SPECTRA OF CERTAIN RANDOM WAVES PROPAGATING
IN NONLINEAR MEDIA

A. I. Saichev UDC 538.56:519.25

The spatial spectrum of a random simple wave propagating in an ideal medium is obfained.
The law of conservation of the spectrum width is found for such waves along with other con-
servation laws. A portion of these laws is generalized for the case when the wave safisfies
the Korteweg—de Vries equation or the Blirgers equation. The spatial spectra are found for
the density and flux of a beam of noninteracting particles treated in the hydrodynamie approxi-
mation. It is shown that due to hydrodynamic instability of the beam these spectra acquire a
universal power-law form over a sufficiently long time.

INTRODUCTION

The statistical properties of random waves propagating in nonlinear media and satisfying nonlinear
partial differential equations have heretofore been studied little. This is associated mainly with the fact
that the nonlinearity of the original equations does not allow reasonably accurate closure of the equations
for the momeats of random waves. Therefore such random waves are usually investigated on the agsump-
tion of low nonlinearity [1-4] or by means of inadequately substantiated hypotheses concerning the charac-
ter of the relationship between the higher elements and the lower ones [1, 5, 6].

Nevertheless, it turns out that from a nonlinear partial differential equation of the first order one
may go over fo a closed equation for the finite-dimensional probability density function (PDF) of a wave
which satisfies the equation considered [7]; this allows analytic investigation of the statistical properties
of waves which propagate in essentially nonlinear media.

In the present paper equations whose derivation has been given in {7] are used to find and analyze the
spatial spectrum of a. random wave which satisfies the equation of a simple wave. The applicability limits
of the derived expressions are clarified. The conservation laws are derived for certain statistical charac-
teristics of a random simple wave, such as the width of the spatial spectrum. The validity of a portion of
them is proved for waves which propagate in nonlinear media having dispersion and satisfy the Korteweg
—de Vries or Burgers equations. In conclusion the spatial spectrum is found for the density and flux of a
beam of noninteracting particles which is treated as the hydrodynamic approximation. It is demonstrated
that over sufficiently long times these spectra acquire a universal power-law form which is produced by the
multistream nature of the beam.

1. The Spectra of Simple Waves

1.1. One example of random waves propagating in nonlinear media which is among those which are
simplest and of greatest practical interest, may consist of waves satisfying the equation of a simple wave:

ou ou
— Y = ) 1.1)
ot +P ox

and the random initial condition

u(xﬁ 0) = Uy (x)' < U, > = 0. (1.2)

One arrives at this equation in deseribing a wave in acoustics or in a plasma, waves on the surface of a
fluid, etc., in those cases when dispersion effects may be neglected (see, for example, [8, 9]). It is also
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of interest to investigate the statistical properties of the solution of the equation of a simple wave because
it provides a qualitatively correct description of the evolution of more complex nonlinear waves and, speci-
fically, the velocity fields of a turbulent fluid.

1.2. As was shown in [7], from (1.1) one may go over to the closed equation for the two-dimensional
PDF Wy(uy, up; Xq, Xy, t) of the values of the wave u(x, t) at two pomts X1 and X, at one time t:

0Wz aw, OWZ )
— du —lu du,} =0 1.3
ot +§0u,(ui5\01 )'i’?auz(z ox, (1.3)
with the initial condition
W, (i, a3 x4, %3, 0). = Wy (uy, ty; %y, %), (1.4)

which is completely determined from the initial condition (1.2).
At the initial time let uy(x) be a homogeneous function of x. Then (1.4) takes the form
W, =Wl uy;s) (s=x —x), (1.5)

while (1.3) goes over into the equation
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It is well known that the one-dimensional PDF of the wave u(x, t) does not vary with time [7]. From
Eq. (1.6) it is evident that one cannot say this of the two-dimensional PDF, since the nonlinearity of the
original equation (1.1) leads to a substantial expansion of the spectrum of the wave with time and conse-
quently to a pronounced change in the shape of the two-dimensional PDF.

j - (1.6)

/

1.3. Let us go over from the equation for the two-dimensional PDF (1.4) to the equation for the
Fourier transform with respect to s of the iwo-dimensional characteristic function of a simple wave:

0, (0;, ®y, %, ) = S Cexp [foyu(x, §) + f0gu(sy, ) e’ ds, (1.7)
The equation in @,(wq, ws, ®, t) can easily be derived from (1.6):
98, 5, 0 ) (“e):o. (1.8)
ot Bos 0‘”1( +§m20“’z 0y ’

Its initial condition, which derives from (1.5), has the form

0,(0;, 05,7, 0) = 8, = 55‘5 exp [E(oyuy + 0yus + 2 8)] Wo(uy, uy; 5)duyduy ds. (1.9)

Solving Eq. (1.8) by the method of characteristics, we obtain

8, = 8, (0] 8, (0) 27 () + £ (1 ;_@“Bi t‘)”:m:_p‘ ;3:’)' ) (1.10)
Here
g (01, 04 %) = B (0, 0,, x) — 8 () 6, (wg) 278 (),
while l
8 (w) = C elen =0y
is the one-dimensional characteristic function of a homogeneous simple wave.

The solution (1.10) of Eq. (1.8) describes the evolution of the Fourier transform of the two-dimen-
sional characteristic function of a simple wave accurately up to those t until which the ensemble of realiza-
tions which defines ®,(w;, wj, %, t) is an ensemble of unique functions. Otherwise Eq. (1.10) describes the
statistical properties of a simple wave in that approximation in which one may neglect nonunique realiza-
tions.

1.4. Let us find the expression for the spatial spectrum S(x, t) of a random simple wave:

S ) = T( ulx, Hu(x + s, t) > e ds. (1.11)
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The spectrum is associated with the characteristic function ®,(wy, wy, ®, t) calculated above via the follow-
ing equation:
_ 328, (0, vy, %, £)

S(x,t) -:
1) dw 0o, my 0 = 0

which can be rewritten in the following form with allowance for (1.10):
1
S, f)=mg($’-t, — Put, 7). 1.12)
Note that the obtained spectrum has no singularities for n = 0, since from the definition of the func-
tion g it follows that
g(@t,0,0) = g0, —prt, %) = 0.

1.5. From (1.12) it is evident that the zero component of the spatial spectrum of the homogeneous
simple wave is conserved: S(0,t) =S, or, what amounts to the same thing, the integral of the correlation
function is conserved:

TCute ue 45,0 5ds = | Cup()eg(x +5) >ds =S,

Previously it was demonstrated in [7] that the one-point moments of a homogeneous simple wave are con-
served — specifically, its mean-square: {u’(x, t)) ={(u}). If the correlation length of the wave u(x, t) is
introduced according to the equation

{ Cutr s 45,05 ds

(H) = ===
® 2 ut{x, >

1

it follows from what has been said above that the correlation length of a homogeneous simple wave I = 1,
= §y/2(u?) is also conserved.

Thus, the nonlinearity of the propagation velocity of a homogeneous simple wave has a substantial
effect on the form of ifs correlation function and spatial spectrum, and it does not lead to a change in the
correlation length or the spectrum width ny = »y = 7(u})/3S, if the latter is defined as

o

j S Hd~
()= == (L.13)
o (t) S0, 1)

The result obtained becomes understandable if one takes into account the fact that the correlation
length of the random wave u(x, t) is approximately equal to the mean distance between its neighboring zero
values which is evidently conserved in the case of a simple wave.

It is easy to generalize the conservation laws derived above for other higher conservation moments
of a homogeneous simple wave:

oC

yv Cum(x, tyu" (x + 5,1) > ds = const, {u"(x,t)) - const.

1.6. Let us find the spatial spectrum of the wave u(x, t} in the case when u,x) is a Gaussian homog-
eneous function. In this case the initial condition of Eq. (1.8) is the following:

8, - exp {":2— (of + "’ﬁ)J J exp (— K(s) o o, + f25)ds,
= K (0),

and the equation for the spatial spectrum (1.12) goes over into

feel

(62,2 42 _
S{#, 1) = exp (— S §?*/?) ( exp e PRED =] e’ ds. (1.14)

?2 %2 tz

X
—_—
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Let us clarify the asymptotics of this expression for © — «, Having restricted ourselves to the first two
terms of the expansion of K(s) into a Maclaurin series K(s) = 02—(a/2)sz, we find that for such » the spa-
tial spectrum can be described by the equation

1 2n 1 1
S{x t) = = Z Br exp(— 2?”2[1). (1.15)
The same kind of asymptotic expression was derived in [14] for the spectrum of a simple wave. Let us
analyze the causes of the appearance of such asymptotics. It is clear that in order for the spectrum of the
random wave u(x, t) to fall off according to the law »™ for » — = it is necessary for its Fourier spectrum
to fall off at w™%/2, But, as is known from the theory of Fourier integrals, for this it is required that

u(x, t) be proportional to the function VX=X, in the neighborhood of at least one point x,. However, if the
evolution of a simple wave that is smooth for t = 0 is traced, then one can see that points in whose neighbor-
hood u(x, t) behaves in such a way appear simultaneously with the appearance of nonuniqueness of the func-
tion u(x, t). Consequently, the asymptotic (1.15) of the spatial spectrum is associated with the appearance
of nonunique realizations in the ensemble which defines the spectrum.

For any t > 0 the coefficient of ™% in (1.15)isnot equal to zero. Thus, for arbitrarily small t non-
_unique realizations appear in the ensemble of realizations of a wave that is originally Gaussian. This can
be explained by the fact that the Gaussian function duy/dx exceeds an arbitrarily large stipulated value with
a probability that is not equal to zero, while it is known that the simple wave u(x, t) is unique at the given
time t only if the inequality duy/dx >1/pt is satisfied (see, for example, [10]). With a growth of t to t*
=1/ 3a the coefficient of %% in (1.15) increases, which indicates a growth of the contribution to the en-
semble from the nonunique realization, It is obvious that the spectrum (1.14) may be considered suffi-
ciently accurate only for t < t*,

2, The Conservation Laws of Random Waves in Nonlinear

Media Having Dispersion

2.1. Above, several conservation laws were derived for the spectrum and other spatial charac-
teristics of a homogeneous simple wave, It turns out that certain of these characteristics are also valid
when a random wave propagates in a nonlinear medium having a low dispersion and can be described by the
Korteweg—de Vries equation or by the Biirgers equation.

2.2, We shall begin by considering a wave which propagates in a weakly dispersive medium having
random sources and is governed by the Korteweg—de Vries equation:

q'll 5 ou . 03u> (£ (2.1)

Heuceforth we shall assume that the random sources 7(x, t) are Gaussian and delta-correlated in time:
Cnle, (e 48, f 4 ) ) = D(s)B(')

Moreover, we assume, as previously, that u(x, 0) = uy(x) is a random homogeneous function having known

statistical properties ((ug) = 0).

We multiply (2.1) out by u(x, t) and average the result. Calculating the average which depends im-
plicitly on n(x, t) by means of the local method, as in [13], or by means of the Furutsu—Novikov formula
[11, 12], we obtain the result

o uty B Icuty [awz > 3y »’QEY\] - D @2.2)
o T3 ox ox? 2\(0x, / .

From the homogeneity of uy(x) and n(x, t) along x it follows that the wave u(x, t) is homogeneous for all
t >0. Therefore all averages in Eq. (2.2} are independent of x, and this equation goes over into

x> _ po).
dt
Thus,

Cut(x, £)) =D (Ot + <45, {2.3)
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i.e., a nonlinear wave propagating in a weakly dispersive medium having sources that are delta-correlated
in time behaves like a Brownian particle. However, if there are no random sources, then {u’(x, t)) = (u_%),
which is the mean-square and at the same time the variance of the wave, is conserved. The latfer fact is
evidently a corollary of the energy conservation law of a wave which satisfies the Korteweg—de Vries equa-
tion [8].

2.3. Let us derive still another conservation law for the wave u(x, t) which satisfies Eq. (2.1}, For
this purpose we differentiate the average {u(x;, thu(x,, t}) with respect to time and write the following equa-
tion, after making use of (2.1):

O u{x, Dy, b)) ii 2 ¢
o + o <8 (xi, Dulxs 8) )
8 4 0® A -
At e g, ) (2, ) Y + (—-s-—) (g, O ulsy, 8) > = <k, u (X, )5+ Kl Hulx, 8)) (2.4)
2 dx, dxil* dxg, ’

Taking account of the homogeneity of u(x, t) and n(x, t) along x and calculating the average in the right side
by analogy with the calculation of the similar average in the derivation of (2.2), we rewrite (2.4) thus:

0, 0
K68 89 1ps ) —B(—s ] = D) (2.5)
ot 2 Os .
Here we have used the notation s = %y = x5, K = {u(xy, thu(x,, t)), B(s) = {ul(xy, t)hulxy, t)). Integrating (2.5)
with respect to s and assuming that K(s, t) and B(s, t) tend to zero for | s| — =, we find that
as(0,9) -

at D,

where D = 5' D(s)ds, while S(0, t) = j‘ K(s, t)ds is the spatial spectrum of the wave u(x, t) for n = 0. Thus,
80,8 =Dt + S, (2.6)

Consequently, the zero component of the spectrum of a wave which propagates in a weakly dispersive me-
dium having random sources and satisfies Eq. (2.1) increases linearly with time as does its mean-square.

Having determined the width of the spectrum of the wave u(x, t) aceording to Eq. (1.13), we obtain the
following expression for it with allowance for (2.3) and (2.6);

Cul>+ D)t
S,+Dt

Over times t < D(O)/(uﬁ), D/8,, the effect of the random sources on the spatial spectrum is insubstantial,

and ny = 7{u})/S, coincides with the width of the wave spectrum at the initial time. Thus, for a wave

propagating in an ideal medium having weak dispersion, the width of the spectrum is conserved, although
the spectrum itself varies greatly with time.

b(t) == (2.7)

Over times t <« D(0)/ (u%), D/S,, the width of the spatial spectrum (2.7) is entirely determined by the
statistical properties of the sources and is independent of uy(x).

2.4. Let the homogeneous wave u(x, t) propagate in a dissipative medium and satisfy the Blirgers

equation:

ou  , ou 0*u

T TR =

ot ax Ox?
The energy of this wave decreases with time, and consequently (uz(x, t)) decreases also. Nevertheless,
it may be shown by analogy with the procedure used above that the value of the spatial spectrum at zero
is conserved. However, the width of the spectrum decreases with increasing t, since all of the remaining
components of the spectrum attenuate due to high-frequency dissipation,

3. Fluctuations of the Density and Flux of a Beam of

Noninteracting Particles in the Hydrodynamic Approximation

3.1. We consider fluctuations of the density and flux near the beam of noninteracting particles.
Usually only fluctuations associated with the discreteness of such beams (shot noise) are considered.
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Sometimes, however, specifically in investigating a cold plasma (see, for example, [15]}, it is more con-
venient fo treat them as continuous fields which are characterized by two smooth functions, u(x, t) (the
velocity of a physically infinitely small volume) and p(x, t) (the density of particles in the volume) which
satisfy the equation

%;E' + uﬁgjllz Fa(x, m, 1),
t ¥ (3.1)
dp aJ . .

L+ u,p) =0 o, B =1,2,3),

0f 0%, (a0} (

where F is the force acting on a particle of the stream. In a plasma this is the force created by the elec-
tric and magnetic fields.

3.2. Equations (3.1) are the exact corollary of the Liouville equation for fGN(xi, - ,xN, ul,..., uN, t)
which is the PDF of the coordinates and velocities of N particles of the beam:
N N
—-e - 2= — {F, (%", u®; t = 0. 3.2
M*L“M+LM{( Vow] (3.2)
=l - =1

In the hydrodynamic approximation its solution may be represented as follows:

20 cc N
fox = [N [ T adbn Way (puvey o #yeesy 00, X1, 225 8), (3.3)

—oo —00 n=1

where W,y is the 4N-dimensional PDF of the values of the density p and velocity u of the beam at N points

at one time t. The coordinates xi, xz, ey xN are parameters here, rather thanvariables, asin fgy.

Thus, the solution of Eq. (3.2) allows the correlation function to be calculated and this means that
the spectrum of the fluctuations of the density, the flux, and the other macroscopic characteristics of the
particle beam treated in the hydrodynamic approximation may also be calculated.

3.3. Let us find the spatial spectra of the fluctuations of the density and flux in a hydrodynamic beam
of particles. Both of them are fully defined by f;,, for which the equation (as is evident from (3.2)) is the
following:

5fx2 1 ()fm s 2!.2 afrz 0

i 1 “2 =g, 3.4
ot Thon THGa @4
Here and throughout the subsequent analysis we shall assume for simplicity that F = 0.

If at the initial instant p = p; is constant while the random velocity field is uniform, then the initial
condition of Eq. (3.4) takes the form
fiz (!, 02, x', 2%, 0) = of W (u!, 4% 8). (3.5)
Here W, is the probability distribution of the velocity field of the beam at the initial time, while s = xl—x2.
It is obvious that Eq. (3.4) proper may be rewriiten as follows in this case:

oty ofy
i =2 =0, 3.6
ot te 0s. (3.6)

where v = w'—u?. Its solution with the initial condition (3.5) is:
f9 (uii uzv §; [) = ngG(uis ug: § — ‘Ut)
Henceforth it is not this equation but the expression which is equivalent to it for

O(w, kB, x ) = j‘ 9 5 fo(u', o, s;8)exp(ins + iwn' + ika®) dsdu' du? = g} Oy (0 + =, B — xt,%). (3.7)

—00

which is most convenient for us. Here

8, (w, k, %) = S 9 S W (!, u?;s)exp(izs +iva' + ika®) dsdu' du®.
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The spatial spectrum of the fluctuations of p is determined by the following equation, with allowance
for (3.3), (3.7):

S, (=, 1) = 38, (nt, — nt, u), (3.8)
while the spectral tensor of the fluctuations of the flux pu is determined by the equation
' o
S (%) =— Bo(w + %t k— %t % . (3.9)
ag(x ) poa dk 0( + ) o=k =0

3.4. 1If at the initial time the uniform velocity field, which we shall assume to be one-dimensional for
simplicity, is Guassian, it follows that (3.8) goes over into

SP (%, )y=p2 S [exp (—#* 12D (s))= exp (—x* 1 o*)] e*s ds+2mp% (%), {(3.10)
-0
where D(s) = az—K(s), while the spectrum of the flux (3.9) takes the form

S, (1 1)= g} S K(s) exp (— «2D(s) + ins)ds. (3.11)

Let the random velocity field be a smooth function of coordinates for t = 0; then for s « s, (the
characteristic scale of the initial velocity fluctuations) we have D(s) = (a/2)s?, and at sufficiently large

% Eq. (3.10) goes over into
2% 1
S (x, 8) = / (_ _ (3.12)
0= ~573)

The spectrum of the flux (3.11) has analogous asymptotics. Such a slow drop-off of the "tails" of the spec-
tra, which leads to infinity of the mean-square density and flux of the beam, can be explained by the fact
that the density of a multistream beam treated in the hydrodynamic approximation has singularities (see,
for example, [8]).

Over sufficiently long times (i.e., in the region of developed multistream motion) Eq. (3.12) is sim-
plified:

P P

5(”)"||t .

and no longer describes the "tails" of the density and flux spectra but essentially describes the spectra
themselves for all ® except a small domain near » = 0 having the width n ~ (tsox/'a)'i, which decreases
with time.

It is clear that for » > 1/1,, where [ is the mean distance between stream particles, the hydro-
dynamic approximation is violated and the formulas derived here cease to describe the behavior of the
beam correctly.

The author is indebted to A. N, Malakhov for his interest in the work and his valuable comments.
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