and (36).
LITERATURE CITED

1. M. Duneau, D. Jagolnitzer, and B. Souillard, Commun., Math, Phys., 31, 191 (1973).
2. M. Duneau, D. Jagolnitzer, and B. Souillard, Commun. Math. Phys., 35, 307 (1974).
3. M. Duneau, D, Jagolnitzer, and B. Souillard, J. Math. Phys., 16, 1662 (1975).

4, M. Duneau and B. Souillard, Commun, Math. Phys,, 47, 155 (1976).

5. D. Ruelle, Statistical Mechanics, New York (1969},

6. J. Riordan, An Introduction to Combinatorial Analysis, Wiley, New York (1958).

7. R. A. Minlos, Usp. Mat. Nauk, 23, 139 (1968).

ANALYTIC STRUCTURE OF THE 8 MATRIX
FOR SOME CLASSES OF POTENTIALS

M. V. Nikolaev and V.S. Ol’khovskii

The properties of Jost functions and generalizations of them introduced in the paper are
used to study the analytic properties in the complex plane of wave numbers of the S
matrix of elastic scattering for local potentials with hard core, nonlocal separable
potentials, comptex local potentials, and nonlocal separable potentials with hard core.

Among the various representations of the S matrix S,(k), one frequently uses a representation in
the form of an expansion in an infinite product with respect to pole terms; this enables one to express
explicitly the dependence of the cross sections of the scattering processes on the positions and widths of the
resonances [1-3]. In the present paper, on the basis of the generalization of the method proposed in [1], we
obtain an analogous representation of S, (k) for the following classes of quasipotentials:

{I>. local potentials V(r) with hard core (V(r)=o, 0<r<R.);

(II) nonlocal potentials q,(r)-q,(y’);

(IIcomplex local potentials W(r) = V/(r) + iV (r);

{IVinonlocal potentials p,(r).p;{r’) with hard core (p.(r)=c, O<r<R.).

It is gssumed that all these quasipotentials vanish when r = R.

QOur result is of physical interest and can be used in investigations of the three-particle scattering
problem and in problems using the ordinary and the generalized optical models of nuclear reactions.

We shall proceed from the following general scheme. We define Jost functions f, (k), in terms of
which the function 8, (k) is expressed. If the Jost functions that are obtained are not entire functions of k,
we construct eguivalent entire functions, which can be expanded in an infinite product in accordance with
Hadamard’s theorem, and the expansion then obtained is used in the expression for the 8 matrix.

In what follows, we shall use this notation. Expressions indicated by the Roman numerals [-IV
correspond to the types of quasipotential listed above, All other expressions are common to all the quasi-
potentials.

By the usual method set forth, for example, in [1, 4] one can obtain the following expressions for the
Jost functions:

1y (k)= exx)( ~i -—-l; ) wi® (kRg)—j dr'g (k; R, ) V(') fis (B, 7)), (1.0
2 N (k) Iny |

2 — iy Sttt . (), 1.1

e (B)=1-+ DO (k) k ‘exp( i~ ) :5 dru, (kr) q,(r) (1.10)

Kiev State University. Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 31, No.2,
pp.214-219, May, 1977. Original article submitted December 15, 1976.

Fhis {nate’ﬁa! is .prorectcd by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011, No part
of. Hus_ pu'bllcanon may be reproduced, stored in q retrieval system, or transmitted, in any form or by any means, electronic; mechanical, photocopying,
microfilining, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $7.50.

418



ktexp(—iln) 7

7 ) =1+ — e jd w* k)W () @u (k,7), (1.110)
R 1 l(l,) R
fzﬁ,’(k)=exp( —~i ;‘) wi® (kR.)— gm((:)) | dr'ei (& B, ) p (), (1.1v)

where

g (k; R, r) = exp (—iln) k= [u, (kR wi® (kr)—u, (kr) wP (kR)1, N (k)= exp (—i%‘) f drq, (R w® (kr),

Z R R r
N® (k)=-exp (—i—;—"—) j drp,(r) w® (kr), D® (B)=1 —J. drq.(r) ‘fdr' g lk;r, g (),
0 [

Re
R T
D ()) =1~ drp.(r) far'e(kirr)pi ), DY ())=D™ (),
R, R,
fir(k, r) is the solution of the radial Schrodinger equation with the boundary condition

lim fo4 (k, r) exp (—ikr) ==1,

7> 00

@i(k, ) is the regular solution of the radial Schrodinger equation defined by the boundary condition

lim r—1g, (k, r) =1,

T=>0

R, is the radius of the hard core, R is the cutoff radius of the potentials, and w, v, w{¥ are the Riccati—
Bessel functions defined in [1].

It follows from the treatment given in [4] that the Jost function f@ (k) is analytic in the complete
complex plane, excluding the infinitely distant point, if the following condition holds:

J.drr‘llq, (r) <o,

The corresponding analyticity of 7 (k) follows from the arguments in [5]
the results of [6]. At the same time, the following conditions must hold:

and the analyticity of f4%(k) from

Y

j. dr|pl(r)l<cc’ ‘f |V(r)ldr<00, jdrrle(r)l<°°.

The S matrix is expressed in terms of the reduced Jost functions as follows:
£ (=k) 15T (-k)
ORI
Note that the functions j>% (k) may have singularities at the points where D@ (k)=0. With allowance for this,

and also for reasons of convenience when we study the asymptotic behavior of the functions f1%(k), we intro-
duce the new functions

F® (k)= exp(—ikR) 1D (k), F® (k)=f% ())D (k), FO (k)=12 (&), F{ (k)=exp(—ikR)f (£)D" (k). (3)

2)

S, {ky=exp(iln)

Taking into account the analyticity with respect to k of the functions g /(k; r, ), @.(k, r), fiu(k, r) , and
w (k,r), we can readily conclude that the function F{%3% (k) is analytic in the open complex plane k. Con-
sidering the behavior of the functions F (k) (j=1, 2, 3, 4) as k> (Imk>0) and using (1.D-1.1V), we
readily conclude that

F® &) — 1100, i=1,2,3,4 (4)
(Xhm-}lzc;o)

Similarly, as k—e (Im k<o) , assuming that for r ~ R the quasipotentials behave as C(R - r)%,
where @ > 0 and C is a constant, and, following the usual technique [1], we can show that

Fo (k) — Ck**exp(2ikp), )
(Ix’;—;:(’)

where
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_{R_Rcy ]=11 41
*T1r,  j=23
Taking into account this asymptotic behavior of the functions F, and using arguments similar to

those employed in {1], we conclude that the functions F{%3% (k) are entire functions of order 1 and normal
type,* if the conditions on the behavior of the quasipotentials given above are satisfied.

Applying Hadamard’s theorem, we can expand the function F{ (k) in the infinite product

FO (k) =F (0) exp(ick)H (A—k/k.) exp (k/k), (6)

na=1

where ¢ is a complex constant that must be found and k, are the zeros of F® (k), which in the case of a
complex or-a nonlocal quasipotential may be multiple [7]. If this is so, the multiplicity of the zeros is
completely due to the zeros of the functions D@#(k). Without loss of generality, we can assume that F{) (0)==0.

We turn to the determination of the constant c, for which we require the following definition [8].
Functions F(k) satisfying the condition
j~ g 2 F (R | ln*‘IF(k)I
1+k ®

where hn*(k)=Ink, k=1, In*(k)=0, 0<k<{, belong to the class C.
Obviously F (k) belongs to the class C. Then [8]

THEOREM. The set of roots {k,}, k, # 0, of the entire function F (k) of the class € satisfies the
conditions:

D Y im k) |<e;

2} for any @, 0<@<a/2,limn,{r,¢}/r=1limn_(r,¢)/r, where both limits exist; here n.{r, 9} is the
number of roots of F(k) within the sector |k|<r, |arg k|<eg, and n_(r, @) is the number of roots of F(k) in
the sector |k|<r, jargk—n|<g;

3) there exists the limit
lim 2 (4/k.).

K->
Ihpl<K

In accordance with Pfluger’s theorem [9], if the conditions 1-3 are satisfied, the entire function of
exponential type F{" (k) has the asymptotic behavior
(J) (k)

|t |—F 0D 1) gos g— - +0(1), 7
ikl-'In exp(wk)F‘l”(O) = ZRe(k )Yeos @ Zlm(k Ysin @+Alsin ¢/ +0(1) (7)

where k={k)exp(iy),
lim n, (r, n/2) /r = lim n_(r, n/2) /r=A/n.

T ™ 7o 00

From (7), taking into account the asymptotic behavior of F{ (k) in the upper and lower half-planes
of 'k, we obtain

=——21m(k,,")+A—Rec+0(1), o=n/2, k=ilkl, |kl-o;

* We recall that by definition the type of an entire function F(k) is equal to

or = 1im 22D = max |F() .

r>oo 7 Ji=r

If for v > 0 the inequality 0 < 65 < « holds then F(k) is of normal type. The order v of an entire
function is by definition equal to

InlnM(r)
v = lim sup ———
rooo In{r)
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20 =Z Im (k,~*)+A + Re c+0 (1), o=—n/2, k=—ilkl, |k|—oo;
whence

p= Y Im(k )+ Rec. (8)
Similarly

Imc=ZBe(k,.“‘), =0, Ek=lkl, |kl
Thus, p=—ian"+c. Therefore

£ (k) =szm (0) exp(ikP)H (1—k/E.). ©

n={

Now, proceeding from (9) and (2), we can in the same way as in the case of real local potentials
[1,4,10] obtain the expansion

otk Ty Ka—ik 1 |kal®—k*—2ik Im k,
na—ik LUK+ L (ko l*~k*+2ik Im &,

8, (k) = exp (—2ikp) H (10)

where we have separated N ; virtual states, N2 bound states, and an infinite number of resonance states

corresponding to zeros of the functions F{ (k), j=1, 2, 4. The expression (10) generalizes the well-known
result for local potentials [1].

In the case of complex potentials, the situation is much more complicated. Let us consider briefly
the position of the zeros of the Jost functions f{¥ (k) ; these are simultaneously poles of S (k). As was
shown in [5], if the imaginary part of the potential W(r) is negative, /& (k) cannot have zeros on the
imaginary k axis, and on the positive real half-axis of k these zeros cannot be multiple. By virtue of the
asymptotic behavior of (k) , the sequence of zeros of the entire function /(%) cannot have points of
accumulation in the half-plane Im k = 0. Therefore, the number of zeros is there finite.

The zeros of f,?(k) in the upper half-plane of k characterize metastable states with exponential
damping in time of the flux of outgoing waves {5]. The zeros of f® (k) on the positive real half-axis, or the
so-called spectral points [11], describe maximal absorption when S® (k)=0. The zeros in the lower half-
plane correspond to decaying quasistationary states (fourth quadrant) and quasistationary states describing
absorption (third quadrant) [5]. Accordingly, we separate N zeros %, of multiplicity &, (Im=n, > 0), N’
zeros k_of multiplicity 8, (kr = Re k, < 0), and an infinite (countable) number of zeros k  of multiplicity
Ys (Imk < 0). We obtain the expansion

N

S (k) = exp (—2ikR) INI ( ’;"ch ) H (%) p'f_[ ( —kk—._Jf%) " (11)

re=i s==1

The expansion (11) is obtained here for the first time. In the absence of spectral points and multiple zeros k
it coincides with the result of [3] obtained on the basis of general physical principles.
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