éii &38

r r

(1.9)

Clearly, it is preferable to work with a differential equation rather than a difference — differential
equation since the techniques for solving the latter have been developed to a much lesser extent, In other
words, it is more expedient to solve the problem of a relativistic oscillator described by the Hamiltonian
(1.5) in the p representation. Separating the variables in Eq. (1.8) in the standard manner, we arrive at
a one-dimensional equation for the partial wave function:

[ 1 d d W41 dmict 2me?
.ﬁ"

2

] ;
sh®y dy dy sh®yx o'’

X
sh'~2— — (£~ mc?) ] W(x)=0. (1.10)
The investigation of Eq. (1.10) and its solutions is, in fact, the main burden of our paper. Only Sections 2
and 5 are not devoted to this problem. In Section 2 we expound a modified procedure for solving the non~
relativistic equation for the function ¥y (p)

t d,d I(l+1 2 1 I
pz dp p.—Z;_ 'S + motht En.r-—z—,;)]‘l’«(p)=0 (1.11)
with the boundary conditions
Wi (0) < oo, (1.12a)
i) =0. (1.12b)

This proves helpful for the subsequent analysis of the relativistic casc, In Scction 5 we shall consider a
quasipotential equation with an oscillator interaction that has a slightly different form from (1.8),

In the present paper we shall not consider specific physical applications of relativistic oscillator
equations (a scparate paper is to be devoted to this question); rather, we shall concentrate entirely on the
mathematical aspects,

2. Solution of the Nonrelativistic Problem

-

[n Eq. (1.11) we go over to the dimensionless variables
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§=p/moh, L= Efoh @.1)
and define a new unknown function:
Yi(p) = w(3) /8" (2.2)

As a result, the function uy(¢) satisfies the equation (s =2/ + 1/4)

i
et
1 A 4
W@+ [~ =0 (2.3)
with the boundary conditions
g (8) [e= =0, {2.4a)
u(5)<< oo for §=0. {2.4b)

Equation (2.3) is identical with the Whittaker equation {9, 10], i.e., its gencral solution can be written in
the form

w(3) = CM, .(3) + Coblai(B), (2.5)
or
(%) = BWi .(3) -+ B.Wo . (—3), {2.6)
where M) g(!) and W, g(£) are Whittaker functions.

Noting also that [9]

M, (3) = JCHenis gmtr ‘D( Sl I LS ﬁ) 2.7)
4 2
and taking into account the boundary condition (2.4a2), we find that C, = 0. Consequently {10]
e N e L
w(3) = Cu (2) = € [ ——— e W)+ — (8 ]. (2.8)
) ()
Now as ¢ —~ =
Woi(=8) ~ 8 (1 +0(E™), (2.9)
and the boundary condition (2.4b) is therefore equivalent to the requirement
1
1 =0 (2.10)
r (—q—' + s—A )

By virtue of the well-known property of the I' function [9], Eq. (2.10) yiclds the quantization rule for the
energy of a nonrelativistic oscillater:

E..=mﬂ(2n+l+’/,), (2.11)
n=012,...
The eigenfunctions corresponding to the spectrum (2.11) have the form
ul (3) == Cn. lww'{'-'/.(l-{v-'/.).ﬁ;f—‘" (E) = Dn' ltt[ﬂ+.—;‘(‘+%) ‘g;:-_l_ (§)¢ (2. 12)

where Cn,l and Dn pare norm:lization constants,
¥

if we had started from (2.6) uand had first taken into account the boundary condition (2.4b), we would
have obtained B, =0, Then, using the representation

r(—2 T(2
W‘..(§)==-——1—(—~—~s—)~——,—Mx,.(§)+———i—-—(—-§L~—MA,.(—.E ' (2.13)
M —s—1 F(—q———}s—-k



we would have obtained the energy spectrum (2.11) as a conscyuence of the boundary condition {2.4a). Thus,
in the investiguted representation of the oseillator solutions (2,5)-{2.6) in terms of Whittaker functions, the
bounduary conditions at the origin and at infinity enter symmetrically in the derivation of the expression for
the energy levels. This contrasts with the usual approuch (3], in which the boundary conditions at the ori-
gin and ot infinity play a differeat role. The condition at infinity leads to two different energy quantization
rules, of which one, namely,(2.11), is then selected by mecans of the condition at the origin.*

The solutions of Eq. (1.11) that satisfy the normalization conditions

j‘]’,,,(p) Wn’l(P)P: dp = 8., (2.14)
0
can be expressed in terms of Whittaker functions as follows:
a N
. 3/ 2(_1)"*’*‘1‘(_n—z _%)
1y — / k] 2.15
{'nl (P) (lllulf-t—s)‘i‘—l Py an+ ',E"(H‘ %4)' #_!(5)' ( 0)
3. Relativistic Problem
Let us now turn to Eq, (1.10), Setting
n(x) 3.1
Wi(g) = —X__ 3.1)
) {mcshy) =
we obtain an equation for the new desired function 7;(x)
” R . me , 3,8 dmiet % 11+ 1)
0 () — cth oy () + [.3 ;5};—-’(1" — met)— 5t —/;ch £ pere sh -:)——--—S-Kz—;—] niy) =0 (3.2)
It is convenicnt to introduce the dimensionless variable
[ z
=20 e X (3.3)
wh 2
which is proportional to the relativistic binding encrgy:
W= 2(F ~— met)= s, 8.4)
In the nonrelativistic limit we obviously have § — p*/mwh [el. (2.1)].
Further, if we introduce the notation+
2 — 2
oty Mt _ Eomd 3 s, (3.5)
wh ! 4 R 8k
Eq. (3.2) is finally replaced by
1 ; ¢
e — . H * £) =0 (3~6)
O ST e T r e TR ok jnE) =0,
the boundary conditions for n(¢) taking the form
E-Une(E) Liee =0, (3.7a)
[‘.(g) < oo fO[ g # O. (3.7b)

Equation (3.6) has three singular points: two regular points at £ = 0 and £ = ~2k and one irregular at
¢ = =, It follows from the general theory of differential equations [11] that the solution of this type cannot
be expressed in terms of elementary functions, If one sceks the solution in the form of expansions with re-

spect to known special functions:
ﬂ(§)=2an(l)¢n(§): (3.8)

* By itself, fulfilment of the boundary condition at the origin does not yield any expression for the encrgy
levels at alt,
t1in the nonrelativistic limit x — 2B, v/wh  Ap p.



then recursion relations are obtained for the coefficients ap()) that contain not less than three terms, Such
a situation obtains, for example, in the case of the Mathieu equation and the equations for spheroidal func~
tions,

The complexity of the resulting recursion relations depends largely on the extent to which a felicitous
choice of the basis functions ¢n(£) is made, the solutions ap(A) of these relations being such that the ex-
pansion (3.8) converges only for certain (proper.) values of the parameter A.

In the nonrelativistic timit (k — «) the boundary-value problem (3.6)~(3.7) goes over into the previous-
ly considered problem (2.3)-(2.4). In this limit the points ¢ = 0 and ¢ = « remain singular for the "degener-
ate” equation. Taking into account this circumstance in solving the relativistic problem, we choose the
Whittaker functions, i.e., the solutions of the nonrelativistic problem, as the basis ¢p(é). Inother words,
the expansion (3.8) takes the form

n,E) = W s win ) (3.9)
r=3 IRy

Substituting (3.9) into (3.6) and taking into account (2.4), we obtain

£

I [N N E RN E

=y

{ t g,
e B W (5) F — E Wl (5) = Wl (5) | =0, .
o W (9 7 WD) n.(.)] 0 (3.10)
where
2+3 i
o=t 2 g @3.11)

Now the Whittaker functions satisfy the recursion relations [9, 10)

(D) = 2 W ()4 [ (=) =], (3.123)

-

(= g) =] (e e P e - @ e, G
(L [ A
(LR (2 [
Y THED s P o
o Vil = ) = A War (9 ] 5 +7“3~] Werna(2)
+7i-(2x+5) W.u..(§)+—,i— Wiesa(3)- 3.12¢)

Taking into account (3.12), we find the desired recursion relations for the coefficients ap!

[0} (s) {s) (n
dy a3+ b (.lz+C. U;+du Uy = U

(s ) O] () ()
d, U'.+ba 03+C; Uz""d.‘ (l;+€u ug=0,

(s} : ) (s) {2 }
€y Us 40, u+ ey us + dzt a:+ ‘-'i(‘ u: -+ iﬂ(‘)ao =0,

3 s {s} (=} (s) . i
ﬂsgaﬂru"*‘bf::un—: -+ L'r+|(1r»n+dr u:+er—lur—!+/:(-—)2ur-—:.+ T(T(l.-.;:?-“ (1’23), (3-13)
At

where
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A

@ =i —(rts+) b (rbs )=t

o 10rs + 36+ s + 2)— '+th1/2 (74 257+ r 45,
w__ | P 6—r—2rs+4r+4s
< ”}f( L+ 8k )
G 1 r+3+3 _ 2l+1
I "'zSTs(“r 2 ) (3_ 7 ) (3.14)

Equations (3.13) in conjunction with the normalization condition for the wave function enable ane, in princi-
ple, to determine the proper vulues of A and the coefficients @p(2) in the expansion (3.9). Let us calculate
A to terms of order 1/k. Setting

A==, Ak, (3.15)

substituting (3.15) into {3.13), and comparing the coefficients of the same powers of k, we obtain

1 1 3
me=ntst o =nto (145, ©.16)
Gt [(n + s-}———t—): — 35 +i] — 3 (8nt — 4 8l 1204 9]. 3.17)
T 2 7 B

On the othcr hand. it follows from (3.5) in the limit k — e that
Euy—me 3 Ev '+ AE* 3

i A
O R SR L . By Sy VL 0
Aot Soh vy 2eh gE = Mg (3.18)

from which we obtain an expression for the energy Icvels of the relativistic oscillator to terms ~1,/¢?
E.=mc +Ey + AL, (3.19)

where

n.t

ED =mfl(2n+l+ %)

wzﬁz

2 En' = -0 E
AL 1imc?

[(2e40+2) —aa+n+E). (3.20)

As Eq. (3.20) shows, the relativistic correction lifts the fortuitous degeneracy of the energy levels in the
orbital angular momentum, Equations (3.19)-(3.20) can also be deduced in another manner, Namely, we
substitute (3.12) into (3.10) and retain only the terms W +1/2+8,s(8) in the expansion (the remaining terms
can be neglected in the limit k — =), Then, taking into account (3.17), we obtain

Zu,{}."—x F —1,; [}."u+ ).'—~1—l-‘(5n2—~332+—3i)]} W..(8) =0. (3.21)

B

Since the functions W, 5(¢) are independent, each of the coefficients in the expansion (3.21) vanishes, which
again leads to Eqgs. (3.19)~(3.20). This method of calculating the proper values is equivalent to perturbation
theory.

4, Equation for the s Wave

It is of interest to consider Eq. (1.10) for I - 0 (s wave) separately, since the mathematicatly well-
known modified Mathicu functions |12] are its solutions. We may mention that the solutions of Fq. (12) for
arbitrary ] can be regarded as associated modified Mathicu functions,*

*In {13}, the associated Mathieu functions arc introduced an the basis of the equation for sphecoidal func-
tions,



In Eq. (1.10) for I = 0, we introduce a new desired function:

y(x) = ¥o(x)sh x. (4.1
Then
Ly () 2mc? 2mict
— . —— 4,2
dxz +[ TG £ 1 o h? chXIy(X) 0. ( )

The nonrelativistic equation corresponding to (4.2) is

&y(p) 2E 7
dp* [mm’fl: - miwht ] y(p)=0, (.3)

[it can be obtained from Eq. (1.11) for 7 = 0 by the substitution y(p) = p¥y(p)]. Introducing the new variable
X = x/2 into (4,2) and setting

2me? E 5 mct
R S PN Sl =9 4.4
a(l.)_4(w2ﬁ=£ 1) 4(MA t), k=2, 4.4)
we obtain the equation
d?
Z9E) L o 2k ch22)y () = 0. {4.5)
dr?
The boundary conditions imposed on y(x) are
y(0) =0, (4.6)
ylr)<<oo for r %0, 4.7)

Study of the boundary-value problem (4.5)- (4.7} showed that a solution exists only for the values a
= dayn + (k% that satisfy the transcendental equation

a—1—q— < p = 0. (4.8)
a—9— -

............

(t-—-(’_’r—{»i)v—.ii—a

The left side of (4.8) is an infinite continued fraction. For a =ay;. l(kz) the function y(x) can be expressed
in terms of one of the modified Mathicu functiens [9, 12]

§(0) = Cebyuy (2, — kY = St 0 BD o Sty (o7 1) a0 Ky Rk ), (4.9)
T‘k.‘li (}L') r=0
where cey 1 (X, k% is a Mathieu function of the second kind and K,r +(#) is a MacDonald function, The co-
efficients of the expansion (4.9) are determined by the recursion relations

Intl

(@ =k — 1) A" —k2d, =0,
[a —(2r 4+ 1) A0 — B (AT +4A05) =0 (r=1). (4.10)

To calculate the rclativistic corrections to the cnergy levels, it is necessary to find asymptotic expressions
for the parameters (4.10) as k — w, It should be noted that the asymptotic expansions given in the literature
(9, 11, 12] for the eigenvalues of the modified Mathieu equation (4.5) are incorrect. This error is due to the
fact that in the derivation of the expansions use is made of symmetry propertics of the eigenvalues that do
not hold for large k%, Applying to Eq. {4.5) the method developed in [14], we obtain

a.(k)—->2k’+2(2n+1)k+gf—i~/w. (4.11)
A—v (3

Noting also that, in accordance with (4,4),

a(k)-’—b 8’:‘;‘ (mc’-{-—E"'-f- AE), (4-12)

A> oo (V]

where AE is the correction of order 1/k, and equating (+.11) and (4.12), we find
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E“"=mfi(2n+—§—),
i

b= ()" + 2]

Obviously, the relations (4.13) are a special case of (3.19) for I = 0.

5. Exactly Solvable Relativistic Problem

It is well known that the Hamiltonian (1.1) of the nonrelativistic oscillator is invariant under trans-
formations of the group U(3). If one requires that the relativistic Hamiltonian be U(3)-symmetric, then
one can show that the interaction potential must have the form (in units for whichi=2m =c¢c = 1)

&=
V=0t ,+r®e"™, (5.1)
where Ay, is the angular part of the Laplace operator, and r® is the generalized degree calculated in
accordance with the formula [3]

L T(—irt 1)
Pats JEmoy S NN it 5.2
' I(—ir) (5.2)
One can readily show that in the nonrelativistic limit
V{r) = o'r. (5.3)
The radial part of the relativistic Schrédinger equation with the potential (5.1) can be expressed as follows:
d d
d LY T T o ]
[2cht;1—,+—(—;}t,-—)e Fhe (A1) @) e T 2E, | Wy (r) = 0. (5.4)

By analogy with the problem of the nonrelativistic oscillator, we shall seck the solution of Eq. (5.4) in the
form

Wa(r) = C(—r)™OM (r) Qu(r’). {5.5)
The factors (- r){{* 1 and
{r : 1 i 1 i 4
M(r)=o F(erT-f‘:;- ‘1'r:;) (5.6)
are related to the behavior of the solution Pqu(r) at the points r = 0 and r = %, respectively, and in(rg) is
a polynomial of n-th degree (n is the radial quantum number).

In the nonrelativistic limit we obviously have

(R (=),

1"’(") — g-@rl,’z. (5.7)
Substituting (5.5) into Eq. (5.4), we obtain an equation for the polynomials in(rz):
._idi 12
Aw)e Y4+ B(e —C{r)2E[Qu(r?) =0, (5.8)
where the coefficients A, B, and C are given by the expressions
A(r)= m’r‘——ir’m’[Zl—}- 1 +V1 +i] — r’[m’[(l-}— 1)+ ot (2U + 1)V1+-4?+ 1]
[0} 0]
4
virfarar 0 Vit Lo nveen],
w
B(r} = —’r' — 207 + r*fo*— ot + 1) — 1] — ir[t 4- (I + 1)] — (I 4 1),
ey 1 4 1 irlw T4
C(r).__zrm—-on’[l—f«-z—Vi—{—-(;:———z—-]+.__5..“/1+.m_z_..1]' (5.9)

Simple, but rather lengthy calculations lead to the following exact formula for the energy levels of the re-
lativistic oscillator:
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E,.=m(2n+z+~z——r-,§-1/:§). (5.10)

It can be seen from (5.10) that the levels we have found differ from the corresponding nonrelativistic levels
only by the shift of the "zero-point" oscillations by (w/2)v1 + (£/w?%. The degeneracy of the levels in Eq.
(5.10) is the same as that of the levels (2.11) of the nonrelativistic oscillator. Thisfact indicates that the re~
lativistic oscillator described by Eq. (5.4) possess2s a hidden "dynamical™ U(3) symmetry, Wc note in this
connection that it would be interesting to go over, on the basis of Eq. (5.4), to the formalism of infinite-
component fields, in the same way as is done in {6] for the Coulomb interaction.

We shall now write down explicitly the polynomials in(r?) for 1 = 0 and a few of the first values of n:

4
Qul(r)=1, Qu(r)=1— e P,
) ) 54371 + 4/o’

403 + Vi + 4/
2T + YT F 4w’ + 5(5 + 3YT + 4l (3 + VI + 4/w?)
164
-+ — e e
2(7 + 5YT -+ 4/@’) + 535 + 3Y1 + 4/0*) (3 + V1 F 4/w?)

Qo(F) =1 —

{5.11)
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