B(@)=Raulol) (2), T€B, §(x) >0, A4
then it satisfies the conditions (14) and (15} for A = (qilf | L.
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MANY-PARTICLE CORRELATIONS OF FERMION CLUSTERS
IN THE METHOD OF TRANSITION DENSITY OPERATORS

A.V. Luzanov

In the exact wave function of N fermions, we separate the s-particle clusters construcied
from the single-particle states of the self-consistent single-determinant function. Transition
density operators are introduced; they include all possible virtual transitions between
s-particle and s-hole clusters. The transition operators are used to express the exact
two-particle density matrix and the equations of motion (for the stationary case) that
describe the correlation interaction of the clusters. In particular, the correlation of
particles is estimated for an excited state in the Tamm-~—Dancoff approximation by means

of the expression for the energy dispersion deduced from these equations.

1. Introduction

The exact wave function of a system of N identical fermions can be represented by an infinite series
that is a superposition of configurations with different multiplicity of excitation with respect to some original
single-determinant function &1 ... N) calculated, as a rule, in the self-consistent field approximation {1,2].
The finding of the energy and other properties of such a multiconfiguration function (1 ... N) is avery
complicated problem, which in each particular case of a bounded superposition must usually be solved from
the start [2-5]. The investigation of exact N-particle states can however be based on the so-called cluster
description, in which individual groups of the above infinite series are classified in such a way that the con-
tributions of the corresponding configurations can be absorbed into a finite number of group functions or
operators that act on ®. Then, using them, one can make a further investigation in & of many-particle
effects (correlations), which are in principle precluded by the single-determinant description of & One of
the first investigations in this region was Brenig’s [6], and his work was developed further by Coester and
Kiimmel [7], who also particularized the two-particle density matrix ¢, when three-particle and higher
correlations are ignored. The cluster expansion was subsequently used in new variants [8-10]. But because
of difficulties of a combinatorial nature, an expression for the energy of the state ¢ with allowance for all
clusters was not obtained, and it was only in Brenig’s approximation for the corresponding cluster functions
that a complete system of equations was found; however, as regards particularization, this was only a slight
advance on the classical Bogolyubov hierarchy [11].
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In this paper, we propose a cluster variant of the expansion of the exact wave function, which is
formulated by means of some elementary transition operators T,. These last carry all the necessary infor-
mation about the k-particle excitations in <I> which are lnterpreted in terms of virtual transitions between
clusters of particles and holes. Such an approach permits one to obtain a perspicuous algebraic expression
(with respect to T, ) for the one- and two-particle density matrices . and ﬁ that correspond to $ and are
the most.,important for caleulatlons and then,: from the variational prlnmple derive a system of coupled
eguations that directly describe many-particle correlations of the clusters. In the special case of the excited
state ¢, in the Tamm-~Dancoff approximation [12], we use these equations to estimate the norm of the
corresponding correlation potentials; this coincides with the dispersion of the energy of the state &, (in the
probability theory sense}, whose finding by direct.methods would entail the by no means trivial problem of
calculating the mean value of the square of the Hamiltonian.

2. Wave Function and Transition Operators

We represent the wave function & of the complete configuration interaction in the form of an expan-
sion of cluster type:

‘(E(i...N)>=(T¢+ 2 T,(iy+... + 2 T,((i‘...i,{)—i—_..+TA»(1.../\-’))I@(i...N)), (1
i<i<N 157 <, <ipsNV
where the cluster operators T,(1 ... k) realize a transition from the single-determinant state ¢(1 ... N) to
the superposition &,(1 ... N) of k-fold excited configurations constructed from & by replacing the filled one-

particle states |j) by vacant states Iq):

(O = 2 o Y v - quliv-- Jh)[q).—»qlx— 2{ Ty, (2)
ISH< - <GV Vrilsa< - - <gy 1<h . C<LEN
. 35
where here and below the indices it’ ..., i, label the numbers of the particles, in contrast to the symbols
jg+ +-+» Qg ..., which label the single-particle states. The operators T,(1 ... k), which are Hermitian and

antisymmetric under permutations of the particles, are introduced by analogy with the one- and two-particle
transition operators investigated in [4, 5]:

rt. = Y Y tae i) e, (1 R)X
1 < <, Y Vg < <l
o, (Lo )1 gilie ) i s, (1 B)D gy g, (1. KD, 3

where |@q..op(1... k)>, [@i.;,{1... k)> are normalized determinants formed from the single-particle vacant
states and filled states, respectively. In our interpretation, these k-particle states describes free (before
the interaction) clusters of particles and holes, so that T, specify all possible particle~hole transitions of
clusters with certain transition amplitudes #(g,.. qk|]i Js).

It follows di‘rectly from the definition (3) that the operators T, are characterized by the‘ definite
commutation properties
[T, Pk]+=Th (4)

with k-particle density matrix of the single-determinant function

or=Aip (1) ... p(E), (5)
N
where A, is the antisymmetrizer, p= Y‘,w (ji is the Fock—Dirac density matrix, and [,], denotes the
A
J==1
anticommutator or commutator. Indeed, the operator ¢ as projector onto a filled shell annihilates the
vacant states |q), which in (3) occur in the k-particle bra and ket states. A consequence of this is the
vanishing of the operator projection _
oxTapn=p (1) T1 (1) (6)

and the equivalence T,p(i) = T,e (L) for i, [ = k. This last identity enables us to write the product Tyc (i)
without specifying the particle index in the Fock—Dirac density matrix.

We now.show that the operators T, really do have the meaning of a k-particle transition density
matrix {more precisely, its Hermitian component) between the single-determinant state & and the super-
position ¢, (2). For this, we calculate the s-particle transition matrix 7.(|®><®])for s =k (for s <k, i
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automatically vanishes). With regard to the normalization of the density matrices and all the necessary
terminology, we follow Lowdin’s rules, which are described, for example, in {13}, From the definition of
the reduced transition matrix

N
(10 (D))= ( s) A N DU M) D irim @

and the states & and ¢, (2),

Ts(l®k><@|):(]:)< 3 Tk(i,...ik)px(i...f\/)>( , (1)
. SN

(<< <igEN

where the construction of the operator py(1...N)=|®><(®| follows in more detail from (4) after the identifi-
cation k = N. As in [5], for the traces of the matrices we here use the abbreviated notation

SpX(1... k... m)=<X(... k... m)>, andthe particle indices are not specified only when the trace with
(x)
respect to all particles is calculated. We decompose the sum into two:

Z Z +2 8

(i<, <ipEN 1< <ip<s

where the second sum contains all the remaining terms in which at least one of the indices i, ({ = k) takes
values equal to or greater than s + 1. As a result, we find that the formation of the contraction (7) for the
second sum in (8) gives zero because of the condition p? = p, the invariance of the contraction under cyclic
permutation needed to form (T,p, and the requirement (6). At the same time, the first sum gives, by the
definition of the type (7) of the reduced density matrix for ¢, a final result of the form

(10 (D)= Z Tolis...i)p.(1...5). (9)

1€ < <ip<s

In the special case s = k, we have 7, = T,¢,, and for the Hermitian component 7, with allowance for (4) we
obtain
T.!x+T:;+=Th, {10)

which justifies our calling T, an elementary transition density operator. This consequence does ot exhaust
the significance of Eq.(9). In fact, it is one of our points of departure in the further calculations of the
density matrices ﬁi and ﬁz for the wave function (1).

2. Construction of Density Matrices

For an arbitrary N-particle operator R, (1 ... N) and arbitrary k-particle V{1 ... k) with the
usual conditions of permutational symmetry, we introduce constructions of the form of a contraction of their
symmetrized product to a two-particle level:

a[v,;,R_,,]E.N_(“;:.’l( Y Vil @R ) (11)

(3.8}
1R (<L CeEN

Further, we split the sum in (11) into three parts:

Z Valis.. i) = 2 Va(12is ... ines) + Z (Villis, o)+ Val20y o i)} +

Ii < . <igSN iy gy <N i < i SN

[0

AR AT AN (12)
pa

I <, <igEN
Then for the construction (11) we find the more detailed form

k(k—1) E(k+1)

Pl Vi Byl= Va2 BRU2 . 1)) ot — 5 {Va(13. B + Vo (28, AT1)}X
+1) (k+2 '
R (12 k1) enen +-.(k_—123——~) (V3. k+2) R (12 EH2V> ot - (13)

where R (1 ... k) is the k-particle reduced density operator generated by R, (1 ... N) in accordance with
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the general definition of the type (7).

~

It is not difficult to show that the required two-particle density matrix pz( 12) of the wave function (1)
can be expressed as a sum of constructions similar to (11), namely
”
p:(12)= Y AIT, t (100 o], (14)

h1=0

Since the reduced operators 7.(|®»><{®|) needed to perform the contraction (13) have already been calculated
in (9), the expression (14) for ,32(12’) reduces, after a number of transformations, to a purely algebraic form,
that contains only the transition operators T, and the Fock—Dirac density matrix p {or the involution opera-
tor Y = 2p = I).. We note only that our reduction is based on twofold application of the obvious lowering
formula for antisymmetrizers:

1
Ay b D= —— (1— Z P,_,-)Ah(z.“k;t) (15)
R i
PR

and the simple rules of commutation of the operators of transposition B, , with the operators of the form X(k),
where it is assumed that X(k) also depends on the arguments of any other particle except for particle i:

P, X (k) =X(i)P; .. (157)

The desired result for the two-particle density matrix can be represented finally as
Bu12)=p.(12)+ 4. o A+ AN p@ + A=Y (Y @) TN T+

2 B (T (13. . k1) Th(23 . k1) Yo }+ T2 (12) +[T1.Y (42), T, (1) + T (2) ] - + I, T (12) +

RSN

i‘-(-’i;—“-wu R HITY (e ), Tons (13 )+ Tact (23 D) 1o+ Tl B Taa B By (16)

AN,
Here, the single-particle quantity A is-determined by the expression

A =TT, (1) T2Y (1) + Z (T2, B ok (2. B oy — T4 E) 0 Y (1)} a7

2QREN
and it gives the correlation correction to the single-~particle Fock—Dirac density matrix:
pu (1) =p(1)+A(1). (18)

This can be seen either by a reduction with respect to particle (2) in Eq. (16) or by an independent calculation
using relations similar to (11)-(13). Equations (16)-(18) hold under the normalization condition imposed on T,
L. 1
I+ Z (T =1, (19

IRV

Note also that the product T,Y is anti-Hermitian because of (6), and with regard to the unspecified particle
number for the operator Y there is the same arbitrariness as for the product Tye.

The relations (16)-(18), which constitute one of the principal results of this paper, enable us, in
particular, at sufficiently small A to carry out, instead of a reduction with respectto N ~ 1 and N - 2
particles, a contraction with the smaller number k — 1 and k — 2 of particles. As a special case, these
formulas contain the previously found [5] one~- and two-particle density matrices for the superposition of ¢
with singly and doubly excited configurations.

4. Egquation for Transition Operators

We now consider a system of fermions described by a Hamiltonian containing only the single-particle

Z k(i) and two-particle Z g(ij) interactions. Application of the variational principle to the energy

LIKN AN

functional
E(T)=<h(1)p,(1)>+<g(12) 5 (12) >,
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calculated by means of (16)-(18) with allowance for the normalization (19), the "transition” conditions (5), and
the self-consistency jo=opf, where [(1}=h(1)+2{z*(12)0(2)>, is the Fock operator and g*(12)=4A,(12)g(12)},
gives a system of equations that determine the operators T, and the correlation energy A = E(T) - E(T = 1),

The equation for the transition operator T, is "coupled" to the equations for Tk ) and T"i and can be rep-
resented in the explicit form

L[ T:]+ 4, Z (T R0+ T (i Y w G+ wt G T (L] R+

Ii<sk

Wt GO T (L i By Vo (DT a (UL )+

*/Zz(z;m_zY(q...E...}...k)}+2<11=(i,k+1)Tk+,(1 D T (kD e (k1)) g, +

1<

(E+1) (k+2 o
_—)9(_'~)<v(k+‘17]'”‘—#2)Tk+2(1---""+2)>(h+1,h+2) =7\,T1((1 ]i) 20)

In (20), we have used the following notation. The superoperator I p acts on an arbitrary k-particle transition

operator X(1 ... k), which satisfies (4), in accordance with the rule
axnl=| Yo Y @bt
AsSis<h I<i<js<h R
g o)), X(1.. L)] +9AA,{Z <w (i E+OX( 0 )0 (21)
1=<ish
where the symbol A over an index means that this index is ormtted for example, X({...7... k)=
X{... ,i+1... k). Further, the two-particle potentials u(ij}, gon oo, ete, are dlfferent cases of particle—

hole 1nteract10ns in the clusters described by the operators T,. The symbol O denotes projection onto filled
states, and the symbol © projection onto vacant states (po=I1-—p); for example, Gon 00 (12) =p (1) pe(2) g+ (12)
p{1)p(2). In this notation, the potential u(12) is defined as

1(12) = goa.e0 (12) + go0,05 (12) (22)

and it reflects the interaction of the fermions and holes for clusters of a given particle number k (u(ij)
enters only in each superoperator II,). The operator

w (12) = goo.00 (12) — goe.00(12) . (23)

describes the correlation interaction between clusters that differ by only one particle, and is therefore
neither Hermitian nor symmetric with respect to the operation of permutation P of particles. Finally, the
potentials v(12) and z(12) characterize the Hermitian and skew-Hermitian components of the fermion=hole
interaction of clusters that differ by two particles:

B(12) = gl .00 (12) + goo.00 (12), (24)

2(12) = glorce(12) — o000 (12). (25)

In the cases k = 0, 1, 2. Egs. (20) go over into Egs. (22)-(24) of [5] for the superposition of the
single-determinant function with one- and two-fold excited configurations (because of (19), it is necessary to
make the substitution T — 2T0).

We consider the other special case k = 1,.2, 3, which is charadteristic of an excited state which
reflects the interaction of single-particle clusters with two- and three-particle clusters. For convenience,
we make the renotation T,(1)=D(1), T:(12)=T(12), T:(123)=X(123) and, using (20), we write down the system
of equations for these quantities: ‘

TLIDT+2¢w (12) T (12) 7 (12) w (12) > 0 +3¢w (23) X (123) ) o= ADI(1),
5[ 714D (1) w(12)+D (2) w(24) +w* (12) D (1) +w* (21) D (2) +3< [w(13) +w(23) 1 X (123) +
X (123) [w* (13) +w* (23) 1> @=AT (12), (26)
Tl [ X1+AAT (12) [0 (13) +w(28) ]+7 (23) [w (21) +w (3) I+ 7 (13) lw (42) +w(32) 1+Herm. con. +/.[v(12)D(3)+
»(13)D(2)+v(23) D (1) +z(12) DY (3)+2 (13) DY (2)+2(23) DY (1) ]} =AX (123).
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Leaving aside here a discussion of the methods of solution and simplification of the system (26), which are
similar in spirit to those proposed in [5], we obtain one more helpful consequence of these equations, which is
associated with the calculation of the energy dispersion of the Tamm-Dancoff excited state ®, as a super-
position of only singly excited configurations [12]. This means that for such an excited state we proceed from
a single-particle transition operator D that satisfies corresponding Tamm-~Dancoff equations of the form

II,[D]=nD, 27

where 7 is the excitation energy. If the system (26) did not contain other terms with D, Eq. (27) would
correspond to the exact solution for the total Hamiltonian H,,. It is natural to estimate the deviation of the
Tamm-—Dancoff solution (27) from the exact one by means of the square of the norm of the "superfluous"
terms with D in (26). A more detailed analysis shows that because of the normalization {19) we necessarily
obtain, to within a coefficient }, an expression for the energy dispersion of the excited state defined by

0.t=( Q. | Hy?| @) —(D.

Hy| 002 (28)

After a number of simple transformations, we obtain an explicit expression for the required dispersion in
terms of the correlation operators v(12) and w(12):

gle=gt+2 ([w(12) w+(12)_ 02(12) ]02(1)+ w(12) wt (21)D(1)D(2)>(12) +2 <<U(12)D(2) >(22)>“), (29)

where ¢*='/,{v*> is the dispersion of the single-determinant function [4,5]. In the derivation of (29) for
arbitrary two-particle operator B(12) = B(21) and single-particle operator C(1), we have used an identity
that can be readily established by means of (15) and (1£):

3(B(12)C(3) 4:(123) D (1o0y=AB><{C>—2{B(12) C(2) > 13,

and the property w'(12) = w(12)w(21) = 0, which follows from the definition (23). Using the expression for
a%k, we can readily make an indirect estimate of the correlation effects for excited states found in the Tamm~
Dancoff approximation (27). But if the operator D is found with neglect of the series of terms in II , then

in (29) we must include with the coefficient 1 the squares of the norms of the omitted terms. In the general
case, qualitative conclusions about the interactions of clusters containing different numbers of particles can
be obtained prior to the solution of the system (22) by comparing the norms |ull, llvl], lwll of the potentials,
which can be readily calculated in each concrete case.
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