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Robustness  of  Variograms and Conditioning of  
Kriging Matrices ~ 

Phil Diamond 2 and Margaret Armstrong 3 

Current ideas o f  robustness in geostatistics concentmte upon estimation o f  the experimental 
variogram. However, predictive algorithms can be very sensitive to small perturbations in 
data or in the variograrn model as well. To quantify this notion o f  robustness, nearness o f  
variogram models is defined. Closeness o f  two variogram models is reflected in the sensitivity 
o f  their corresponding kriging estimators. The  eondition number o f  kriging matriees is 
shown to play a eentral role. Various examples are given. The ideas are used to anatyze more 
complex universal kriging systems. 
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INTRODUCTION 

The theory of robust statistics is relatively recent (see, for example, Huber, 
1977, 1981 and the references therein). Geostatisticians have thus only rather 
recently exämined robust procedures. Armstrong and Delfiner (1980), and 
Cressie and Hawkins (1980) address the problem and provide relevant bibliog- 
raphies. Attention has largely been centered upon robust estimation of the 
experimental variogram and tended to ignore the possible sensitivity of further 
procedures (e.g., kriging) upon the choice of the variogram model 3' itself and 
sensitivity to the configuration of experimental data points. Matheron (1978) 
gives an amusing and instructive illustration; data were sent to a number of 
geostatisticians, each of whom independently fitted distinet variogram models 
from this one data set. Nevertheless, predictive estimates using the diverse 
models produced almost equivalent results. In some sense, all the models were 
"close" to each other, and in like fashion, so were the kriging estimators. 
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There appears to be a gap here: There is no point whatever in robust 
estimation of an experimental variogram or generalized covariance if, after such 
care, predictive estimation procedures (e.g., kriging) based on these are not 
themselves also robust. As Wilkinson (1971) has pointed out, the primary object 
of any analysis of such algorithms should be to expose the sources of potential 
instabilities. Hampel (1971) has rigorously defined a notion of robustness for 
the estimation of statistical parameters, but no one seems to have taken the 
furthër step of examining the robustness of predictive algorithms based upon 
the preliminary robust estimates. 

This note addresses itself to this and a number of related problems in a 
specifically geostatisticaI context. First, the intuitively appealing notion of 
"similar" variogram models is made a little more precise and the closeness of 
kriging estimators for such variograms, in some sense near each other, is also 
examined. Then, changes in the sampling configuration that affect kriging is 
scrutinized. Finally, although some doubts about the usefulness of universal 
kriging have been raised (Armstrong, 1982) the method is considered for com- 
pleteness. 

As might be expected, various error estimates involve condition numbers 
of the kriging matrix. It taust be emphasized that these estimates are rather 
conservative. This is because they taust encompass ëxceptional and nasty cases, 
usually contrived, as well as the more common cases. A number of numerical 
examples are given to illustrate the principles involved. 

8 NEIGHBORHOODS OF VARIOGRAMS AND POINT 
ESTIMATION KRIGING 

Huber (1977) has observed that the term "robust" is offen used ambiguously 
and defines it as signifying insensitivity to small perturbations in data or assump- 
tions. This same sense of the word will be used herein. 

Definition 

Let i~ be the class of valid variograms 7(r) in R n expressed in terms of the 
isotropic variable r. We say a valid variogram g(r) in ~ lies in the 8 neighborhood 
Ns (3') of 3'(r) is 

1-8<g(r)/T(r)<l+8, O < 5 < l , O < r < ~  (1) 

This may be rewritten as 

N~('r)= {ge~: Ig/~'- 11 <6) 
where ['1 is the sup norm on continuous functions from (0, oo) to itself. 

The ~ neighborhoods endow ff with a topology which is Hausdorff. This is 
unimportant in the present context because we are not interested in taking limits 
of sequences of variograms, although such a procedure would well arise in using 
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Hampel 's  (1971) definition. The point is that the definition gives precise quanti- 
fied form to the intuitive notion of variograms which are, in one sense or another, 
close together. 

The usual intuitive idea (based on visual comparison) of measuring the 
difference between 7 and g by [7(r) - g(r)] is inadequate. For example, i fg( r )  
is the spherical model and 7(r) the Gaussian, then ]7@) - g(r)] ~ 0 as r ~ 0+ 
for all possible combinations of  parametric values. But the behavior at the origin 
is very different, with important consequences for prediction based upon the 
variograms, and g(r) /7(r )  ~ oo as r ~ 0+. Although two individual models may 
appear very similar in so far as supr [ 3@) - g(r)[ is small, their relative behavior 
as measured by 17( r ) -  g(r) I /g(r)  may be very different, and it is this which 
places them in different 8 neighborhoods. 

Suppose we are faced with stationary kriging involving point estimation 
with the variogram 7. The block estimation case is very similar. Let there be N 
samples z i at x i, i = 1, 2 . . . .  , N.  In the notation of Delfiner (1982a, b), the krig- 
ing system is 

N 
Ex/y(x~-xj)+~=5,(x«, v), i = 1 , 2  . . . . .  N 
/=1 

X / = l  

where ~,(xi, V) = V -t  f v  7 (x i  - x )  dx.  In matrix notation, FX = B3, , where F = 
[7ij] = [7(Xi - Xj)],  X T = (kl  . . . . .  XN, ~) and B~ = [~'(xi, V)]. Consider the 
corresponding system for g E N ,  (3'), GXg = Bg, with G = [gi/], Bff = [g(xi, V)]. 
From (1), integration over V gives, for i = 1 . . . . .  N 

(1 - 6) i ( x i ,  V)  < £'(xi, V) < (1 + 6) ~/(xi, V)  whence (2) 

(1-  a)llB~,,]l < I[Bg[[ < (1 + 6)11B~,] [ (3) 
where I lB I[ is some L (p )  vector norm, usually with p = 1,2 or °°(see Appendix). 
Similarly 

(1 - 6)  "Yi/<gij < (1 4- 6) ~[ij 

implies that 

(1-  6)IIFII < IIGll < (1 + 6)IIFII (4) 

where I[Gll is the matrix norm consistent with I]Y[], defined by ll~II = 
supllYil=, l] G•I] (Wflkinson, 1967). To see that (4) is in fact true, recall that the 
variogram values gi /are  all of  like sign, say gq >/0 for specificity, as are the 3'ii. 
If y T  = [y] ] ,  then G Y  = [Egi]y]]  assumes its maximum at vectors whose ele- 
ments are all nonnegative. Consequently, for each summand 

(1 - 6) "Yi/Y! ~ gi]Y] < (1 + 6) ")' i/Y/ 
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with equality only if y/= 0 and eq. (4) follows. If all gi] «. O, similar results 
follow. Write 

Xg = X + AX,  Bg = Bq, + AB, G = F + A F  

From (1) and (2) 

IIAFII<~IIFII <») 
IIAB[[~~IIB~II <6> 

while the kriging system for 3' gives 

[Iß~ll-< IlFll [IxII (7) 
The kriging system for g is rewritten as 

(F + AF) (X + AX) = B~ + AB 

for which 

( r  + ~ r )  ( ~ x )  + (At)  x = A» 

AX = [I + F -~ (AF)] -2 F-1 [AB - (AI') X] (8) 

provided the matrix I + F -2 (AF) is nonsingular. Thi's is guaranteed by the fol- 
lowing assumption 

for then the expansion 

[I + [,-2 (/x[,)1-2 

is valid. Note further that 

[[r -1[[ [[AF[I < 1  (9) 

= z -  r - '  ( A D  + [ r - ' ( a t ' ) ] :  . . . .  

[111 + I~-I(AF)]-I[I ~ 1  + I[r-1]I I]Arll  +(]]F-11] I[AFI]) 2 +" "" 

= 1 / (1- I [F-1] l  I]AFll) 

Substitution in (8) gives 

I[ax[I < IIr-'ll(llaßll + II~rl[ IIx[l)/(l- [[r-~l[ [[ar[I) (10)  

Introducing the usual notation for the condition number of a matrix, 
(F) = [IFI[ 11F-1 and further substituting the relations (5), (6), and (7) into 

(10) produces 

II~x[I < Ir-lllollß~[I +sllr[I [[x[[)/(1-~[[v[[ llr-'ll) 
< ir- , l lol[r lI  [Ixll +~l[rl[ [lxll)/[1- aK(r)] 

= 2~ l lxII ~ (F)/(1 - ô~ (F))  
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and so we have 

[l~xl I/I [xl I ~ 25K (p)/[1 - 6K (F)] (11) 

Observe that the weaker inequality ][F-I(AF)[I < 1 is sufficient for the 
invertibility of I + F -1 (AF), but this follows from (9) which, in turn, holds pro- 
vided that 

8K(F) < 1 (12) 

The conclusion to be drawn from this analysis is that, for any valid vario- 
gram 7 and any e > 0, there is a 5 neighborhood N 6 (7) of variograms which 
produces a relative error ]]2xX]l/[IX[I in kriging that is no greater thane  pro- 
vided õ < min [1/K (F), e/(2 + e) K (F)]. Suppose 8K (P) < 1, and put 28K (F)/ 
( 1 - 6 t ¢ ( F ) ) < e ,  and certainly Ilaxll/llxll < e  by (11). This estimate for 6 
will, on the whole, be extremely conservative, but could almost be attained with 
carefully constructed perturbations 2~B and 2xF, and thus be theoretically pos- 
sible for g ~N8 (3') (Wilkinson, 1967, p. 73-75). Consequently the robustness, 
with regard to small perturbations of the variogram 3', each perturbed model 
viewed as a variogram in N 8 (3') evaluated at the same experimental points xi, 
ultimately depends on the condition number K(F) of the kriging matrix F 
corresponding to the original unperturbed variogram 3'. Clearly a change in 
the configuration of data points xi, while leaving the function 3' unchanged 
will, however, perturb F and B in the kriging equation. This effect is discussed 
below~ 

Perturbing 3, to g E N6 (7) affects the kriging variance. Denote the kriging 
2 2 variances for 3', g, respectively, by õ7, of 

2 = X r B v  _ 5'(V, V)  0 T 

B = XrBg - g(V, V) 

= (X T + A X  r)  (B. r + AB) - ~(V, V) 

= %~ + ( , ax  r)  B v + X t ( A B )  + z X X r a ß  + ;/(V, V) - ~(T/, V) 

It follows that 

1 4 -  41-<2õi lxl [  1Js~[f~(r)/I1 ~~(r)l 
+ ~IIxll I[B~[[ + 2õ2tlx[I IIB~II ~ ( r ) / [ 1  - s K ( r ) ]  

+ ~ ( 1  - ~/~) 

-<2~(1 + 8)llr[I  []xl[~ ~(r)/[1 - ~~(r)] 

+~ltrl[ Ilxll2+8~ , 
1 4 - 4 1 - < 8 ( t  + Ilrll Ifxll = + 211rll IIxll = (1 + 6 ) t ¢ ( r ) / [ 1 -  8K(F)]}  

(13) 
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Example 1 

Consider the following illustration of  instability of  the Gaussian model 
under perturbation of  stil and parameter. In the plane, let sampling points be at 
positions (-0.4, 0), (0.4, 0), and (0.39, 0.1). In practice, these last two points 
would be combined, but this example, and the next, are contrived to illustrate 
the mechanisms at work and to show how bad things can get even in the simplest 
of  systems. 

Take the original variogram 3' to be Gaussian with sill at 1 and parameter 
a = 1, while g is Gaussian with sill at 1 and parameter a = 1.1. All computations 
krige a 1.0 X 1.0 block. Observe that g and 3' are in the same 6 neighborhood, 
and kriging is not especially sensitive to parameter changes in this case. Indeed, 
i fwe write 3'(r) = 1 - e-r~,g(r) = c(1 - e-r2/a~), then 

F(r) = g(r)/'y(r) = c(1 - e-r2 /a~)/(1 - e -r2) 

only takes on values between c and c/a 2 because F is monotonic in 0 < r < oo 

as can be checked by differentiation F'(r)  having the sign of  1 - (l/a). Thus, 
with g and 3' as above, the ratio increases from 1/1.1 to 1.1 a s r  goes from 0 to 
o% and 8 = 0.1. The corresponding change in the third weight is about 14%. 

Example 2 

Consider the following comparison between the stability of  Gaussian and 
spherical models when a small nugget effect is added. 

Let the sampling configuration be as in the example above. We take the per- 
turbation g to be the original variogram 7 plus the nugget effect of  0.01. The 
nugget effect actuälly takes g out of  N~ (3') because lim~_÷o+g(r)/3"(r) is un- 
bounded. However, at distances not too far away from the origin, the variograms 
appear "close," with 6 seemingly around 1%. Nonetheless, the Gaussian gives 
very unstable behavior whereas the spherical model is relatively robust. 

(a) 3' Gaussian, with sill at 1 and parameter a = 1, while g is Gaussian with 
a = 1 but sill at 0.99 with a nugget effect of  0.01. 

(b) 3' is spherical, with sill at 1 and range 31/2 corresponding to the effec- 

Table 1. 
i ù i ù l  i i i l l l  i i i i l  i l |  , i  

Points 3' kriging weights g kriging weights 

(-0.4, 0) 0.4982 0.4985 
(0.4, 0) 0.3970 0.4112 
(0.39, 0.1) 0.1048 0.0903 

2 

o~ 0.0184 0.0146 
i il i i 
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Table 2a. 
i J r i i l  

Points 7 kriging weights g kriging weights 

(-0.4, 0) 0.4982 0.4954 
(0.4,0) 0.3970 0.3253 
(0.3920.1) 0.1048 0. t793 

2 % 0.0184 0.0224 
ù i 

Table 2b. 

Points 3' kriging weights g kriging weights 

(-0.4, O) 0.4824 0.4806 
(0.4, O) 0.2721 0.2716 
(0.39, 0.1) 0.2454 0.2478 

2 a u 0.0961 0.0988 
, i ù  i i i i i l  , il r ir l l f  ~ i 

tive range of the Gaussian mode1 above being 31/2, whereas g is spherical with 
fange 31/z but sill 0.99 with nugget effect once more of 0.01. 

Observe that the 1% change induces a s]milar perturbation in the third 
weight in the spherical model, but over 70% change in that weight where the 
Gaussian model is concerned. The Gaussian model itself is ill-conditioned and 
this is exacerbated by the configuration. If  7(r) = 1 -  e -r2, here K(F)~  97, 
whereas the spherical model is not too ill-conditioned. Further, the configura- 
tion of sampling points is bound to be bad for conditioning. If  the obviõus is 
done and the last two points combined, the respective changes in the combined 
weights turns out to be only 0.6% (Gaussian), 0.4% (spherical). 

PERTURBED SAMPLING CONFIGURATION 

Suppose that the configuration C of experimental points xi ~ R n, i = 1,2, 
ù , N is perturbed to a configuration C' with positions x i + A x i ,  hut the under- 
lying variogram model remains unchanged. Consider only the case of point esti- 
mation kriging: block estimation is very similar. Denote the stationary kriging 
system for the unperturbed grid C by 

F c X  = B« 

where Pc = [(7//) = 7(x i  - x j ) ] ,  Be = [~/(xi, V)] ; and that of C' by 

(pc + z~p) ( x  + zxx) = B« + t,Æ 
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Here, the elements of F c + AF are 3`(xi - x i + A x i  - AXj) and those o f  Be + A B  

are ~ ( x  i + A x i ,  V) .  
Further assume that 7 is everywhere differentiable, except that, at the origin, 

the partial derivatives exist from the right and are upper continuous. Several 
assumptions concerning approximations will be made as they arise. Note that, 
formally, as in the derivation of (10) 

IIAx[[ < I[r2 II([IAßll + ll~rll  IIx[l)/(1 - IIr;lll  IIAr[I) (14) 

Now 

7 ( x  i - x~ + A X  i - AX i )  = 3`i/+ ( A x i  - AXi)  r 3`'(cii) (15) 

where c i / l i e s  between x i - x / a n d  its perturbation, all expressed either as vector 
arguments or as isotropic variables. In eq. (15), the symbol 3" denotes the n 
vector of the partial derivatives (Dk'),). Write A i / =  A x  i - A x /  and use the ap- 
proximation (not unreasonable in a geostatistical situation) that 

Dk3`(ci/)  ~ Dk3`(x  i - x / ) ,  k = 1 , 2  . . . . .  n 

It follows that, within the limits of this approximation 

T ' T ~ A p  = [Ai/3` (X i - X])] = (Aij3`ij) ( 1 6 )  

and note that the diagonal elements are no longer necessarily zero. 
As for the elements of B c + A B  

~(X i + ÆXi, V) = V -I f 3`(x i + A x  i - x)  d x  
Jv  

-~ 5,(xi, v) + re-1 f v  Axrv ' (x i  - 2) clx 

again using the approximation above. So 

I~(xi + ax,, v ) -  ~(x;, v)l < [lAx;l[ v-' f~ 113`'(x,- x)[I ùx 

Assume that with respect to the configuration C and the volume V 

113`'(x, 2)11 <L,  x ~ V  and i = 1 , 2 , .  , N  

Since then f v  I I T ' ( x i -  x ) I ] d x < ~ L V  and, putting Dma x = 2maxi  IIAxill it 
follows that 

I[AB[[ < L D m a x / 2  (17) 
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Note that 

IIB«ll </Ir«t] IIxll Itxll < I!r~l[[ ItBlt andso  

[IkX[[/llxll-< ~(r«) (llke[I/l[B«/1 
+ llkrtl [Ir;lll/(1- ~(rO Jl=rlt/ltr«ll) (la) 

By (16), l[kI"j[ ~ D m a  x [l(~a)ll w ~ c h  is no greater than NLDmax in/.(1) norm 
or IV1/2LDmax in L(2)  norm. Thus the estimate (18) can be made more explicit, 
if somewhat coarsened, as 

Il AxII/IIxI[ <-~ (pc) (LDmax/2[1B « il 
+ N L D m a x [ [ P ~ I [ [ / ( 1  - ~(rONL»max]Ir«![ '). (19) 

2 = X T B c  - The kriging vanance of the configuration C can be written as o c 

5'(V, V) and that of  the perturbed configuration 

O2c , = ( X  T + A X  T) (B c + A ß )  - fr(V, V) 

since the underlying variogram model is assume to remain the same. Hence 

14-  4't-< I[kxl[ I1Bcll + IIxll llkBtl + Ilkxll I[kBl! 
which can be somewhat laboriously expressed in terms of K (Pc) and estimates 
above involving the kriging matrix and derivatives, as weil as the perturbation, 
without reference to X. The really important point to note is that again, the 
conditioning of the kriging system is the most important  fäctor in the error 
estimates. In the case above both the initial configuration and the underlying 
variogram determine the conditioning nmnber. 

Example 3 

Let the sampling points in the configuration C be at positions (-0.4,  0), 
(0.4, 0), (0.41, 0.1), and that of  C'  be at (-0.4,  0), (0.4, 0), (0.39, 0.1). Again 

--F 2 
using a Gaussian model 7(r) = 1 - e , the relations depicted in Table 3 hold. 

Table 3. 

2 
~-1 A-2 ~-3 °-K 

C 

0.4998 0.4757 0.0245 0.0186 

C' 

0.4982 0.3970 0.1048 0.0184 
ù, il i i i i i ,  r ,  , n  i , ,  il i i i 



818 Diamond and Armstrong 

The condition number of almost 100 goes some way toward explaining why 
a perturbation of 2½% in the third coordinate alters the weight Xa by some 
328%. Even for the numerically unstable Gaussian model, if the last two posi- 
tions are combined the change in the cornbined weight reduces to about 15%, 
corresponding to a configuration change of 1.3%. Moreover, in larger systems 
this inherent instability would be compounded by additional points and increas- 
ing dimension of the kriging system. 

UNWERSAL KRIGING 

Although problems involving indeterminacy of both the driff and the under- 
lying variogram arise in universal kriging (Armstrong, 1982), it is nonetheless 
theoretical!y instructive to examine this more complex kriging system for 
robustness. We restrict the discussion to point estimation of the random value 
Z(x) from sample values z (x l )  . . . .  , Z(XN), as a linear combination E Xiz(xi) 
under the hypothesis that Z(x) is weakly stationary with covariance function 
K(x, y). Hefe Z(x) has a decomposition into a deterministic drift ra(x) and a 
weakly stationary random function Y(x) with zero mean 

z(x)  = ra(x) + Y(x) 

Drift is expressed as a linear combination X a/fJ(x), where the functions i l (x)  
are monomials of degree no greater than p. The kriging equations form an 
N + k(p) degree system, where k(p) is the number of monomials in the space 
variables of degree ~<p. In matrix notation, ['X = B, where 

K F X T = [~,i . . . .  , XN, ai . . . . .  ak(p)] 

[ '=  F T 0 B T= [K(xi, xo), . . ,K(XN, Xo ), f l ( x 0 )  . . . . .  fk(P)(Xo)] 

F= [f/(xi)]lVXk(p) K= [K(xi, x/)]NXN 

Two types of sensitivity spring to mind. 

(i) Robustness associated with 6 neighborhoods of the covariance K and the 
sampling grid. This leads to arguments and estimates essentially of the säme 
character as those of previous sections; 

(ii) Robustness associäted with the drift; for example, attempting to increase 
the degree to p + 1 and adding monomialsf k(p)+l . . . . .  fk(p+O. For def- 
initeness it is this precise perturbation which will be considered below. 

The new system, with drift now being 

tal(x) = ra(x) ,,(~_1),,÷ + a/f ~(x) 
j=k(p)+l 
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is given by 

819 

Hr (20) 

withH = [ f J ( x i ) ] ,  i = 1 . . . . .  N ; j  = k ( p )  + 1 . . . . .  k ( p  + 1), h T = [ f k ( P ) + l ( x o ) ,  

f k (P+l) (Xo)  ] . Recall that PX = B and it follows at once that 

P(AX) + Ha = 0 (21) 

H r ( X  + aX) = h (22) 

Note that in general H is not a square matrix and it is meaningless to speak of 
anything but a pseudoinverse. That is, given the system H U  = V, where U has 
[k(p  + 1) - k(p)] elements and V is an N vector, the pseudoinverse H + is a 
unique matrix satisfying U =H+V such that U is the minimum length solution 
of the least-squares problem: minimize I[HU- V[1 (Lawson and Hanson, 1974). 
The condition number of H is K (H) -= I1HII [IH+II. 

From (21), 2xX = -r-lila, and so 

[ l ~ x ! f < l l v - l l l  fH[ll[a[! 

andsince [P[I t[Xl[ ~> I/BI[ 

I[axll/[lxlI < ~.(r)llHil Ilall/Ilell (24) 

From (22), H r ( X  - r - l i l a )  = h, whence 

a = H + r x  - H+P H+Th 

Ikl /< ItH+II I[rll I[xll + K(F/)flrlt llhll (es) 
It«ll/l lxlt-< Ilu+ll Ilrll + K(M)llrl! = Ilhll/[Ißll (26) 

Using (23) and (24) 

I I A x l l / [ I x l l - < < K ( r ) ~ ( ' ) (  1 + I[rll I l ' I l  I Ihll/ l lßll) (27) 

Together, (26) and (27) give the relative change in the weights of the uni- 
versal kriging estimator for Z ( x )  introduced by adding a higher degree monomial 
set to the expression for the drift m (x). The product of two condition numbers 
Of the matrices P and H are essentially involved in the estimates of the perturba- 
tions that are introduced with the monomial set. This suggests that the potential 
instability of the kriging system is increased whenever a better äpproximation to 
the drift is sought. This practical consideration is possibly a third problem of 
universal kriging, to be added to those arising from the indeterminacies men- 
tioned above. 

(23) 
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DISCUSSION 

We have set out to distinguish between 

(i) robust procedures which are used to estimate experimental variograms, and 

(il) the overall robustness of prediction algorithms, such as kriging, which use 
these variograms. 

In regression, the very procedures themselves guarantee that data sets which are 
near to each other produce regression predictions (e.g., the experimental vario- 
gram) within the span of their design vectors which are also close to each other, 
though the regression equations may be very different in form. In stark contrast, 
if subsequent kriging is applied to the same raw data but using variograms in 
different 8 neighborhoods, very different kriging weights (and thus markedly 
different predictions of block or point grades) will result. This is because "near- 
ness" in the regression sense is ultimately based upon a least-squares concept of 
distance, no marter what refinements are used to enhance robustness. 

On the other hand, nearness of two variograms is defined in terms of the 
relative difference between them I( 7 - g)/g]. This distance defines the 8 neigh- 
borhoods. Resultant kriging will give similar results for near sets of data only if 
it proceeds from variograms in the same 5 neighborhood. Even then the robust- 
ness of the kriging predictor depends heavily upon the condition number of the 
kriging matrix. So, as the above examples have illustrated, circumstances can 
arise in which some classes of variograms (e.g., the Gaussian) produce major 
differences in subsequent kriging from small variations in the data. This phenom- 
enon is produced by high condition numbers. 

Unlike ordinary regression, minor perturbations in the data alone may give 
rise to major effects in the final kriged values. However apt robust procedures 
may be for the estimation of experimental variograms, such procedures cannot 
be regarded as guaranteeing the robustness of the entire predictive algorithm. 
For this, some such notion of nearness, as expressed by the 8-neighborhood 
concept, is necessary. Too, close attention must be given to the conditioning 
of the kriging matrices which arise from the fitted variogram. 

APPENDIX 

The following standard formulas and definitions for vector and matrix 
norms are included for completeness so as to make this note self-contained. 

by 

(a) 

DeFinition 1 

If x = (xl) is an n vector, the L(1), L(2), and L(oo) norms o f x  are defined 

Ilxllx = ~~=1 Ixt], the L(1) norm- 
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(b) 
(c) 

= ( i=1 X2) 1/2, the L(2)  or Euc l idean  norm.  [lx[f~ z" 
I I x il = = maxl «.i<n [xi 1' the L (~),  infinity or uniform norm. 

Each of these is a special case of the L (p) norm 

][X][P =(i=~IlXi[p) I/P p>~ l 

Definition 2 

A subordinate or induced matrix norm I IA[Ip is defined by 

[IAI[p =max l[Ax][p/[]x[lp = max lIAx]l p 
x@O ][x][= 1 

where usually p = 1,2,  or ~. 

I fA = (at),  then 

Explicit Formulas 

ItAI]I = m a x E  1««1 
1 i 

I[A[t~ = m~xZ J~«l 
l ] 

Although there is no simple explicit expression for [lA [I:, the condition num- 
ber K(A)= fI/tl~ IIA 111~ in terms of  L ( 2 ) n o r m  on square matrices may be 
expressed as 

K(A) = ]~tmax I/]~kmin [ 

where ~'max, ~kmin are the eigenvalues of, respectively, maximum and minimum 
modulus. 

A concise treatment, with proof, can be found in Broyden (1975), and 
many examples can be found in Atkinson (1978). 
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