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The spa t ia l  s p e c t r u m  of a random s imple  wave propagat ing  in an ideal medium is obtained. 
The law of conserva t ion  of the s p e c t r u m  width is found for  such waves  along with o ther  con-  
se rva t ion  laws.  A por t ion of these  laws is genera l ized  for  the case  when the wave sa t i s f i es  
the K o r t e w e g - d e  Vr ies  equation or  the B~Jrgers equation. The spat ia l  spec t r a  a r e  found for  
the densi ty  and flux of a b e a m  of noninteract ing pa r t i c l e s  t r ea t ed  in the hydrodynamic  approx i -  
mat ion.  It is shown that due to hydrodynamic  instabi l i ty  of the b e a m  these spec t r a  acqui re  a 
un iversa l  power - l aw  f o r m  over  a suff icient ly long t ime.  

I N T R O D U C T I O N  

The s ta t i s t i ca l  p rope r t i e s  of random waves propaga t ing  in nonl inear  media and sat is fying nonlinear 
pa r t i a l  d i f ferent ia l  equations have he re to fo re  been studied l i t t le.  This  is a s soc ia t ed  mainly  with the fact  
that the nonl inear i ty  of the or iginal  equations does not allow reasonab ly  accura te  c losure  of the equations 
fo r  the moment s  of r andom waves .  T h e r e f o r e  such random waves a r e  usual ly invest igated on the a s s u m p -  
tion of low nonl inear i ty  [1-4] or  by means  of inadequately subs tant ia ted  hypotheses  concerning the c h a r a c -  
t e r  of the re la t ionship  between the higher  e l ements  and the lower  ones [1, 5, 6]. 

Neve r the l e s s ,  i t  turns out that f rom a nonl inear  pa r t i a l  di f ferent ia l  equation of the f i r s t  o rde r  one 
may  go ove r  to a c losed equation for  the f in i te -d imens iona l  p robabi l i ty  densi ty function (PDF) of a wave 
which sa t i s f i e s  the equation cons idered  [7]; this al lows analyt ic  invest igat ion of the s ta t i s t i ca l  p rope r t i e s  
of waves which propaga te  in essen t i a l ly  nonl inear  media .  

In the p re sen t  pape r  equations whose der iva t ion  has been  given in [7] a r e  used to find and analyze  the 
spat ia l  s p e c t r u m  of a random wave which sa t i s f i e s  the equation of a s imple  wave. The appl icabi l i ty  l imits  
of the der ived exp res s ions  a r e  c lar i f ied .  T h e  conserva t ion  laws a r e  der ived  for  ce r t a in  s ta t i s t i ca l  c h a r a c -  
t e r i s t i c s  of a r andom s imple  wave,  such as  the width of the spa t ia l  s p e c t r u m .  The validity of a por t ion of 
them is p roved  fo r  waves  which propaga te  in nonl inear  media  having d i spe r s ion  and sa t i s fy  the Kor teweg 
- d e  Vr ies  or  B~rge r s  equations.  In conclusion the spat ia l  s p e c t r u m  is found fo r  the density and flux of a 
b e a m  of noninteract ing pa r t i c l e s  which is t r ea t ed  as the hydrodynamic  approximat ion .  It  is demons t ra t ed  
that  o v e r  sufficiently long t imes  these  spec t r a  acqui re  a un iversa l  power - t aw f o r m  which is produced by the 
m u l t i s t r e a m  nature of the beam.  

1.  T h e  S p e c t r a  o f  S i m p l e  W a v e s  

1.1. One example  of random waves  p ropaga t ing  in nonlinear  media  which is among those which a r e  
s imp le s t  and of g r ea t e s t  p r a c t i c a l i n t e r e s t ,  may  consis t  of waves  sa t is fying the equation of a s imple  wave: 

~ttq_ ~uatt : 0  (1.1) 
Ot Ox 

and the random init ial  condition 

u (x, O) = Uo (x), < u0 > = O. ( ! . 2 )  

One a r r i v e s  at  this equation in desc r ib ing  a wave in acous t ics  or  in a p l a sma ,  waves on the su r face  of a 
fluid, e tc . ,  in those  cases  when d i spers ion  effects  may  be neglected (see,  for  example ,  [8, 9]}. It  is a l so  
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of i n t e r e s t  to inves t iga te  the s t a t i s t i c a l  p r o p e r t i e s  of the solut ion of the equat ion of  a s imp le  wave b e c a u s e  
it  p rov ides  a qual i ta t ive ly  c o r r e c t  de sc r ip t i on  of the evolut ion of m o r e  complex  nonl inear  waves  and, s p e c i -  
f ica l ly ,  the ve loc i ty  f ie lds  of  a tu rbulen t  fluid. 

1.2. As  was  shown in [7], f r o m  (1,1) one m a y  go o v e r  to the c lo sed  equat ion fo r  the two-d imens iona l  
PDF  W2(u i, u2; xt,  x2, t) of the va lues  of the wave u(x, t) a t  two points  x 1 and x 2 at  one t ime t: 

- - 0 0  ~ C O  

with the ini t ia l  condi t ion  

Wz(u,, u~; x,, x2, 0).= W0(u,' u2; x,, x~), (1.4) 

which is comple te ly  d e t e r m i n e d  f r o m  the ini t ia l  condi t ion  (1.2). 

At  the ini t ia l  t ime le t  u0(x) be a homogeneous  funct ion of x. Then  (1.4) takes  the f o r m  

l~ 0 = W 0 ( u j ,  u~;s) (s = x I - -  x2), (1 .5)  

while (1.3) goes ove r  into the equat ion 

- 0 o  - - c O  

It is  well  known that  the o n e - d i m e n s i o n a l  PDF of the wave u(x, t) does not v a r y  with t ime [7]. F r o m  
Eq. (1.6) i t  is  evident  that  one cannot  say  this of  the two-d imens iona l  P D F ,  s ince  the non l inear i ty  of the 
original, equat ion (1.1) leads  to a subs tan t ia l  expans ion  of  the s p e c t r u m  of the wave with t ime and c o n s e -  
quently to a p ronounced  change in the shape  of the two-d imens iona l  PDF.  

1.3. Le t  us go o v e r  f r o m  the equat ion  fo r  the t w o - d i m e n s i o n a l  PDF  (1.4) to the equat ion fo r  the  
F o u r i e r  t r a n s f o r m  with r e s p e c t  to s of  the t w o - d i m e n s i o n a l  c h a r a c t e r i s t i c  funct ion of  a s imp le  wave:  

02 (o,, ~o~, x, t) = S ( exp [lohu(x,, t) + i%u(x~, t)] ) ei~s d$. (1.7) 

The equat ion in 02(001, w 2, ~ ,  t) can  eas i ly  be de r i ved  f r o m  (1.6): 

Its ini t ial  condit ion,  which de r ives  f r o m  (1.5), has  the f o r m  

0~(%, r y., 0) = O0 = exp [i(r + oJ2u,,. + zs)] Wo(ut, u2; s)duldu2ds. (1.9) 
- - c o  

Solving Eq. (1.8) by the method  of c h a r a c t e r i s t i c s ,  we obtain 

O, = O, ( ~ }  O, ( o , ) 2 ~ ( x )  + g(~o, + ~xt,  ~ ,  - -  ~ , t ) o ,  ~ (1 .10)  
(o,, + ~.t) (,o~ - ~ t )  

H e r e  

g (,or, ,o,, ,) = Oo(o,i, o,.,, ,) - O, (,o,) Ot (~o2) 2 ~.a (~-), 

while 

e ,  (~) = < e ~ ~ (x. o > 

is the one -d imens i ona l  c h a r a c t e r i s t i c  funct ion of  a homogeneous  s imp le  wave.  

The solut ion (1.10) of Eq. (1.8) d e s c r i b e s  the evolut ion of the F o u r i e r  t r a n s f o r m  of the t w o - d i m e n -  
s ional  c h a r a c t e r i s t i c  funct ion of a s imple  wave a c c u r a t e l y  up to those  t until  which the ensemble  of r e a l i z a -  
t ions which def ines  | w2, ~ ,  t) is  an e n s e m b l e  of unique funct ions .  Otherwise  Eq. (1.10) d e s c r i b e s  the 
s t a t i s t i ca l  p r o p e r t i e s  of  a s imp le  wave in that  app rox ima t ion  in which one may  neglec t  nonunique r e a l i z a -  
t ions.  

1.4. Le t  us find the e x p r e s s i o n  fo r  the spa t ia l  s p e c t r u m  S(~, t ) o f  a r a n d o m  s imple  wave:  

S(x, t) = ~ < u(x, t )u (x  + s, t) ) ei~s ds. (1.11) 
- - o o  
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The  s p e c t r u m  i s  a s s o c i a t e d  with  the  c h a r a c t e r i s t i c  func t ion  | w2, ~t, t) c a l c u l a t e d  above  v ia  the  f o l l o w -  
ing  equa t ion :  

S (,~, t) . . . . .  0 ~ 02 (~, ~, ~., t) ,,,, 
0 t o  I 0 t o  2 = ,,,~ ~ 0 ' 

which  can  be  r e w r i t t e n  in the  fo l lowing  f o r m  wi th  a l l o w a n c e  fo r  (1.10): 

I g ( ~ z t ,  - -  ~ z t ,  z). (1.12) 
S (~, t) = ~ ~* t ~ 

Note  tha t  the  o b t a i n e d  s p e c t r u m  has  no s i n g u l a r i t i e s  fo r  )r = 0, s i n c e  f r o m  the de f in i t i on  of the  f u n c -  
t ion  g i t  fo l lows  tha t  

g @. t, O, ~) = g (0, - -  ~. t, ~.) = O. 

1.5.  F r o m  (1.12) i t  i s  ev iden t  tha t  the  z e r o  c o m p o n e n t  of  the  s p a t i a l  s p e c t r u m  of the  h o m o g e n e o u s  
s i m p l e  wave  i s  c o n s e r v e d :  S(0, t) = S 0, o r ,  wha t  a m o u n t s  to the s a m e  thing,  the i n t e g r a l  of the  c o r r e l a t i o n  
func t ion  i s  c o n s e r v e d :  

S ( .  (x, t) u (x + s, 0 > as  = ~ < ~o(~) ~o (x + s )  > = So ds 
- . c o  - - : y 3  

P r e v i o u s l y  i t  was  d e m o n s t r a t e d  in  [7] tha t  the o n e - p o i n t  m o m e n t s  of  a h o m o g e n e o u s  s i m p l e  wave  a r e  c o n -  
s e r v e d  - s p e c i f i c a l l y ,  i t s  m e a n - s q u a r e :  (u2(x, t) ) = (u~) .  If the  c o r r e l a t i o n  tength  of the  wave  u(x,  t) i s  
i n t r o d u c e d  a c c o r d i n g  to the equa t ion  

S< u(x, t) u(x + s, t) ) ds 
1 - - ~  t ( t )  = - -  
2 ( t? (x, t) ) 

i t  fo t lows  f r o m  what  has  b e e n  s a i d  a b o v e  tha t  the c o r r e l a t i o n  length  of a h o m o g e n e o u s  s i m p l e  wave  l = l 0 
= S0/2(u  2) i s  a l s o  c o n s e r v e d .  

Thus ,  the  n o n l i n e a r i t y  of  the p r o p a g a t i o n  v e l o c i t y  of a h o m o g e n e o u s  s i m p l e  wave  has  a s u b s t a n t i a l  
e f f ec t  on the f o r m  of i t s  c o r r e l a t i o n  func t ion  and  s p a t i a l  s p e c t r u m ,  and  i t  does  not  l e a d  to a change  in the  
c o r r e l a t i o n  l eng th  o r  the  s p e c t r u m  width  )% = ~r = r(u20)/S0 i f  the  l a t t e r  is  d e f i n e d  a s  

S S(~, tld-i. 
%(t)  = r. _ - ~ .  (1.13) 

t(t) s(o, t) 

The  r e s u l t  o b t a i n e d  b e c o m e s  u n d e r s t a n d a b l e  if  one t a k e s  in to  a c c o u n t  the  fac t  tha t  the c o r r e l a t i o n  
l eng th  of  the r a n d o m  wave  u(x,  t) i s  a p p r o x i m a t e l y  equa l  to the  m e a n  d i s t a n c e  b e t w e e n  i t s  n e i g h b o r i n g  z e r o  
v a l u e s  which  is  e v i d e n t l y  c o n s e r v e d  in the c a s e  of a s i m p l e  wave .  

I t  i s  e a s y  to  g e n e r a l i z e  the  c o n s e r v a t i o n  l aws  d e r i v e d  a b o v e  f o r  o t h e r  h i g h e r  c o n s e r v a t i o n  m o m e n t s  
of  a h o m o g e n e o u s  s i m p l e  wave :  

o c  

,I <u~(x' t)u"(x -~ s, t) ) ds = const, < u'(x, t) ) ..... const. 
- c o  

1.6.  L e t  us  f ind  the  s p a t i a l  s p e c t r u m  of  the  wave  u(x,  t) in  the  c a s e  when u0(x) i s  a G a u s s i a n  h o m o g -  
e n e o u s  func t ion .  In th is  c a s e  the i n i t i a I  c o n d i t i o n  of Eq.  (1.8) i s  the  fo l lowing:  

o .  = exp - (.,,~ + ,,,~) exp ( -  K(s),,, , , , ,~ + i~s)ds. 

~ = K (0), 

and  the equa t ion  f o r  the  s p a t i a l  s p e c t r u m  (1.12) goes  o v e r  in to  

c o  

S(~, l) :=. exp ( - -  ~2 ~ ~r f exp (~ .,.2~t,_x~Kt 2 (s)\..--1 e~r ds. 
_ :..-: 

(i .14) 
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L e t  us c la r i fy  the asympto t i cs  of this exp res s ion  for  ~ - -  co. Having r e s t r i c t e d  ourse lves  to the f i r s t  two 
t e r m s  of the expansion of K(s) into a Maclaur in  s e r i e s  K(s) ~ e2-(a/2}s2,  we find that  for  such ~ the spa -  
t ial  s p e c t r u m  can be desc r ibed  by the equation 

1 l/2---~ 1 ( 1 ) (1.15) 
S(~ , t )  : ~-V r a  ~al:---5 exp 2~21 = a  ' 

The s ame  kind of asympto t ic  express ion  was der ived  in [14] for  the s p e c t r u m  of a s imple  wave.  Let  us 
analyze the causes  of the appearance  of such a sympto t i c s .  It is c l ea r  that in o r d e r  for  the s p e c t r u m  of the 
random wave u(x, t) to fal l  off according  to the law ~-3 for  ~ --- ~ it  is n e c e s s a r y  for  i ts  Four ie r  spec t ru m 
to fai l  off at ~-3/2. But, as  is known f r o m  the theory  of F o u r i e r  in tegra l s ,  for  this it is requi red  that  
u(x, t) be propor t ional  to the function x4-K:~-x 0 in the neighborhood Of at  l eas t  one point x 0. However ,  if the 
evolution of a s imple  wave  that  is smooth for  t = 0 is  t r aced ,  then one can see  that  point s in whose ne ighbor-  
hood u(x, t) b e h a v e s  in such a way appear  s imul taneous ly  with the appea rance  of nonuniqueness of the func-  
tion u(x, t). Consequently,  the asympto t ic  (1.15) of the spa t ia l  spec t rum is a s soc ia t ed  with the appearance  
of nonuuique rea l iza t ions  in the ensemble  which defines the spec t rum.  

For  any t > 0 the coeff icient  of n-3 in (1.15) is not equal to zero .  Thus,  for  a r b i t r a r i l y  smal l  t non- 
unique rea l iza t ions  appear  in the ensemble  of rea l iza t ions  of a wave that is or iginal ly Gaussian.  This can 
be explained by the fact  that the Gauss ian  function du0/dx exceeds  an a r b i t r a r i l y  la rge  s t ipulated value with 
a probabi l i ty  that is not equal to zero ,  while i t  is known that the s imple  wave u(x, t) is unique at  the given 
t ime t only if the inequali ty du0/dx > 1/Bt is sa t i s f ied  (see, for  example ,  [10]). With a growth of t to t* 
= 1/f14-~ the coeff icient  of n-3 in (1.15) i n c r e a s e s ,  which indicates  a growth of the contr ibution to the en-  
semble  f r o m  the nonunique rea l iza t ion .  I t  is obvious that the s p e c t r u m  (1.14} may  be cons idered  suff i -  
ciently accura t e  only for  t < t*. 

2 .  T h e  C o n s e r v a t i o n  L a w s  o f  R a n d o m  W a v e s  i n  N o n l i n e a r  

M e d i a  H a v i n g  D i s p e r s i o n  

2.1. Above,  s e v e r a l  conserva t ion  laws were  der ived  for  the s p e c t r u m  and other  spa t ia l  c h a r a c -  
t e r i s t i c s  of a homogeneous s imple  wave.  I t  turns  out that ce r t a in  of these c h a r a c t e r i s t i c s  a r e  a lso  valid 
when a random wave p ropaga tes  in a nonl inear  medium having a low d i spers ion  and can be desc r ibed  by the 
K o r t e w e g - d e  Vr ies  equation or  by the B{{rgers equation. 

2.2. We shal l  begin by cons ider ing  a wave which p ropaga tes  in a weakly d i spe r s ive  medium having 
random sources  and is governed by the K o r t e w e g - d e  Vr ies  equation: 

du u ~  + 0 "~u ~(x,t). (2.1} 
ot 0x 

Henceforth  we shal l  a s s u m e  that  the random sou rces  q(x, t) a r e  Gauss ian  and d e l t a - c o r r e l a t e d  in t ime:  

< -,j (x, t) ~,~ (x + s, t --I- ~) > -- D (s) ~ (~), 

Moreover ,  we a s s um e ,  as p rev ious ly ,  that u(x, 0) = u0(x) is  a r andom homogeneous function having known 
s ta t i s t i ca l  p rope r t i e s  (<u0> = 0). 

We mult iply (2.1) out by u(x, t) and av e rage  the resu l t .  Calculating the ave r age  which depends i m -  
plici t ly on q(x, t)  by means  of the local  method,  as in [13], or  by means  of the Furu t su -Novikov  formula  
[11, 12], we obtain the r e su l t  

< 

c)t 3 Ox Ox ~ 2 \ ~Ox] 

F r o m  the homogenei ty  of u0(x) and '7 (x, t) along x it  follows that  the wave u(x, t) is homogeneous for  al l  
t > 0. T h e r e f o r e  al l  ave r ages  in Eq. (2.2) ~ re  independent of x, and this equation goes over  into 

d ( u' (x, t) >, = O (0). 
dt 

Thus, 

<u 2(x,t)> =D(0) t + <u~>, (2.3) 
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i . e . ,  a nonl inear  wave propagat ing  in a weakly d i spe r s ive  med ium having sources  that a r e  d e l t a - c o r r e l a t e d  
in t ime  behaves  like a Brownian par t i c le .  However ,  if  there  a r e  no random sou rces ,  then (u2(x, t) ) = (u2), 
which is  the m e a n - s q u a r e  and a t  the s ame  t ime the var iance  of the wave,  is conserved .  The la t t e r  fact  is 
evidently a co ro l l a ry  of the energy  conserva t ion  law of a wave which sa t i s f i e s  the K o r t e w e g - d e  Vries  equa-  
t ion [8]. 

2.3. Le t  us der ive  s t i l l  another  conserva t ion  law fo r  the wave u(x, t) which sa t i s f i e s  Eq. (2.1). For  
this purpose  we di f ferent ia te  the a v e r a g e  (u(xl ,  t)u(x2, t)) with r e s p e c t  to t ime and wri te  the following equa-  
tion, a f t e r  making use  of (2.1): 

O<u(x . t )u (x2 ,  t ) )  + 3 O 
ot 2 Ox---[ < u' (xL, t) u (x,, t) > 

<u(x~ , t )u~(x2 .0)+~t  + <u(x~,t)u(x2, t ) ) -=< '~ (x .  Ou(x2, t ) > + ( ~ ( x 2 l ) u ( x ~ , t ) ) . ( 2 . 4 )  + -20x~ 

Taking account  of the homogenei ty  of u(x, t) and 17 (x, t) along x and calculat ing the ave r age  in the r ight  side 
by analogy with the calculat ion of the s i m i l a r  a v e r a g e  in the der iva t ion  of (2.2), we r ewr i t e  (2.4) thus: 

OK(s,t) ~ O [ B ( s , t ) - - B ( - - s , t ) ]  = D ( s ) .  (2.5) 

He re  we have used  the notation s = x 1 = x 2, K = (u(x I, t)u(x 2, t)) ,  B(s) = (u2(xl, t)u(x2, t ) ) .  In tegrat ing (2.5) 
with r e s p e c t  to s and a s s um i ng  that  K(s, t) and B(s,  t) tend to ze ro  for  I s I ~ ~o, we find that 

dS (0, t) _ D, 
dt 

where  D = S D(s)ds, while S(0, t) = ~ K(s, t)ds is the spat ia l  spec t rum of the wave u(x, t) for  ~ = 0. Thus,  
- o o  - o o  

S (0, t) ffi Dt + So. (2,6) 

Consequently~ the z e r o  component  of the s p e c t r u m  of a wave which p ropaga tes  in a weakly d i spe r s ive  m e -  
dium having random s ou rce s  and sa t i s f i e s  Eq. (2,1) i n c r e a s e s  l inear ly  with t ime as  does its m e a n - s q u a r e .  

Having de te rmined  the width of the s p e c t r u m  of the wave u(x, t) accord ing  to Eq. (1.13), we obtain the 
following expres s ion  for  it with al lowance for  (2.3) and (2.6): 

( u ~ )  + D(0) t 
~,,(t) = ~ (2.7) 

So + Dt 

Over  t imes  t << D(O)/(u~), D/S 0, the effect  of the random sou rces  on the spat ia l  s p e c t r u m  is insubstant ia l ,  
and v~ u = lr(u~)/S 0 coincides with the width of the wave spec t rum at  the ini t ial  t ime.  Thus,  for  a wave 
propagat ing  in an ideal medium having weak d i spers ion ,  the width of the spec t rum is conserved ,  although 
the s p e c t r u m  i t se l f  va r i e s  g rea t ly  with t ime.  

Over  t imes  t << D(0)/(u20), D/S0, the width of the spat ia l  s p e c t r u m  (2.7) is en t i re ly  de te rmined  by the 
s t a t i s t i ca l  p r o p e r t i e s  of the sources  and is independent of u0(x). 

Le t  the homogeneous wave u(x, t) p ropaga te  in a d iss ipa t ive  medium and sat is fy  the B~frgers 2 . 4 .  

equation: 

~ T  = 7  c)x2. 

The ene rgy  of this wave d e c r e a s e s  with t ime ,  and consequently (u2(x, t))  d e c r e a s e s  a lso .  Neve r the l e s s ,  
i t  may  be shown by analogy with the p rocedure  used  above that  the value of the spa t ia l  spec t rum at z e ro  
is  conserved .  However ,  the width of the s p e c t r u m  d e c r e a s e s  with inc reas ing  t, s ince al l  of the remain ing  
components  of the s p e c t r u m  at tenuate  due to h igh-f requency diss ipat ion.  

3 .  F l u c t u a t i o n s  o f  t h e  D e n s i t y  a n d  F l u x  o f  a B e a m  o f  

N o n i n t e r a c t i n g  P a r t i c l e s  in  t h e  H y d r o d y n a m i c  A p p r o x i m a t i o n  

3.1. We cons ider  f luctuations of the densi ty  and flux nea r  the beam of noninteract ing pa r t i c l e s .  
Usual ly  only f luctuations a s soc ia t ed  with the d i s c r e t e n e s s  of such b e a m s  (shot noise) a r e  cons idered .  
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Sometimes,  however,  specifically in investigating a cold plasma (see, for example, [15]), it is more  con-  
venient to t rea t  them as continuous fields which a re  charac te r i zed  by two smooth functions, u(x,  t) (the 
velocity of a physical ly infinitely smal l  volume) and p(x, t) (the density of par t ic les  in the volume) which 
satisfy the equation 

Ou~ Ou~ 
a-7 + "~E~x~ = F~ (x, u, O, 

(3.1) 

~ +  0 ( u ~ , ) = 0  ( ~ , ~ = 1 , 2 , 3 ) ,  

where F is the force act ing on a par t ic le  of the s t ream.  In a plasma this is the force  crea ted  by the e lec-  
t r ic  and magnetic fields. 

3.2. Equations (3.1) a re the exact coro l la ry  of the Liouville equation for  f6N ( xl . . . . .  xN, ul . . . . .  u N, t) 
which is the P D F  of the coordinates and velocities of N par t ic les  of the beam:  

N N 

-b-t-- + ~ u , , - - +  . ~  --{F.(x"iu";t)t~N} = 0 .  ( 3 . 2 )  
" Ox"~ Ou". 

n = |  n = l  

In the hydrodynamic approximation its solution may be represented  as follows: 

CC ~ ,\" 

f ~ . ,=  ot' N... I I  P, ePn w,~,,(p,,'",o,, ~ , " ' , ' , " ~ ' x ' ' ' ' ' ~ ' ; O '  (3.3) 
--oo --oo n = l  

where W4N is the 4N-dimensional  PDF of the values of the density p and velocity u of the beam at N points 
at  one time t. The coordinates x l, x 2 . . . .  , x N are  pa rame te r s  here ,  ra ther  than var iables ,  as in fsN- 

Thus, the solution of Eq. (3.2) allows the cor re la t ion  function to be calculated and this means that 
the spect rum of the fluctuations of the density, the flux, and the other macroscopic  charac te r i s t i cs  of the 
part icle  beam treated in the hydrodynamicapproximat ion  may also be calculated. 

3.3. Let  us find the spatial spectra  of the fluctuations of the density and flux in a hydrodynamic beam 
of par t ic les .  Both of them are  fully defined by f12, for  which the equation ias is evident f rom (3.2)) is the 
following: 

Oft~. Oft~ u2 Ofr2 = 0. (3.4) a--; + ~ ~ + ~ ~ 

Here and throughout the subsequent analysis  we shall assume for simplici ty that F = 0. 

If at the initial instant p = P0 is constant while the random velocity field is uniform, then the initial 
condition of Eq. (3.4) takes the form 

f ,~(u ~, u ~, x ~, x L  O) = Po W , ( u ' ,  ~ ;  s). (3.5) 

Here W s is the probabili ty distribution of the velocity field of the beam at the initial t ime, while s = x l - x  2. 
It is obvious that Eq. (3.4) p roper  may be rewri t ten as follows in this case:  

0[9 Of 9 = 
ot + v, ~ o, (3.6) 

where v = u l - u  2. Its solution with the initial condition (3.5) is: 

f,~ (~', u ~, s; 0 = ,o~ Wo (u ' ,  u~: s - vt). 

Henceforth it is not this equation but the express ion which is equivalent to it for 

o (o,, t~, ,,., 0 = S' 2. ~ f.~ ( , , ' .  , , ' ,  s; t) ~.xp (z,, s + ~,, ,, ' + v,,,~) ds,~,,' d,,~ = p~ Oo (,,, + ,, t, k - ,,t, ,,). (3.7) 

which is mos t  convenient for us. Here 

--~o --co 
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The spat ia l  s p e c t r u m  of the f luctuations of p is de te rmined  by the following equation, with al lowance 
for  (3.3), (3.7): 

Sp(z, t) = p~Oo(x t, - -  z t ,  z) ,  ( 3 .8 )  

while the spec t r a l  t ensor  of the fluctuations 

s ~ ( z ,  t) = - 

3.4. If at  the init ial  t ime  the uni form 
s impl ic i ty ,  is Guass ian ,  i t  follows that (3.8) goes ove r  into 

Sp (x, t)=pg ~ [exp (--z 2 t 'D(s))~ exp ( - - ~  t 2 ==)] e ' ' ,  ds+2r~p'~8 (x), 
--OO 

where  D(s) = (r2-K(s), while the s p e c t r u m  of the flux (3.9) takes the fo rm 

St.,, (z, t )= p~ ~ K(s) exp (-- Y.~t=D(s) + izs)cls. 
- - C O  

Let  the random veloci ty  field be a smooth  function of coordinates  for  t = 0; then for  s << s o (the 
c h a r a c t e r i s t i c  sca le  of the initial  veloci ty fluctuations) we have D(s) = ( a /2 ) s  2, and at sufficiently la rge  

of the flux pu is de te rmined  by  the equation 

09 I p o 2 ~  Oo (~ + zt,/~ - ~t, z) .=k=o" (3.9) 

velocity field, which we shall assume to be one-dimensional for 

(3.10) 

x Eq. (3.10) goes ove r  into 

?: 
t) = 7 

The s p e c t r u m  of the flux (3.11) has analogous a sympto t i c s .  

(3.11) 

Such a slow drop-of f  of the " ta i ls"  of the spec -  
t ra ,  which leads to infinity of the m e a n - s q u a r e  density and flux of the beam,  can be explained by the fact  
that the densi ty of a m u l t i s t r e a m  b e a m  t rea ted  in the hydrodynamic  approximat ion  has s ingular i t ies  (see, 
for  example ,  [8]). 

Over  sufficiently long t imes  ( i .e . ,  in the region of developed m u l t i s t r e a m  motion) Eq. (3.12) is s i m -  
plified: 

' l~It v a 

and no longer  de sc r ibe s  the " ta i l s"  of the densi ty and flux spec t r a  but essent ia l ly  desc r ibes  the spec t ra  
t hemse lves  for  all  )r except  a sma l l  domain nea r  >r = 0 having the width >~ ~ (ts0~-a) -1, which d e c r e a s e s  
with t ime.  

It is c l e a r  that for  ~r ~ 1/lo, where l 0 is the mean dis tance between s t r e a m  pa r t i c l e s ,  the hydro -  
dynamic approx imat ion  is violated and the fo rmulas  der ived  he re  cease  to desc r ibe  the behavior  of the 
b e a m  co r rec t ly .  

The author  is indebted to A. N. Malakhov for  his i n t e r e s t  in the work and his valuable comment s .  
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