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It is shown that, as in the case of quantum elec t rodynamics ,  inf rared divergences do not 
a r i se  in the interact ion of mass ive  par t ic les  with the gravitat ional  field if the sca t te r ing  
opera tor  and the state space on which it is defined a re  modified. 

1.  I n t r o d u c t i o n  

The aim of the presen t  paper  is to apply the general  method for defining the scat ter ing operator  
When there are  inf rared singulari t ies  [1] to the interact ion of a mass ive  field with the gravitat ional  field. 
The lat ter ,  being a se l f - in terac t ing m a s s l e s s  field, has infrared singulari t ies  on its own account. The 
Yang-rMills field, for example, also has such singulari t ies .  However, Weinberg [2] has noted that these 
s ingular i t ies  do not lead to additional difficulties because of the specific interaction with the gravitational 
field. The additional d iagrams for the interact ion with the fictitious pa.rticles [3, 4] which ar i se  when 
gauge fields a re  quantized also do not lead to inf rared singulari t ies  [5]. Therefore  in what follows we 
shall omit the se l f - in terac t ion t e rms  in the Lagrangian for the gravitat ional  field and in the total Lagran-  
gian of the mass ive  field we shall retain only the t e rms  that are  l inear in the coupling constant.  * 

In the second section we recal l  the fo rmal i sm of the quantization of the gravitational field in the 
l inear  approximation, using formulas  that are ,  in our opinion, somewhat s impler  than the traditional ex- 
p ress ions  [7]. 

The asymptot ic  Hamiltonian and the opera tor  describing the asymptot ic  dynamics of a mass ive  scaI -  
a r  field interacting with the gravitat ional  field a re  obtained in the third section. 

In the fourth section we use the asymptot ic  operator  to define the space of asymptot ic  states on 
which the S mat r ix  is defined. 

The finiteness of the mat r ix  elements for the scat ter ing operator  is established in the fifth section 
by concrete  calculations. The calculations of this sect ion are  s imi lar  to those of Chung [8]. At the same 
t ime,  we use Weiuberg 's  resu l t s  [2] to take into account the infrared divergences from the correc t ions  
for the  mass ive  fields that a re  vir tual  in the gravitat ional  field. 

The methods and many of the formulas  employed in this paper  a re  analogous to the case of the in ter -  
action of charged par t ic les  with the e lec t romagnet ic  field [1]. Therefore ,  in the major i ty  of cases we 
shall me re ly  give the final resul ts  and only go into details when the par t icu lar  features of the problem dis-  
tinguish it f rom e lec t rodynamics .  

I should like to express  my  s incere  grati tude to L. D. Faddeev for suggesting the problem and his 
in teres t  in the investigation and to V. N. Popov for discussions.  

* Note that for  the gravitat ional  field in the f i r s t - o r d e r  fo rmal i sm one can write down an exact in te rac-  
tion Lagrangian that contains only a single ver tex  [6]. 
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2 .  Q u a n t i z a t i o n  o f  t h e  G r a v i t a t i o n a l  F i e l d  

We take the L a g r a n g i a n  dens i ty  for  the g rav i t a t iona l  field in the f o r m  

(~) = ~ V----~'(~) {r~,(~) r~(~) - r~ (~ )  rL (~)}, 5~ 

where g= detg#v(x) = detC'~g#V(x); g#V(x) is the inverse of the tensor g#v(x); F#v (x) are the Christof- 
fel symbols; ~2 = 16~rG, where G is the gravitational constant [9]. 

We introduce the variables h#v (x) which describe the linearized gravitational field: g#v (x) = ~?#v 
+ ~th#v(x), where ~?#v is the Minkovski metric tensor with diagonal (1,-1, -1 ,  -1). We rewrite the La- 
grangian density in the variables h#v (x), retaining the terms of zeroth order in >t: 

The indices  a r e  r a i s e d  and lowered  with ~?#v. Now the Lagrangian.~0(x)  is  s ingu la r  [10], and t h e r e f o r e ,  
u s ing  F e r m i ' s  method ,  we go over  to the dens i ty  

~o' (z), = Zo (x) + O~h ~ (z) -- O~h~ ~ ix) I*/. -~t {O~,h~ (x) ('l,,Jl~x + %x%,, - "q~'lo~3 r  t )~. 
This  dens i ty  is not  s ingu la r  and the method  of canonica l  quan t iza t ion  l eads  to the commuta t ion  r e l a t ions  

[ h . . ( z ) ,  h ~ ( x ' ) ]  = ~ . . .o , .D(x  - -  z ' )  
and the causal  G r e e n ' s  function 

i ~ e~ (x-~') <r (~ ,  (~), ho~ (~'))> = ~ , ,  ~ ~ , ~  ~ d~, 

where  D(x -- x') is the invar ian t  D funct ion and we have  in t roduced  the fol lowing convenient  abbrev ia t ion :  

~Z#v, q~. = rl #crrlvk + r l#k  r l v a - - r ~ v ~ a k .  

In the usua l  m a n n e r ,  we define the o p e r a t o r s  of c r e a t i o n  and annihi lat ion:  

with the commuta t ion  r e l a t i ons  

i ,  dk a k 
hr., ( x ) =  ~ ,  I ~ (~., ( )  e-'~ -k a;v (k) e/~) 

[a.~ ( k ) ,  a~  + (k ' )  ] = ~ , . ,~6  (k  - -  k ' ) ,  

which lead to an indefinite m e t r i c  on the c o r r e s p o n d i n g  Fok s ta te  space  3~.  g,. 

It is convenient  to d is t inguish  two g roups  of independent  o p e r a t o r s ;  the unphys ica l  

and the phys ica l  

ax(k)={ao~(k); 2t-~/ann(k)}; i----i, 2,3; t,----t . . . . .  4 

(1) 

(2) 

' } a x ( k ) =  (aoo(k)-~a83(k)); ain(k); ~- (all(k)--a~2(k)) ; 

i ~[= n; X = 5 , . . . , | 0 .  

All  the o p e r a t o r s  with d i f ferent  indices  commute ;  the c o m m u t a t o r  of the phys ica l  o p e r a t o r s  with ident ical  
indices  is + 1 and that  of the unphys ica l  o p e r a t o r s  is - 1 .  This  d iv is ion is adapted to a loca l  ba s i s  in the 
space  of s e c o n d - r a n k  s y m m e t r i c  t e n s o r s .  The components  of this  ba s i s  e x (k), X = 1 , _ . . ,  10, a r e  o r t h o -  
n o r m a l i z e d  in the m e t r i c  Wpv,o~fl, and I [~v~) l l  2 = - 1  for  X = 1 . . . . .  4, and#~[~v  (k)ll 2 = 1 fo r  • = 5 . . . . .  10. 

The  m e t r i c  on the Fok space  is connec ted  with the f o r m  w # v , a  ft. Let  us cons ide r ,  for  example ,  the 

s i n g l e - p a r t i c l e  s ta te  I W> = ~ dkW ~" (k) a~ + (k)[ 0> ; on the one hand, its n o r m  is 

(3) 

and, 

{~" I ~F> = I dkW~" (k) c%~, ~ F  a~ (k), 
10 

on the o ther  hand, us ing  the decompos i t i on  ' I '~  (k) ---- ~, e~v (k) ~Fx (k) , we obtain 

10 

<~FI ~I~" > = _ ~ IlW'x(k) lSdk+  ~ I] Wx (k)[~dk. 
X = I  X=5 
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We now introduce an additional condition, the analog of the Lorentz  condition for  the e l ec t romagne -  
t ic  field: 

i 

(the ha rmonic  condition). Wri t ten  down for s ing le -pa r t i c l e  or cohe ren t - s t a t e s ,  it r educes  to the r e q u i r e -  
ment  kg~I,#v (k) = 0 and in the  components  s x ( k )  we have ~I,k (k)--~I,k+4(k) = 0, k = 1,2,  3, 4. This  resul t ,  
together  with fo rmula  (3), shows that the m e t r i c  on the subspace  of physical  s ta tes  is definite and has  two 
independent components .  It is shown in [7l that the spin cor responding  to this field is two. 

On the subspace  of physics]  s ta tes  there  acts  a group of gauge t r ans fo rma t ions  whose ope ra to r s  
U (A g) commute  with the opera to r  of the additional condition 

U ,AN)= exp ( idk  [ (k~A" -- ~--~l~'kaAa)a~. , k ) -  (k~A " -  ~ ~l~'kaAa)* aN. (k)]}. 

Ca r ry ing  out the fac tor iza t ion  of the physical  s ta tes  with r e s p e c t  to equivalence genera ted  by the group of 
gauge t r ans fo rma t ions ,  we obtain a Hi lber t  space  of s ta tes  with a pos i t ive-def in i te  m e t r i c .  This  definition 
cor responds  to fae tor iza t ion  of the space  of physical  s ta tes  with r e s p e c t  to the se t  of vec to r s  of vanishing 
no rm.  

3.  A s y m p t o t i c  D y n a m i c s  

We shall  ba se  our subsequent  t r ea tmen t  on the example  of the in terac t ion  of a m a s s i v e  sca la r  field 
with the gravi ta t ional  field. The exact  Lagrangian  for  the s ca l a r  field 

t 

in the approximat ion  l inear  in h#v (x) takes the fo rm 

~'(x) ----- ~ . (x)  +.~',~,(z), 
where 

and 
i 

is the e n e r g y - m o m e n t u m  tensor .  

We now wish to cons t ruc t  the asympto t ic  H a m i l t o n i ~  in accordance  with {1], In the in terac t ion  
Hamil tonian 

:g 
I dxhNv (x) T~, (x), Hint ~-~ ~ -  

we mus t  use  the decomposi t ion (1) for h ~v (x) and the fo rmula  

I r dp 
q~ (x) ~-- (-~),/, ~ ~ (b (p) e-'p = -4- b + (P)e~P~), 

to sepa ra t e  out the t e r m s  which a r e  candidates for  i n f r a red  s ingular i t ies  by  studying the behavior  of the 
coefficient  functions in the l imi t  Itl ~ ~o. The r e l evan t  t e r m s  a re  those that contain one crea t ion  opera tor  
and one annihilation opera to r  of a m a s s i v e  par t i c le  s ince the function in the a rgument  of the exponential  
function which de t e rmines  the dependence on the t ime: 

exp{-* - / ( ' f~ -~  m* - -  ~(p - -  k) '  -k m z "4- be)t} ,  

vanishes  for  k = 0 for  all p. As a resu l t ,  the asympto t ic  energy  opera tor  takes  the fo rm 

H .  (t) = Ho + V. . ( t ) ,  
where  

Vas(t)=2(2--~) , ~(2ke)V , _ .  b §  ~o q-a~, ( l r )e  !,. ) .  

It  is na tura l  to r e g a r d  the express ion  

20 



Idp ~kPt 
T~ (k, t) = Pop (p) 1~We p~ ' p (p) = b§ (p) b (p) 

as the analog of the classical  e n e r g y - m o m e n t u m  tensor  of par t ic les  of mass  m distributed with momentum 
density p (p). 

The operator  Uas(t) , which descr ibes  the asymptot ic  dynamics,  is a solution of the SchrSdinger 
equation 

i ~ U~, (t) = Ha, (t) U~, (t), 

and it can be written down exactly: 
t t T 

where 

We rewri te  Uas(t) with allowance for the fact that Q(% s) commutes  with H 0 and Vas(t): 

U., ( t ) ~ e-~Bot e~(ge R('), 

where 

and ~(t) is the phase opera tor  calculated in the appendix to [1]: 

m 4 
jdpdq:p(p)p(q) : m4) v" J [~I " (D (t) ---- ~ ((Pq)~ _ 

The f i rs t  of two cofactors  in Uas(t) se rve  to define the S mat r ix  and the operator  exp {R (t)} part icipates  
in the descript ion of the space of asymptot ic  s ta tes .  

4 .  S p a c e  o f  A s y m p t o t i c  S t a t e s  

The space of asymptot ic  states may be constructed ei ther  by means of the operator  exp{R(t)} or by 
means of any other operator  W + that possesses  the p roper ty  that exp {R (t)}W is a uni tary operator  on the 
Fok state space  HF, where 

n--=0 

Here ~ .  is the n-par t ic le  subspace of mass ive  par t ic les  and ~ ,  gr is the Fok space for gravitons.  

It is explained in detail in [1] how every  such opera tor  W maps the Fok subspaee of the infinite ten- 
sor  product ofvon N e u m a n n - H i l b e r t  spaces  onto another separable subspace on which the scat ter ing oper-  
ator  is defined. 

We shall now take W to be the following operator :  

P~P~. + (p)} 

where f(k) is a form factor  equal to unity in the neighborhood of small  k. Now W commutes with the 
mass ive -pa r t i c l e  number operator  and it follows that the space of asymptot ic  states ~ . .  can be decom- 
posed into subspaces with fixed number of mass ive  par t ic les :  

~as---- ~ Ha,.,. 
n = 0  

Note t h a t . . . ,  ~ coincides w i t h ~ ,  ,rOn which W reduces  to the identity operator .  

21 



The  s p a c e ~ ,  . c a n b e  d e s c r i b e d  by sPeci fy ing  how W ac ts  on the se t  of s ta tes  

I~(p, . . . . .  p,.)> -~ b+(p,) . . .b+(p.) lO);  [0> figdr, e,. 

On the in f in i t e s imal  subspaces  f o r m e d  by  such  s t a tes  the ac t ion of W r e d u c e s  to a shif t  of the o p e r a t o r s  
a#v ~) and a#+(k) by  the  funct ion  

2 (2x) '/' ~0j'~ ~'/; ~_~'~ ~ ~ ,  ~' 

which is not  s q u a r e - i n t e g r a b l e  in k in the ne ighborhood  of ze ro ;  thus W defines a r e p r e s e n t a t i o n  of the 
commuta t i on  r e l a t i ons  (2) that  is not  equivalent  to the Fok  r e p r e s e n t a t i o n .  We shal l  denote the space  of 
this  r e p r e s e n t a t i o n  by$~(pl . . . . .  Pn)- F o r  $~.  we then obtain the decompos i t ion  

fl 
' / ' "  

Among  the d i f ferent  admis s ib l e  W one can choose  an ope ra to r  that  c o m m u t e s  with the ope ra to r  of 
the addi t ional  condi t ion that  d i s t inguishes  the phys ica l  subspace  in ~75~ g,. Such an ope ra to r  W' m a p s  ~ , ~  
onto the space  of a sympto t i c  s t a t e s ,  which p o s s e s s e s  a definite m e t r i c .  As in [1], one can show that  this  
defini t ion of g~,  and g$., '  is L o ren t z  and gauge invar ian t .  

5 .  F i n i t e n e s s  o f  t h e  M a t r i x  E l e m e n t s  o f  t h e  S c a t t e r i n g  O p e r a t o r  

We shal l  d e m o n s t r a t e  the absence  of i n f r a r e d  s ingu la r i t i e s  fo r  the s c a t t e r i n g  o p e r a t o r  on s t a t e s  
be longing  tog~. ,by taking a spec i f i c  p r o c e s s .  Now, on the one hand,  we wish  to see  how the phase  o p e r -  
a to r  which we include in the S m a t r i x  [1] ac t s  but,  on the o ther  hand,  we do not wish to m a k e  the f o r m u l a s  
too  c u m b e r s o m e .  We s h a l l  t h e r e f o r e  take this  p r o c e s s  to be the annihi lat ion of two m a s s i v e  p a r t i c l e s .  
The  c o r r e s p o n d i n g  final s ta te  be longs  to ~7~. ~ and the ini t ial  s ta te  to ~Td~. ~ : 

ex t ~r �9 e dk k [P~'P~+q~q~ a + } ]~Fin>=Wb+(P)b+(q)IO>=b+(p)b+(q) P / ~ ( ~  ] (  )k  pk qk / (~(k) - -a~(k) )  I0> 

or ,  r e d u c i n g  the o p e r a t o r  with a+lz v ~) and ag v ~k) to  n o r m a l  f o r m  

x dk 
I~F,n ~, ----- b* (p) b + (q) N -'/' exp ~ I  ~ ] (k) ~--~k--{P~"~ -4--- -~q~q~'t/%~+ (K)J'") 10>, 

w h e r e  
z ~ ( d k  m 4 m'  m'  

N = exp [ (4~) s o~ ko ( 2 2 (pq)2 _ 

T h e  ac t ion  of the phase  o p e r a t o r  on l~'in) r e d u c e s  to  mul t ip l i ca t ion  by  the phase  fac to r :  

e i~ (t}l tFt, J = exp/t  t6 :~ (pq)~_m 4) '/, sign t In 

T h e  phase  f ac to r  tha t  a r i s e s  f r o m  the v i r tua l  c o r r e c t i o n s  [21 is 

�9 ~r 2 ( p q ) n - - m ,  lnA~----}, 
exp {-- t ~ ((Pq)~ _ m) I. 

w h e r e  A is  the van i sh ing  m a s s  of the g rav i ton .  Since the p h a s e  o p e r a t o r  o c c u r s  on the  r i gh t  in the  S 
m a t r i x ,  we have  t - -  -- oo and s ign = - 1 .  Set t ing [tl = A -i ,  we see  that  these  f a c t o r s  annihi la te  each  o ther .  

The  p r e s e n c e  in the ini t ial  s ta te  of sof t  g r av i tons ,  defined by  the o p e r a t o r  

z ~ " d k  q ~ q ~  a ~  (k)} 

m e a n s  that  the m a t r i x  e l e m e n t  (q, out~Sb+(p)b+(q)[0) takes  on the f a c t o r  

I ~ ( dk  ( 2  2 (pq)S _ m 4 rrt4 m ~ 

F r o m  the v i r tua l  c o r r e c t i o n s  for  this  m a t r i x  e l e men t  [21 we have 
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(4n)s,} ko plcqk ~- 2 ( - ~  ~ 2 ( ~ ]  J " 

The product of these two factors and the normalization factor N-1/2 shows that the infrared divergences 
cancel. 
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