
FRACTIONAL INTEGRAL AND ITS PHYSICAL INTERPRETATION 

R. R. Nignmtullin 

A relationship is established between Cantor's fractal set (Cantor's bars) and a fractional integral. The fractal dimension of the 
Cantor set is equal to the fractional exponent of the integral. It follows from analysis of the results that equations in fractional 
derivatives describe the evolution of physical systems with loss, the fractional exponent of the derivative being a measure of the 
fraction of the states of the system that are preserved during evolution time t. Such systems can be classified as systems with 
"residual" memory, and they occupy an intermediate position between systems with complete memory, on the one hand, and 
Markov systems, on the other. The use of such equations to describe transport and relaxation processes is discussed. Some 
generalizations that extend the domain of applicability of the fractional derivative concept are obtained. 

I N T R O D U C T I O N  

In connection with the introduction o f  the ideas of  fractal geometry [1] into modem theoretical physics, many active 
attempts are being made to explain dependences of  the type 

r (z) =A~z -~, (1) 

which are encountered in different fields of  natural science. In Eq. (1), ~ is some fractional exponent, A v is a constant that 

depends on v, and z is some intensive variable (time, frequency, temperature, etc,). Analysis o f  the literature on fractal 

geometry reveals that the theoretical methods which lead to the dependence (1) can be divided roughly into three groups. The 
first involves the "transfer," usually by means o f  integration, of  the fractional dimension of  a fractal object to other physical 
quantities. The second group of  methods reduces the problem to consideration of  a functional equation of  the type 

which has a unique solution of  the form (1) with arbitrary constant el and exponent ~,=ln ~/ln b. The third group of  methods 
is based on numerical methods, in which the fractal geometry of  a surface is specified numerically. Numerous examples can 

be found in the conference proceedings [2], and also in [3--51. 

Besides these methods, attempts were made in [6--10] to relate dependences of  the type (1) to solutions of  equations in 

fractional derivatives. Although the mathematical formalism of fractional calculus has by now been well developed [11,12] and 

there even exists a field-free method of  calculating boundary fluxes based on it [131, wide use of  fractional integrals and 

derivatives is hindered for one simple reason - -  there is no clear physical interpretation of  them. If  we could find for them a 
clear physical interpretation, as exists for ordinary integrals and derivatives, their domain of  application in physics would 
undoubtedly be enlarged. It should be mentioned that a physical realization of  a derivative o f  half order was given in 
electrochemistry [14]. Some theoretical models show that ultraslow transport processes may be realized in branching fractal 

structures [15]. They are described by diffusion equations with fractional time derivative with exponent in the interval 0 < a < 1. 
The main aim of  this paper is to show that there is a direct relationship between fractional integrals and Cantor's fractal 

set. I f  the total number of  remaining states in each stage of  the division of  this set is normalized to unity, then the fraction v 

of remaining states, which occurs in the exponent of  the fractional integral, is exactly equal to the fractal dimension of  Cantor's 

set, and 0 < ~ < 1. An intermediate asymptotic behavior in time in which manifestation of  such an operator is to be expected 
is found. We discuss the application of  equations in fractional derivatives to transport processes in porous and percolation 
systems, and also for systems in which the interaction is collisional in nature. We discuss "ultraslow" relaxation processes, 
for which a physical quantity varies more slowly than the first derivative. Generalizations of  the approach proposed in the paper 
are given for arbitrary and random partitions of  the Cantor set. 
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1. F R A C T I O N A L  I N T E G R A L  W I T H  S E L F - S I M I L A R  E V O L U T I O N  P R O C E S S  

In order to understand clearly the physical interpretation of fractional integrals, it is helpful to recall two limiting cases 
widely used in physics. 

We consider the evolution of a physical system in which some quantity J(t) is related to another quantity fit) through a 
memory function K(t): 

t 

J ( t ) =  IK(t-r)l(x)d"c.  (3) 

Let K(t) be the step function 

[ i/t, 0 < x < t ,  
K ( t - x ) =  ~ (4) 

O, x>t, 

in which the factor l/t is chosen to achieve normalization of the memory function to unity: 
l 

~ K ( r ) d ' c = t .  (5) 
0 

Then in the evolution process the system passes through all states continuously without any loss. In this case 

t 

I ( t )  = --7- [( '1") d T  --~ P ~  l.(p)ma~ F(p) (6) 
~{ pt 

and this corresponds to complete memory. Here and in what follows, F(p) is the Laplace transform of the function f(0,  and 
p is the parameter of the Laplace transformation. 

Another limiting case occurs when the system loses all its states except for one with infinitely high density. In this case, 
we have 

J (t) = \ 5 (t - -  r) / (-r) d~ = ! (t) -~ e-~'F (p), (7) 

The expression (7) corresponds to the well-known Markov process with complete absence of memory. This process relates all 
subsequent states to previous states through the single current state at each time t. 

These two limiting eases, well known in physics, enable us to pose the following question. Do there exist physical systems 

that in the process of  evolution occupy an intermediate position between a "line," i.e., when the system does not lose a single 
state during the process of evolution during the complete time t, and a "point," i.e., when the considered system loses all its 
states except for one, which is concentrated at the time t with infinitely high density? Ordinary geometry does not give an 
affirmative answer to this question, since it "does not know" an intermediate geometrical object between a line and a point. 
Fractal geometry answers the question in the affirmative, since such an object exists and is known as the Cantor set, or Cantor 
bars [1]. The problem can be formulated as follows. Suppose that in a system with given spatial geometry only some of the 
states "survive" during the process of evolution, the remainder being irreversibly lost during the process of  evolution. Loss 
of some of the states is understood in the sense that they are lost irreversibly and are no longer accessible to the system. The 

Cantor set is constructed in such a way that it takes into account the inaccessibility of  some of the states automatically (see Fig. 
I, where ~ =0.35, u=ln 2/ln (1/})=0;6602520221 .... The density of the corresponding bars is plotted along the vertical axis. 
The area of  all bars at each stage of the partition is equal to unity. The process of  construction of  the Cantor set is described 

in Sec. 2). What happens to the Cantor set in the limit N--,~ (N is the number of the step of the partition) under the condition 
that the normalization of the total area (to unity, for definiteness) under the remaining bars is conserved? We wish to show that 
in the limit N~oo the Cantor set converges to a fractional integral with the exponent p of  the integral being a measure of the 
fraction of remaining states and equal to the fractal dimension of the set. 

In other words, the Cantor set for the fractional integral is the analog of a 6-1ike sequence, which, as  is well known, 
converges in the limit to the 6 function. 

2. C O N N E C T I O N  B E T W E E N  F R A C T I O N A L  I N T E G R A L  A N D  C A N T O R  S E T  

To establish the connection between the fractional integral and the fractal Cantor set it is convenient to use the step function 
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q ( t , < r < t ~ ) =  O. if r is outside [t,.t~] 

The Laplace transform of  the expression (8) is 

(3) 

I 
, l ( t : < r < t , ) = - -  e-,",(1-exi~(--t,(t:.-t~) ). (9) 

P 

As is well known [I],  the Cantor set is constructed in accordance with the following algorithm. The entire time interval of 
length (duration) t is chosen first. In the next stage, the central part of  the interval is removed and at the end of  the stage there 

remain two intervals of  length ~t (~ < V2). tn the next stage, each remaining interval o f  length ~t is subjected to the same 
division process, etc. The process of  constructing the Cantor set is shown in Fig. 1. The coordinates of  the points after the 
first division stage are [0, ~t], I t ( 1 -~ ) ,  t]. The density of  the remaining states after the first division stage is (2~t) -1 . In the 
second stage, the number of  points is eight and the coordinates of  the points, in ascending order, are [(3, ~2t], [(~ - ~2)t, ~t], 
[ t ( l - ~ ) ,  t(1 _~+~2) ] ,  It(1 _~2),  t]. The density of  states in the second stage of  the division is determined by the expression 
1/(2~)2t. As in the first stage, the expression for the density is obtained from the condition of  normalization of  all the remaining 

states to unity. I f  in stage N we denote the coordinates of  the points by t (N) (m= 1, 2 . . . .  ), then in stage N +  1 the coordinates 
of  the points, in ascending order, are determined by the recursion relations 

. . . . . . .  ; ~ -  . . . . . .  ~ ~r . . . .  ( I 0 )  t, , ,~,  = t , ~  = t , .  . .: t .  t,,.+~ - - t , , , + ~ - - ~  l . . . . . .  , = t , , . ~ a  , 

with density 1/(2/j) N+I "t. The contribution to the integral from the 2 N bars in .stage N of  the division can be expressed as 
( 2 M 

1 
J( t )  

(2~j" .t 

The sum in the expression (12) can be transformed as follows. 

function is expressed in stage n by 

gr ql t , ,  - - r< l  ..... ) / ( r ) ,  (11) 

~ N  
~:X') 

I -= exp (--~ pt~ N} ~ e ;""~ F (p), (12) 
(2~ ~ pt 

For this, we consider Fig. 2. The Laplace transform of the step 

~n (x(~ n~ < ~ < - ( n ~ '  . i e_px(~n~ ~k+lp ~ - -  ( - -  exp ( - - p A . ) ) .  
P 
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If this process is repeated for stage n + 1, then we obtain 

n (x(") < X < X~ ") .3f_ A.+I ) .q_ 1] (Z(~ n) -~- A n - -  An_ 1 < Z < X~ n) "*~ An) 

t _ (n) - - e  -p'x~ (1 - -  e "-iOAn+l) + ~ e -P 'g)e  -p(An-A"4"I) ( t  - -  

P P 

exp (--pA,+I))= 1 - -  exp (--pAn+~) (t + e -v(a~-a"+~)) e -p~("). 
P(n§ 

Using the connection x(kn)=xk(+nl + 1) and repeating this procedure, we obtain the final result 

l,~rl+~ (Z(~"+I)< - ~'-(n+l)'  ] (t - -  exp ( - -  pA~+a)) I I  (t + exp (~p(Ar~_1-- A~))). 
k:'-~'I= k=l 

Using the relation (13) and remembering that An-----~nt , w e  can transform the expression (12) to 

�9 ( p ) =  t--exp ( - -p t~ )QN (pt (f=-~))F(p),  
pt~ ~ 

where 
/q--t 

Q~ (z) = 2 -~ 1 1  ( 1 +exp ( -  z~ ") ) 
n~0 

with z=pt(1 -~). For relatively large N (N.~ 1), [ pt~ N [ It, 1 it follows from (14) that 

q) (p) =QN(z)F(p). 

It may be noted that QN(z), determined by the expression (15), satisfies the equation 

Q.~ ( @ )  t+exp  ( -z /~ )  

= 2 Q~_~ (z ) .  

It follows from (17) that for the interval 

and for 

the function QN(z) satisfies the functional equation 

(13) 

(14) 

(15) 

(16) 

(17) 

~ / ( t - g )  < Iptl < ~ - "  (18a) 

O~x/t~ t (18b) 

QN(z/~) ~-i/2Q~_, (z). (19) 

It is readily seen that in the limit N--,~ there exists the limit Q~z). Using the inequality 0 <  I exp (-pt~n(l -~))  I < 1, we 
can conclude that for any pt (0< I pt I < oo) 

0<lira Q, (z )=Q(z)  < 1. 

Therefore, in the limit N - , ~  the functional equation (19) takes the form 

Q (zl~) ='/:O(z). (20) 

The solution of Eq. (20) has the form 

(21) 

(22) 

O (z) =A ~z -. 

In the expression (21), u=ln 2/In (1/~) is the fractal dimension of  the Cantor set. 
Thus, we have shown that for the intermediate region I pt [ satisfying (18a) q,(p) takes the form 

�9 (p) ~A~(1--~) -~(pt)-VF(p). 

To the expression (22) there corresponds a representation of J(t) in the form of the fractional integral (11): 
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"t 

J(t)  = A ~ [ t ( l - ~ ) ] - ' : [  F(v) I - '  f ( t - r ) " - ' ]  (T)dx= 
9 

* 

( l - - ~ ) ' I ' ( v )  ( i - a )  .... [_(ut)du~BJ-~D-~L 0 < v < l ,  0 < x < t .  (23) 

The constant A~ cannot be obtained from Eq. (20), and it is therefore necessary to make Q~z) into an integral in order to 
estimate A~ approximately. Details of the estimate of the constant A v are given in the Appendix. 

3. C O R R E S P O N D E N C E  W I T H  T W O  L I M I T I N G  C A S E S  A N D  

P H Y S I C A L  I N T E R P R E T A T I O N  O F  T H E  R E S U L T S  

The values of the parameter ~ are in the interval 

0<~<'1,,.  (24) 

For ~ = 1/2, the fractal dimension is u= 1. In this case, it follows from (23) that J(t) is related to .fit) through the complete 

integral and corresponds to the case of  complete memory. If ~--,0 (~-*0), then from the expression (15) it follows that 

(z) =' /2 ( ! +exp ( - p t )  ). (25) 

In the t representation, the expression (25) corresponds to a linear combination of two delta functions of half intensity localized 
at the ends of  the chosen interval [0, t]. This case corresponds to complete absence of memory, as followed from the 
preliminary discussion. Thus, it follows from the analysis of the limiting cases that the exponent u of  the fractional integral 
corresponds to the fraction of preserved states in the process of evolution of the considered physical system and encompasses 
the cases of completely closed (p= 1) and Markov (p=O) systems when all states degenerate into one or two with infinitely high 

density. An interesting case for analysis is ~ = 1,4. In this case u= l,h, which corresponds to classical diffusion in quasi-one- 
dimensional semi-infinite systems, in which the connection between the concentration and flux is always expressed through an 
integral or derivative of only half order [13--15]. The appearance of a fractional integral of half order in this case can be 
understood as follows. For one-dimensional diffusion, there exist, as is well known, two equivalent solutions [13]. One of them 
corresponds to equalization of the concentration in the forward direction (x > 0); the second solution corresponds to the solution 
reflected from the boundary in the opposite direction (x<0).  For semi-infinite space, the density of states for the forward 
process becomes predominant, and therefore half the states is lost. In other words, a fractional integral of half order indicates 
fraction of states preserved in a diffusion process for semi-infinite channels. 

From these arguments it can be understood that some physical systems that can be described by equations in fractional 
derivatives must contain channels belonging to some branching fractal structure. This was confirmed in [15], in which an 
"ultraslow" diffusion equation of the following type was obtained for the main channel: 

. . . . . . . .  Y~ - -  , 0 < ~ < 1 .  (26) 
t ~ c).r- 

The structure of  the channels may differ and be generated by a definite fractal structure of the medium. In [10,16,17], such 
processes were classified as processes with "residual" memory. The reason for the use of the term is as follows. In statistical 
physics, one of the simple criteria of irreversibility of a process is change of the sign of the time under the substitution t--,-t. 
A specific feature of  a process described by fractional derivatives is that under such a substitution 

(--t )'=t*[ cos ( v~ )'4-i*sin (N.~ ) ] (27) 

part of the process is preserved, while the other part corresponds to irreversible losses. A process with "residual" memory 
corresponds to the energy principle formulated by Jonscher for dielectric relaxation [18] in the frequency domain. 

From this point of  view, transport processes in percolation clusters, fractal trees, and porous systems must be reanalyzed 
in order to obtain correct transport equations for such systems. In particular, the exponent of the fractional integral corresponds 
to the fraction of channels (branches) open for flow. 

Another large class of physical systems in which one can expect the appearance of equations in fractional derivatives is 
represented by processes with loss due to collisions. We write Newton's equation in the form 

f 1 

Av, = - -  ./F~ (r, p, x) dx = F~ (r, p, ut) du, (28) 
m i  o m i  o 
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where m i is the mass of  particle i, and F i is the force of the interaction of particle i with the medium. I f  the interaction with 

the medium is collisional in nature, then the force can be expressed in the form 

F, (r, p, x) -----F, (r, p, x) L ~1 (t~<x<tk+~)pk, (29) 

where Pk is the density of states, and ~7 (tk< z<  tk+l) is the step function defined by the expression (8). For a force acting for 
only a definite fraction of the time, we obtain, repeating the arguments of the previous section, 

t 
Av~ = B~D-~F, (30) 

m i  

where 
u 

B,----A~(t-~) -v, D - ~ f = [ F ( v ) ] - ' ~  (u -a l ) v - ' / ( u , t )da i  
0 

is a dimensionless fractional integral written down for the variable u=r/t. Using the commutative properties of  the fractional 
derivative (11), we can rewrite Eq. (30) in the more elegant form 

m, dt+'(Ar,) 
. =  B,F~, O < v < t ,  O < a = x / t < l .  (31) 

t z dttl+~ 

This equation can be used to describe Brownian motion and loss due to collisions. In particular, for the elastic force Fi= 
xV2(Ari) we obtain a generalized transport equation of the form 

mt d~+~(Ari) 
B~• (32) 

t 2 da~+~ 

An equation of the form (32) was first obtained in [9], but from other considerations. From F_x I. (32) there follows a new type 
of linear wave motion, intermediate between pure diffusion, u=0, and classical wave motion, t,= 1. It would be interesting to 
observe such waves experimentally. 

The arguments of the previous section lead to new types of relaxation, which follow from the equations for the harmonic 
oscillator and the classical equation with exponential relaxation law: 

d '+~ (Ar) 
t- B, (r (33a) 

du~+~ 

d~F + B~(Xt)F=O, 0 < v < i .  (33b) 
du ~ 

In Eq. (33a), w a (a=x,  y, z) are the oscillator eigenfrequencies, and Ar is the displacement vector; in (33b), X is the reciprocal 

relaxation time, and B~ is a dimensionless constant of order unity. These equations were actually given in [10] but without 
proper derivation. Equation (33b) is of particular interest; it predicts "ultraslow" relaxation, in which some physical quantity 
F changes more slowly than the first derivative. Are such processes observed anywhere experimentally? At the least, one can 
draw attention to the existence of "ultraslow" relaxation of induced electric polarization in dielectrics [18--19]. As is well 
known [19], some experimental data are well described by the empirical Cole--Cole expression for the complex susceptibility: 

Z(r X 0  (34) 
1+ (jo~/r '-~ 

Without making use of  the hypothesis of a distribution of the relaxation time [19], about the validity of  which there are strong 
doubts [18], we obtain the expression (34) from Eq. (33b). Equation (33b), written down for the polarization P in the presence 
of an alternating external electric field, can be expressed in the form 

t d~P 
(Zt) - ,----- + BvP=-z2E. (35) 

da ~ 

By means of Fourier transformation of the fractional derivative (11), Eq. (35) can be solved by the standard methods and an 
expression of the form (34) obtained from it for the susceptibility with parameters v = 1 -  a,  tOp = (Brht)l/~t-1, Xo=X2/Br. This 
result clearly indicates the existence of"ultraslow" relaxation processes and necessitates re-examination of a number of  processes 
"hidden" beneath distributions of relaxation times. 
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The results of  the previous section can also be applied to the Liouville equation. The ordinary Liouville equation describes 
the evolution of a closed system, in which the total number of states is conserved. A Liouville equation of the type 

ih 0~p = [ H ,  Pl (36) 
t Ou ~ 

for given time interval [0, t] with loss of the part (1-p)  of the states takes into account irreversibility naturally and does not 
require the introduction of an infinitesimally small source [20] to construct the nonequilibrium operator. A detailed investigation 
of the thermodynamics of systems described by LiouviUe equations of the type (36) will be made very soon. 

4. S O M E  G E N E R A L I Z A T I O N S  O F  T H E  R E S U L T S  

In See. 2, we obtained a fractional integral for a function determined by the expression (15). The result can be generalized 
to the case when the Cantor set consists at each stage of k bars of width k~ < 1. The previous result was obtained for the case 
k=2. Using the same ideas that led to the expression (15) and Fig. 2, we can show that for k bars (k=2, 3 . . . .  ) Ql~k)(z) takes 
the form 

' I--exp ( -'T77 'Y ) 
k 

Q2' (~)= 1-I (37) 

Instead of investigating the function Q/~O(z)m we prove a more general result. We consider the for 0<  ~j _< 1/k, z=pt(1 - ~ ) .  
product 

N i 

G~(z)= f l  i(zF!.  (38) 

where fix) is some arbitrary function. We show that if certain conditions are imposed on f(x) the product (38) possesses 
"universal" behavior and leads to a dependence of the form (21) for a large class of divisions of the Cantor set. To find the 
condition on the functionflx), we represent Glv(z) in the form of the sum 

N - !  . ~ - - t  

' ! 
Here e = }N- 1 ~, 1, 0 < ~ < 1. Integrating the expression (39) by parts, we obtain 

z 

G ~ , . ( z ) = e x p [ l _ _ ~ l n y . l n [ / ( g ) ] [ ~ :  ! ~ /'(Y) In 

We consider the limits z'~ 1, ez ~" 1 and, assuming that 

lira ] ( e z ) = l ,  
e z - + o  

we obtain from (40) 

cN(z)~_z_~exp[_ 1 f l'(y) ~ i l'(y) J ,~7-:- m y dy+ - - -  ~ ~ In y dy ln(l/D',, ]tyJ ln(l/~) 0 i(~) 
Here e=ln (l/~/ln (1/}). To estimate the two integrals, we assume that 

/(Y)= Z '  (k9 for !1<<1, 

,xl  

l ( u ) = ] +  ZC.y -~ 

From the expansions (43), we readily conclude that 

l i r a / ( z ) = f < l ,  (41) 

for u>> I. 

+ 1-(~-~-) " ~ f - ~  In y dy . (42) 

(43a) 

(43b) 
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t:[, 

I ~ / '  (v) 

This integral will be small if 

!' ( Y ) - 2.~ a~Y ~ for y<< !, 
/(Y) ~=o 

L A ~ y  ' for y>>l. 
/(v) ,=~ 

The coefficients a k and A k are, respectively, functions of the coefficients c k and C k of the expansions (43). 
(44), we can find conditions of smallness of the last two integrals in the expression (42), 

~=o,n~, .r ~ " " In(W~) . . . .  " 

[ a0 (ez ) ln (~ - )  I <<i. 

(44a) 

(44b) 

Using the expansions 

Here and in what follows, e is the base of natural logarithms. The second integral in (42) can be estimated similarly: 

In ( | /~)  AhY-~lnycly In (1/~) A~ ( k - l ) z  ~'-~ 

(45) 

It will be small if 

If the integral 

I A2 ln(ez) I <<t. (45) 
g 

f ' y ~ l'(Y) 
j ( l n [ / ( y ) l )  .1, dy= - - ~  In y d!]=l (47) 
0 

has finite value, then the product (38) leads to the result 

G, (z) ~-Avz -~ (48) 

for interval of the variable z satisfying the conditions (45) and (46) with constant A r = exp [ -  I/In (1/~)]. The fractional exponent 
v is determined by 

v----ln ( l / f ) / In  ( t /~).  (49) 

In particular, for the functionf(z~ n) in (37) the exponent v=ln k/ln (1/~), and this generalizes the result (21). 
The results of See. 2 obtained for the regular Cantor set can be generalized to the case when the parameters are random 

and can be expressed in the form 

~,=~+6,. (50) 

(51) 

In (50), ~i are small random deviations from the mean ~, 
n 

i 

In this case, it follows from the relation (13) that 
n 

X 2 X m 

l n ( t + ~ ) - - - x - - - ~  + . . .  +(_)m+,  

Taking into account the expansion 

for x=~i/~> 1 in (51), we obtain the result 
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Here, 

A,~=~ '* [ ( < 6 > e x p  ~ <6z>4-. . . )]~ ' t~t .2~ z (52) 

<6~>=n -I 6 :  ( s = t , 2  . . . . .  m..)  
i 

are the mean values of the set  {~}i} i. It follows from the expression (52) that all the previous results remain valid if in the 
corresponding expressions we make the substitution ~ .  
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of discussing with him and Professor A. Le Mehaute some of the ideas advanced in this paper. 
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APPENDIX: ESTIMATE OF THE CONSTANT A r IN THE EXPRESSIONS (21)--(23) 

For k=2,  the functionJ(y) is determined by the expressionfly)=(l +e-Y)/2. It follows from (40) that 
z 

I lay (i+e-'~ ~ _I ~:ny-e-, 
In (Ilia) z l+e-~ 

z -~exPt ln( l /Do l+e-y o ~ ~ vJ, 

I e -YlnYdy=I  l n y [ Z ( - ) " + i e - " Y ] d y =  Z ( - )  "+t ~+lnn . . . . . .  ~ln2+ Z (-)~lnkk- 
l+e-Y n 

0 0 ~ t ~ t  n ~ t  k ~ 2  

Thus, the value of the constant A~ is determined by the expression 

1 In z 2 '\ 
A~=exp( 2 l n ~ ) / |  =2-v/2 I 

I 
In 2 2. 

2 

The last two integrals will be small if 

! z e \  I (z~).ln[--~-) << t, [e-~lnzl<< 1, 

and this agrees approximately with the asymptotic behavior (18), which was established earlier by a different method. 
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