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Abstract. A general macroscopic linear momentum balance equation is derived in the form of a 
constitutive relation for high velocity fluid flow in a porous medium. It shows the nonlinearity in 
Forchheimer's formula for nonDarcy flow arising primarily from microscopic inertial phenomena, and 
expresses the inertial force in terms of the macroscopic velocity in an anisotropic and nonlinear 
manner. The point of departure is Euler's first law of motion, valid at any point in the fluid phase 
which is assumed to completely occupy the void space. The geometry of the void space, i.e., of the 
solid matrix, is taken as arbitrary. By introducing an alternative description of the microscopic 
kinematic field, namely deviations of the local velocity magnitudes and directions from the macro- 
scopic values of these quantities separately, a general macroscopic momentum equation for fluid flow 
in a porous medium is obtained after averaging over a REV. From the general equation, most of the 
established relations for nonDarcy flow can be recovered as special cases. Explicit analytic expres- 
sions are obtained for the involved inertial coefficients from which the origin and nature of nonlinear 
(inertial) effects for high velocity flow in a porous medium is clearly demonstrated. It is also shown 
that the coefficient associated with the quadratic term for nonDarcy flow is not material and is a 
function of the macroscopic flow. Finally, some previous results are discussed and an extension of the 
derived equation to include higher-order nonlinear effects, with regard to the resistivity force, is 
proposed. 

Key words. Flow in porous media, high velocity flow, inertial effects, nonDarcy flow, constitutive 
equations. 
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coefficient in (1) and (67) 
surface bounding the macroscopic fluid region V r 
a part of A I adjacent to the fluid 
a part of A t adjacent to the solid 
coefficient in Equation (1) and (67) 
inertial coefficient tensor in Equation (57) 
deformation rate tensor 
microscopic infinitesimal surface area 
boundary surface of d V t 
part of dA f adjacent to the solid 
part of dA f adjacent to the fluid 
macroscopic surface element 
microscopic infinitesimal volume element 
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a representative elementary volume (REV) 
volume occupied by the fluid within a REV 
volume occupied by the solid within a REV 
macroscopic volume element 
unit vector in the direction of the microscopic velocity with components 

Ol k 

where &k is defined in (22) 
body force vector 
unit vector in the direction of the coordinate axis 1, 2, 3 
unit tensor 
local inertia terms defined in (44) 
local inertia term defined in Equation (57) 
driving force of motion defined in (49) 
integer with values >/1 
curvature magnitude defined in (52) 
coefficient tensor defined in (61) 
coefficient tensor defined in (59) 
real number 
microscopic surface normal unit vector for da over dA I~, oriented from 

the fluid to the solid phase 
macroscopic surface normal unit vector for dAx 
pressure 
macroscopic fluid pressure as defined in Hassanizadeh and Gray (1980) 
tensor defined in (44) 
fluid mass flux 
microscopic position vector 
microscopic position vector on the surface dAts 
resistivity coefficient tensor defined in (33) 

coefficient tensor defined in (57) 
tensors of order 3 and 4 defined in (81) 
scalar coefficients defined in (85) 
tensor defined in (44) 
tensor defined in (79) 
time 
stress vector 
stress tensor 
macroscopic fluid stress tensor as defined in Hassanizadeh and Gray 

(1980) 
stress tensor defined in (76) 
resistivity force defined in (32) 
dissipative part of tST 
velocity vector 
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V 
vr 
V s 

Wk 

X, X k 

microscopic velocity deviation vector defined in (2) 
deviation of the microscopic velocity magnitude defined in (21) 
a macroscopic portion of the porous region 
part of V occupied by the fluid 
part of V occupied by the solid 
interphase surface velocity vector 
macroscopic position vector 
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Greek 

O/k 

&k 
Y 
•kt 
6(r -- r fs) 
6 k 
V 

Vr, Vx 
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0 
K ,  K r 

A 

X 

A, Akt 

~]~ IIkl 
fl, ~I~ 
P 

'T 

'T* 

components of e 
components of 6, defined in (22) 
distribution function defined in (15) 
Kronecker delta 
Dirac delta function 

angle between i k and e 
gradient operator, with respect to either r or x 
gradient operator with respect to r, i.e., x 
porosity 
temperature 
scalar quantities defined in (39) 
viscosity coefficient 
macroscopic fluid viscosity coefficient as defined in Hassanizadeh and 

Gray (1980) 
coefficients defined in (86) 
tensor defined in (34) 
viscosity coefficient 
macroscopic fluid viscosity coefficient as defined in Hassanizadeh and 

Gray (1980) 
coefficient tensor defined in (46) 
coefficient tensor defined in (46) 
fluid mass density 
coefficient tensors of order 0, 2 and 3 defined in (89) and (91) 
stress vector defined in (II4) 
stress vector defined in (75) 
an arbitrary quantity 

Special Notation 

summation 
belongs to 

U union 
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deviating quantity 
macroscopic quantity 
spatial derivation with respect to either r or x 
an averaging operator 
transposed 
inverse 
vector 
tensor 
symbolic notation for quantities defined in (81) 
take values 1 to 3 and denote Cartesian components of tensorial 

quantities 

2. Introduction 

The phenomena of fluid motion in a porous medium may be conceptualized as a 
two-phase flow system (solid-fluid), where the phases are mutually separated by 
interphase boundaries over which exchange of extensive quantities takes place 
(e.g., of mass, momentum, etc.). 

Balance equations can be written for an arbitrary spatial point r which is at 
time t occupied by only one phase; this will be referred to as the microscopic 
scale. If one furthermore assumes constitutive equations for each phase, the 
problem of flow could, in principle, be solved on this scale if the boundary 
conditions, i.e., the geometry of the interphase boundaries and exchange con- 
ditions over them, could somehow be determined. 

This, however, is a practically unattainable task, since the detailed geometry of 
the interphase boundaries cannot be described. In addition, for a vast majority of 
different porous media, measurements at the microscopic point r cannot be 
performed. 

Fortunately, in most engineering problems one has no interest in changes 
within individual phases. The interest is primarily focused on an overall, gross or 
average effect around a mathematical point of the porous region, which can be 
measured in specific circumstances. 

Therefore, when describing fluid motion in a porous medium, an alternative 
scale has to be introduced which is more consistent with our ability to observe the 
medium, viz. what we shall refer to as the macroscopic scale. The passage from 
the microscopic to the macroscopic scale is made through the application of an 
averaging procedure, and is further facilitated by the use of a representative 
elementary volume (REV), i.e., a volume over which the state variables and 
fluxes of the involved phases are averaged. Through averaging, single phase 
variables, discontinuous on the microscopic scale, become continuous on the 
macroscopic scale where, at each mathematical point, properties associated with 
both phases are assigned. Thus, through the change of scale, fields of variables 
differentiable both in space and time are obtained for the fluid and the solid 
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phase. A fictitious flow system of overlapping continua is established within 
which an interchange of various quantities takes place. 

At the macroscopic level fluid movement in a porous medium at low velocity 
magnitudes is described by Darcy's law. This law was originally obtained as an 
empirical relationship (e.g., Bear, 1972) and expresses the driving force, i.e., the 
gradient in the fluid potential, as being proportional to fluid velocity. A general- 
ized form of Darcy's law has also been obtained from theoretical considerations, 
where a macroscopic linear momentum balance equation is combined with a 
constitutive relation for the resistivity force, which defines the exchange of linear 
momentum over the solid-fluid boundaries within a REV. It has been shown 
(Hassanizadeh and Gray, 1980) that for isothermal conditions the dissipative part 
of the resistivity force, within the linear theory development, is proportional to 
the average velocity of the fluid relative to the solid phase. 

Darcy's law has been verified by numerous experiments and similarly, the 
limitations of its application are well known (Scheidegger, 1960; Bear, 1972). It 
is valid for flow situations where the magnitude of the fluid velocity is small, i.e., 
when inertial effects (forces) may be neglected. Thus, the Darcian relation 
implies that the driving force is entirely balanced by the resistivity force. The part 
of the driving force balanced by inertial forces is assumed to be negligible (e.g., 
Hubbert, 1940). As velocities increase in magnitude, however, the inertial force 
becomes more dominant. 

Various relationships have been proposed and derived by authors to describe 
fluid motion in a porous medium at high velocities (see, e.g., Scheidegger, 1960; 
Bear, 1972; Hannoura and Barends, 1980). An early and widely used relationship 
was proposed as an empirical formula by Forchheimer, i.e., 

J ---IJ[ = aq + bq 2, (1) 

where a and b are assumed to be material constants, J is the hydraulic gradient, 
and q is the magnitude of the fluid mass flux, i.e., q -= I q [. Many of the relations 
proposed or derived by other authors after the work of Forchheimer, have a form 
analogous to Equation (1). Although various modifications have been suggested, 
the form of Equation (1) seems to be in sufficiently good agreement with 
experimental evidence (see, e.g., Scheidegger, 1960; Bear, 1972). 

In the early analysis of nonDarcy flow, there was a tendency by authors to 
interpret the proportionality of the driving force J with q and q2 by making 
analogies with turbulent flow in pipes. As is well known, at high velocities in 
pipes (i.e., at large Reynolds numbers), turbulence develops and J has a quadra- 
tic dependence in terms of the velocity. This analogy, however, is not adequate in 
explaining the inertial phenomena in porous media. Experiments confirm that 
when gradually increasing the macroscopic velocity, the nonlinear (quadratic) 
dependence of J on q appears much before the onset of real turbulence in porous 
media flow (see, e.g., Scheidegger, 1960; Bear, 1972). Thus, the nonlinearity in 
laminar flow had to be attributed to inertial effects, which primarily arise from the 
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fact that fluid velocity streamlines on the microscopic level are not rectilinear, 
and a macroscopic force is generated proportional to q2. 

Apart from the proposed empirical and semi-empirical relations, an effort was 
directed toward a derivation of Equation (1) from theoretical considerations. 
These were based on different approaches, such as dimensional analysis, capil- 
laric model, Kozeny theory, drag theory, and statistical theories, all of which are 
reviewed in Scheidegger (1960) and Bear (1972). 

In addition to these approaches, there have been theoretical examinations of 
nonDarcy flow where considerations have been made on two scales and an 
averaging procedure is employed. For example, Irmay (1958) considers the 
Navier-Stokes equations on the microscopic scale, assuming an incompressible 
fluid and a specific geometry for the pore space. After averaging over a REV, 
this author obtained an equation analogous to Forchheimer's formula, where 
isotropic coefficients are derived and expressed in terms of geometric parameters 
of the assumed pore space. 

In comparison, Bachmat (1965) takes a more general approach with regard to 
defining the pore space. Assuming a constitutive relation of a specific form at the 
microscopic level, namely the viscous force being proportional to the micro- 
scopic velocity, and considering an incompressible fluid, he derives an anisotro- 
pic form of Equation (1), where the coefficient a is a second-rank tensor and 
coefficient b is a scalar expressed analytically in terms of microscopic flow 
directions. As compared with previous studies, the results of Irmay (1958) and 
Bachmat (1965) have brought much light onto the nature and origin of nonDarcy 
flow in a porous medium, demonstrating that the nonlinearity in (1) arises mainly 
due to microscopic inertial phenomena. This is a view supported by various 
authors (see, e.g., the work of Ahmed and Sunada (1969), and the reviews given 
in Scheidegger (1960) and Bear (1972)). 

In other investigations (e.g., Whitaker, 1969; Gray and O'Neill, 1976; Has- 
sanizadeh and Gray, 1980; Shapiro, 1981), flow in a porous medium has been 
analysed based on general continuum considerations of the microscopic flow, 
where macroscopic balance equations for a mixture of phases are obtained 
through the application of an averaging procedure. Following the derivation of 
macroscopic balance equations, constitutive relations are determined in order for 
the theory to be applicable to particular flow systems, i.e., thermodynamic 
macroscopic quantities are related to thermokinetic macroscopic quantities in a 
materially dependent way, based on the axioms of constitutive theory. The 
procedure is similar to the one used in classical mixture theory (see, e.g., Eringen 
and Ingram, 1967). 

Although this type of approach is fully general in treating fluid flow through a 
porous medium, the final form of the macroscopic linear momentum balance 
equation is not adequate for a theoretical interpretation of experimental results 
on nonDarcy flow. 

When treating the linear momentum balance equation at the microscopic scale, 
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the essential point in this approach is the introduction of a velocity deviation 
vector: 

~r t)-= v(r, t ) -  re(x, t) (2) 

This definition is generally employed for various types of problems in fluid 
dynamics and multiphase flow systems, e.g., when analysing turbulence (Beran, 
1968), where ~ is an ensemble average, or in multiphase flow analysis (Ishii, 
1975), where ~ is a time average, or botfi space and time average (Drew, 1972), 
or only space average when treating flow in a porous medium (Whitaker, 1969; 
Gray and O'Neill, 1976; Hassanizadeh and Gray, 1980; Shapiro, 1981). With 
so defined, after averaging, one obtains a term (p~) ,  where ( ) denotes an 
averaging operator. This is a tensorial quantity and has dimensions of stress (e.g., 
Reynolds stress in turbulence). It is usually incorporated with the ordinary stress 
tensor, thus forming a new quantity for which a constitutive relation is found (see, 
e.g., Hassanizadeh and Gray, 1980; Shapiro, 1981). Alternatively, it can be 
treated separately and a separate constitutive equation for (Oi@) is assumed (see, 
e.g., Gray and O'Neill, 1976; Whitaker, 1969). 

We can state that most of the information on convective microscopic inertial 
effects is present in this term. Moreover, the nonlinearity in Equation (1) 
probably arises mainly due to this term. However, with constitutive relations that 
have been obtained for (pi,~,), either directly, or through the definition of a 
generalized macroscopic stress tensor, one is not able to obtain the experiment- 
ally approved form of Equation (1). It seems, therefore, that this type of 
approach, i.e., employing ~, as given in (2) and defining a constitutive relation for 
the term (pi@) based on mixture theory, is not adequate for treating high velocity 
flow in porous media. This point will be brought up in more detail later in the 
paper. 

In addition to these investigations, flow in a porous medium has also been 
studied through direct application of the mixture theory (see, e.g., Mueller, 1971; 
Raats, 1971; Morland, 1972), where the medium is treated only macroscopically 
and microscopic considerations are not made. With regard to macroscopic 
balance of forces and inertial phenomena, this approach often leads to an 
incomplete description. This point will also be brought up later and briefly 
discussed. 

On one side we thus have derivations based on assumptions not sufficiently 
general, but which finally result in experimentally confirmed equations. On the 
other, although a fully general approach is made, the analysis does not result in 
equations which can be reduced to the experimentally verified form for nonDarcy 
flow. 

In an attempt to overcome a part of these difficulties, we present in this paper a 
derivation of a macroscopic linear momentum balance equation for fluid flow in a 
porous medium, based on continuum considerations. It will be shown that the 
nonlinear force in Forchheimer's formula arises primarily due to microscopic 



70 VLADIMIR D. CVETKOVIC 

inertial phenomena and, moreover, that the inertial phenomena, as manifested on 
the macroscopic level, can be understood only through analysis of the micro- 
scopic flow. Instead of employing the conventional velocity deviation vector ~, of 
(2), an alternative description of the microscopic kinematic field will be intro- 
duced, namely a deviation of local velocity magnitude and direction separately, 
finally resulting in an equation which can be considered as a generalization of 
Forchheimer's formula (1). Reducing this general equation to Equation (1) and 
other established and experimentally confirmed relations for nonDarcy flow as 
special cases, will be straightforward. 

3. Microscopic Description of the Fluid Motion in a Porous Medium 

Since our primary interest is to analyse nonDarcy flow, we shall only consider a 
porous medium saturated by a single fluid phase. In addition, we shall restrict our 
analysis by considering a nondeformable solid matrix whose void space is 
continuous. Furthermore, we shall assume that no mass exchange takes place 
between the solid and fluid phase, that interphase surface quantities (e.g., surface 
tension effects) are negligible, and that the solid and fluid phases are nonpolar. 

At a microscopic spatial point in the porous medium, either the fluid or the 
solid phase will exist at time t (Figure 1). With r ?s we shall denote the position 
vector of a spatial point of the interphase surface, which we materially assume to 
belong to the solid phase. 

The volume of the entire porous region, both fluid and solid, is denoted by V, 
which consists of the volumes occupied by the fluid V f and by the solid V s, 
where V = V t U V s. The boundary of V t, i.e., A t, consists of a material surface 
adjacent to the solid phase denoted by A is, and a geometrical surface, A ty, which 
is a part of the external boundary of V, i.e., A f = A ~ U A rs (see Figure 1). In 
general, A g is not a material surface with respect to mass or any of the other 
extensive quantities, such as momenta, energy, or entropy. In a similar manner, 
we can define the boundary of the solid phase A s, such that A s = A ss U A st. It 
should be noted that A sf = A is. 

In the analysis which follows, we shall be primarily concerned with mechanical 
phenomena and, therefore, only consider the balances of mass and momenta, i.e., 
at each microscopic point r and time t, we shall assume the following balance 
equations to be valid (Eringen, 1965): 

M a s s  balance  

a~ + v .  (ov) = o. (3) 
Ot 

Linear  m o m e n t u m  balance  

0 
(0v)  + v -  (0vv)  = v -  t + 0t. (4) 
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Fig. 1. A portion V of a porous region, composed of V f and Vs; Af bounds V f and Af = 
A # (J A fs. 

Angular momentum balance 

t--t T. (5) 

Since we consider a nondeformable  solid matrix, the above equations are only 
of interest at points in the fluid phase. 

Initially, let us consider the fluid motion to be laminar. The  assumption of 

laminar flow implies the existence of streamlines continuous within V r. In 

addition, laminar flow provides a unique solution at t ime t for the fluid stress and 
fluid velocity fields within V ~, provided that the boundary conditions on A ~, i.e., 

on A # and A is, are known. The  fluid stress and velocity fields can be obtained 

solving Equations (3) and (4), when a constitutive equation for the fluid stress is 

assumed. Later,  however,  we shall relax this restriction and discuss turbulent flow 
in a porous medium. On the surface A rs we may take as the boundary condition 

v(r rs, t ) =  0 (no-slip condition), if the solid matrix is assumed to be fixed. Fur- 
thermore,  the fluid stress t has to be known on A rs, while the dissipative part  of 
the microscopic fluid stress tensor will be related to the fluid velocity through 
some material  coefficients, e.g., A and /z, if the fluid is assumed Newtonian. It 
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follows, therefore, that the actual solution of the microscopic flow, i.e., the 
velocity v = v(r, t) and the corresponding field of streamlines in V f is determined 
by the geometric configuration of V ~, and also by the material properties of the 
fluid and by the boundary conditions given over  A g. 

Consider a time t and a microscopic point r in the fluid of the velocity vector  
v = v(r, t). It can be expressed as 

v = v(r, t) = vk(r, t)i k = v(r, t)e(r, t), (6) 

where e is a unit vector  in the direction v, and v is the magnitude of v, i.e., 
v = Iv I (see Figure 2). (Throughout  the text the summation convention is valid for 
repeated indices.) After scalar multiplication of Equation (6) by i t , one has 

Vk~kl = r e "  i I = vl (7) 

or  

vk = yak  (8) 

where 

a k  - -  e "  i k.  ( 9 )  

From the definition it follows that ak are cosines of angles between the unit 
vectors e and i k (see Figure 2), i.e., 

ak ~ e" i k = cos(e, i k) = cos ~k. (10) 

By writing the three components  of the velocity vector  in the form vk = Yak, 
we have expressed them in terms of four quantities which are functions of both 
space and time, i.e., v = v(r, t) and ak = ag(r, t), with an additional restriction on 

the components  of the unit vector  e, i.e., 

akak = 1. (11) 

The  ak values contain the information on the geometry of the microscopic 
flow. If a~ = const, in V f, the microscopic flow is parallel, corresponding to a 
porous medium composed of parallel stream tubes. If ag = ak(t), the microscopic 

flow is also parallel but unsteady, i.e., the direction changes in time. 
Employing (3) in Equation (4), and expressing vg as given by Equation (8), one 

has in component  form 

P 0 (york) + pVal(VOtk),t = ttkJ + Pfk (12)  
o t  

which can be further expanded as 

P ~t (Yak) + pvvtale~k + pv2o~ta k,l = tlk,l + pfk. (13) 

The  left-hand side of (13) contains the entire inertial force for the microscopic 
flow. Included in the inertial terms is a quantity which is quadratic in the velocity 
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~ = ~  

~ d A  ff 

dV 

v 

v : v  + ve . ve 

~= V6 + ve 

,=ve 

o e 

/ 

_ 

Fig. 2. A REV with the introduced deviating quantities ~3 and ~ for assumed vectors ~ and v; ~ is 
the deviation vector defined in (2). (For simplicity, vectors v and ~ have been chosen to lie in the 
x2 - x3 plane.) 

m a g n i t u d e  v, i.e., V2OIlOLk,I  . The  quan t i ty  ~o~k,t conta ins  in fo rmat ion  on the 

cu rva tu re  of the microscopic  flow, as will be shown later. This  quan t i ty  will 

vanish  for C~k = const ,  or if C~k = O~k(t). 

4. Macroscopic  Descr ipt ion of the Fluid Mot ion  in a Porous  Medium 

T h e  solut ion for the fluid m o v e m e n t  in a porous  m e d i u m  on  a microscopic  level  

would  requi re  us to know the exact  conf igura t ion  of the vo id  space,  i.e., the 
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geometry of the surface A r (Figure 1). Since the precise knowledge of this 
configuration can never be attained, and since our interest in fluid flow through a 
porous medium is usually related to a scale much larger than the size of a typical 
pore opening, we consider flow on the macroscopic scale. That is, we are not 
concerned with an exact description of fluid motion in individual pore openings, 
but rather with a gross effect of the microscopic flow. Therefore, to provide a 
mathematical description which would involve quantities defined on the scale of 
our interest, an averaging procedure is introduced to proceed from the micro- 
scopic to macroscopic levels. 

In place of a spatial (Eulerian) point r, defined on the microscopic scale as to 
contain only one phase at time t, a spatial point x is defined for the macroscopic 
scale as the centroid of a REV (denoted by d V in Figure 2), which now contains 
both phases simultaneously. Consequently, macroscopic densities and fluxes at x 
are variables continuous in both space and time. 

Referring to Figure 2, a macroscopic volume d V consists of d V f and d V s. 
Similarly, the boundary of d V f is dA f, with dA f = dA t/IJ dA f~. 

The averaging procedure has been a topic of investigation by several authors 
(see, e.g., Bear, 1972; Gray and O'Neill, 1976; Hassanizadeh and Gray, 1979a; 
Shapiro, 1981; Slattery, 1969; Whitaker, 1969). In the following paragraphs, we 
present only those points which are necessary for the discussion. For a more 
detailed analysis, the reader should consider the above-mentioned references. 

An average (macroscopic) mass density is defined in the form 

t5= t~(x, t)=-d~ farO(r, t)'y(r, t)dv (14) 

where 3' = 7(r, t) is a distribution function defined as (e.g., Whitaker, 1969) 

7(r ' t)={10 forf~ ~ (15) 

and where dv is the infinitesimal volume element associated with a spatial point r 
on the microscopic scale. 

A macroscopic velocity vector may be defined in the form 

~(x, t ) - - - - ~  v p(r, t)v(r, t)y(r, t)dr. (16) 

In an analogous manner to that given at the microscopic level, we can express 
~(x, t) in terms of its magnitude ~5, and a unit vector ~ in the direction of ~ (see 
Figure 2), i.e., 

fg = ~)k ik = tSe (17) 

Both t5 and ~ are macroscopic quantities. (Note that a macroscopic (average) 
quantity is not necessarily defined as a direct application of the integral 
(averaging) operation on the corresponding microscopic quantity, as it is the case 
for the density in (14).) 
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After scalar multiplication of (17) with i t, we obtain 

Vk6kl = V(~" i k = V ~ l  = V l ,  (18) 

where we have defined c~k as 

c~k =- (~" i k = cos ~k. (19) 

Using (8) and (18), Equation (16) can be rewritten in the form 

_ 1 1 
Vffk ~ M  IdvPVakTdV---fi~V IdvrPVakdv. (20) 

At  each microscopic point r in d V r, a deviation from the macroscopic velocity 
magnitude and its direction at point x with respect to the microscopic velocity 
magnitude and its direction, can be defined as 

z3(r, t ) -  v(r, t) - 6(x, t) (21) 

and 

6k(r, t) --= a k ( r ,  t )  - ~k(X, t). (22) 

We note that the values of ~3 and 6k are unique at r only for a specific 
macroscopic point x and a chosen size of d V. Thus, we could have written 
15 = z3(x, r, t) and ~ = ~(x, r, t) for a given d V. In addition, although the introduced 
vector  6 = 6ki k is not a unit vector, i.e., ~ �9 ~ ~ 1, one can specify an upper limit 
for its magnitude as 

[~1~<2; (23) 

however, values [~1 = 2 and close to 2 are not very likely within a REV,  since 
they physically imply a microscopic flow in the opposite direction to the macro- 
scopic flow. In Figure 2, for assumed specific values of ~ and v, the microscopic 
velocity is expressed through the introduced deviating quantities ~3 and 6, in 
contrast to employing the conventional deviation vector  ~, defined in (2). It 
should be emphasized that apart from the points in d V r, where v = 0 (at r = r~S), 
is not equal [~ [. 

Substitution of Equations (21) and (22) into (20), yields 

_ _ _  1 fd P( V~k  ~'- ~)~k -~ O~k + ~)~k) d v pl)OL k = " ~  Vf  

1 ~d P~3~k dl) + ~V Id ~kV-pd~)+ (24) 
-= ~v-G + ~ -~  vr v* 

1 fd p~Skdv. 
+ d V  vl 

For the above identity to be valid 15, ~, ~k and 6k must satisfy 

~d PT(Vt~k + ~t~k + ~&k) dv = 0. (25) 
V 



76 VLADIMIR D. CVETKOVI(~ 

Employing the definitions of fi and 8k given in (21) and (22) into Equation (13) 
gives 

315k+ clt5 + pt] ~k.tk + Ot~ a~k + p ~tt (b~k) + 
P 0 t pak -~  pak -~ + ~p 3 t 

+ p~tO 2~ k,t + p~IV2~ k,l + p ~ k ~ , 1 6  + p~k~tt),t~ + 

+ pakat~,t + pOql)20~k,l = tlk3 + pf~ (26) 

where we have eliminated the terms multiplied by tS, l since, by definition, 15 is not 
a function of r (only of x) and since the gradients in (26) are defined with respect 
to r. 

Equation (26) is the linear momentum balance equation at the microscopic 
level in which we have introduced macroscopic quantities ~5 and ~. The terms on 
the left-hand side of (26) are inertial forces expressed in terms of ~5, 3, ~, and 6. 
From Equation (26), which is valid at each point r, the next step is to obtain a 
macroscopic linear momentum balance equation valid at x. 

After employing an averaging procedure analogous to the one described by 
Hassanizadeh and Gray (1979a), a macroscopic linear momentum balance equa- 
tion is derived in the form 

0__~_~k + 
# at 

+ 

+ 

+ 

+ 

with ( 

a~+~tpaa~ ~ a~ 

at (P~)+ p (~ak) +~(pak,x)e~+ 

152(pa k, la l )  -l- ak<p~,l) tSl + (pal~,l) Ok + 

) denoting the averaging operation, i.e., 

(27) 

(~b)---~V Idv r dv = ~V ldv~ ~ b dv (28) 

The development of the first and second term on the right-hand side of (27) is 
given in Appendix II. 

If the assumption that p = const, is made, it is shown in Appendix I how (27) 
takes a simplified form, i.e., 

p~ ~ + <p,~ k,~&) ~2 + <p&tb) G + (Pak&t~a) 6 + 

"4-(pott~k,l~) 2) q- ~ k p e ,  I = -{lk,I + peTk + p e g  (29) 
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where e is the porosity defined as 

d V f 1 
Id y(r, t) dv = e(x, t). (30) e------ d V  - d V  v 

A constitutive equation for the macroscopic fluid stress tensor may be assumed 
in the form: 

t-k~ = -- ep 6k, + 2d-~ 6k, + 2/i, dk~; (31) 

/5 is the macroscopic fluid pressure, d is the rate of macroscopic fluid defor- 
mation, and ,( and fi are macroscopic viscosity coefficients. (Note that although 
the constitutive equation for �88 is assumed here to be analogous to the one given 
in the work of Hassanizadeh and Gray (1980), the definition of t is not the same. 
This point will be recalled later in the paper.) 

The macroscopic body type of force fiT arises from the resistance which the 
fluid experiences due to the presence of the solid phase within a REV. Through 
thermodynamic considerations, in the work of Hassanizadeh and Gray (1980) fiT 
is shown to consist of a reversible and a dissipative part, i.e., 

pTk = E kp 4- Yk (32) 

or, as a linear approximation 

~Tk = e kp + Rkl~ (33) 

having assumed the solid matrix to be nondeformable and fixed. 
The dissipative part of V �9 i has its origin in fluid viscosity, i.e., it expresses the 

total microscopic fluid viscous forces within d V t as manifested on the macro- 
scopic level. It has been generally accepted that this force is much smaller as 
compared to T. Moreover, considering high fluid velocity magnitudes, the 
inertial forces will tend to dominate even more viscous forces, as compared to the 
flow with lower velocities. In our following analysis, we shall therefore neglect 
the dissipative part of V �9 i.  In addition, since the microscopic flow field is taken 
as laminar, it seems reasonable to assume (33) valid. Later, however, a higher- 
order expansion of J" in terms of ~ will be considered. 

Alternative forms of both Equations (27) and (29) can be derived if one 
expresses the microscopic velocity field v(r, t) through a mapping 

v(r, t) = A(r, t ) .  ~(x,  t). (34) 

Several authors have discussed the nature of tensor A (see, e.g., Nikolaevskii, 
1959; Whitaker, 1969; Neuman, 1976; Stokes, 1983). It has been shown that 
tensor A may be considered as constitutive (i.e., depending only on the structure 
of the porous media) under assumptions which are not valid for the flow analysed 
here, and consequently the tensor field A cannot be considered as constitutive, 
i.e., independent of the microscopicand macroscopic velocities. However, as one 
can observe from (27) and (29), the inertial effects as manifested on the 
macroscopic level, include quantities in form of macroscopic continuum 
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coe~cients,  which are necessarily functions of both the microscopic and 
macroscopic flows, i.e., functions of 15, ~, ~ and 15. In the following, we shall 
express the macroscopic inertial quantities of (27) and (29) by employing a scalar 
K in place of the magnitude deviation ~3, where K is given as a function of A, e 
and ~. 

Rewriting Equation (34), using definitions (18) and (8), and multiplying both 
sides with e, we have, in component form, 

v = ~ A k l d l a k .  (35) 

With (35), Equation (21) becomes 

fJ = ( A k l d l a k  -- 1)~3 ~ mS. (36) 

Thus, the deviation of the microscopic velocity magnitude from the macro- 
scopic velocity magnitude is expressed in terms of a scalar multiplicant ~ and the 
macroscopic velocity magnitude ~5, where for a specific x and d V, K = K(r, t). 

From the definition of ~ given in (16), it follows that 

PVk = (OVk) = (pAkl) 15,, (37) 

i.e., the condition 

(OAk,) = p 8k,- (38) 

Furthermore, the scalar quantity K defined as 

K ==- Akt6l ,ak -- 1 ~- K' -- 1 (39) 

has to satisfy the following relation 

( p K a k )  = -- (Oak) (40) 

which emerges from the condition given by (25). Thus, we see from (40) that 
when ~ = 0, i.e., e = ~ (corresponds to a porous medium composed of straight 
parallel tubes), we have 

(oK) = o. (41) 

Apart from condition (38), one is not able to specify any additional information 
on the nine components of A and, thus, its introduction might seem disad- 
vantageous. Considering, however, the scalar quantity K', defined in terms of A, 
and the microscopic and macroscopic flow directions in (39), the physical 
implications become more observable. 

The scalar quantity K' is related to the distribution of microscopic velocity 
magnitudes within d V f at x, expressed through 15 at x. A restriction on K' could 
be written in the form 

0 ~< K' < ~c~ (42) 

where K/~ denotes an upper limit of the relation v / O  at x, and where we have 
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included the points r t~ on the interphase surfaces, with the no-slip condition 
assumed (i.e., K'(r #, t) = 0). Although the exact value of K; cannot be determined 

for the general case, an estimation, assuming a specific model of the void space 
(e.g., interconnected random tubes, Bear (1972)), could be made. In addition, 
considering K' as a stochastic variable, one could assume for the same model a 
specific distribution function for K' within d V r. 

Employing (36), Equation (27) can be written in the form 

[k + 5PklSt + Sklvl = - e~,g + RklVl + fifk (43) 

where 

Ogk J r  
ix =- (~ + (OK)) T [  + ( (P~)  + (O"~)) O--i' 

Pkt -= ak<pK ~) + (Pak,~> + &,<pamK m) + 

+ <O&K,3 + (2pa k,~K> + {(Pa k,m&m> + 

+ (p&kdlmKm) + (2p&,& k.mK) + 

(( S~l--= P O r /  

OK & k ) + ( p O & k  
(44) 

If the microscopic condition p = const, is valid, i.e., Op/Ot= p,, = 0, one may 
employ (36) in Equation (29) to obtain 

o~k + o f I ~  = - ep,~ + Rk,~ + Epfk (45) ep O~- 

where 

(Ikl ~ Hkl + Ge,  l, 

II~ --- {~kZ(~mK, m) + (~ k,lK) + 

~- ((~ k,ra~rn) -~ ( OlkOlmK, m ) -~- ( Olm3 k,mK) Av 

-I- ( OlkOlmKK, m ) -I- ( OLmdl k,mK2) ) ~l} p. (46) 

Summarizing the derivation of the macroscopic linear momentum equation for 
fluid motion in a porous medium, four different forms have been obtained. Two 
of these equations, (27) and (29), are expressed in terms of ~, one for p = p(r, t) 
and the other for p = const. Alternatively, Equations (43) and (45) have been 
written employing the tensor A, i.e., the scalar quantity K. As has been shown, 

when describing inertial phenomena as manifested on the macroscopic level for 
fluid flow in a porous medium, one cannot  avoid quantities such as t~, or 6 and V6, 
since the macroscopic inertial forces arise mainly due to these quantities. Hence,  
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although A is not constitutive, we find it more appropriate to express the final 
form of the macroscopic linear momentum balance equation in terms of K, rather 
than in terms of ~3, within the present development.  

Thus, Equations (43) and (45), expressed through the tensor A defined in (34), 
i.e., through the scalar quantity K, one for P = p(r, t) and the other for p = const., 
can be respectively rewritten as 

[k + vPktvl + R'ktV-l = Jk (47) 

Ogk 
ep - -  + ~3flkt~ +/~kl~3t = -/k (48) 

Ot 

and 

where 

with tensors P, I], S, and the vector  i defined in (44) and (46). 

(49) 

5. Discussion on Derived Continuum Coefficients 

When solving problems of fluid motion in a finite porous region, an important 
step is to constitutively relate measurable field quantities, i.e., the macroscopic 
velocity ~ to the pressure gradient J. Essentially, this means that for a specific 
porous region a relation between re and J is established, independent of the 
macroscopic boundary conditions. Darcy's law is valid for low velocity mag- 
nitudes and the relationship between J and ~e is maintained through a constitutive 
coefficient R, which is assumed invertable and its inverse (usually referred to as 
hydraulic conductivity) is, for practical purposes, further expressed through the 
permeability tensor and the viscosity coefficient of the fluid involved (see, e.g., 
Bear, 1972). The permeability tensor is assumed as a constitutive quantity to 
depend only on the configuration of d V r (i.e., on the geometry of the void 
space). 

Inertial forces, however, which macroscopicaUy become significant as velocity 
magnitudes increase, have a primarily kinematical origin, i.e., they directly 
depend on the exact velocity field v --v(r, t) in d V f, but also on the scalar field 
p = p(r, t) for the general case. Exact velocity and density fields, in turn, depend 
not only on the microscopic boundary conditions (configuration of dArS), but also 
on the macroscopic boundary conditions (given over dA ~) and the material 
properties of the fluid. From the preceding analysis, we are able to observe in 
Equation (47) (i.e., (48)), more precisely the origin of inertial forces as manifested 
on the macroscopic level. These forces mainly arise due to the fact that, first, the 
microscopic velocity changes locally; second, the microscopic streamlines are 
curved; and third, the magnitude of the microscopic velocity differs from the 
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macroscopic velocity magnitude, i.e., a deviation 13 ~ 0 (i.e., K ~ 0) exists and, in 
addition, Vt3 ~ 0 (i.e., VK ~ 0). 

Let us now, for simplicity, assume the case p = const, and consider Equation 
(48) which has been derived following microscopic and macroscopic analysis. 
This equation relates J and ~ through quantities written in the form of continuum 
coefficients. One can observe from definition (46) that the structure of inertial 
continuum coefficients is complex, and that their exact values could be calculated 
only if the field v = v(r, t) is known. 

A practical approach, however, when treating high velocity flow in a porous 
medium, has been to assume the inertial coefficient of (48) to be isotropic and 
material, i.e., constitutive for a specific porous region, and then experimentally 
determine its value (see, e.g., Scheidegger, 1960; Bear, 1972). It follows from 
Equation (48) and definitions (46) that this approach essentially involves an 
approximation. In the following paragraphs, we will, therefore, discuss the nature 
of the derived inertial coefficients, finally emphasizing the caution one should 
have when assuming the coefficient, generally employed for nonDarcy flow, to be 
material. 

The coefficient tensor 1] in (48) is associated with the quadratic velocity and 
expresses macroscopic inertial forces due to microscopic flow phenomena within 
d V f at a macroscopic point x. It is composed of two parts: 11, which is a function 
of the microscopic and macroscopic flows, and ~Ve, where Ve is constitutive and 
depends on the spatial variation of the void space. 

If one assumes a simplified flow situation with dk = 0 (all = 1, c72 = d3 = 0), i.e., 
a medium composed of straight tubes in the direction Xl, of possibly varying 
cross-sections, the coefficient becomes 

1311= pK +dx~ (5o) 

and the inertial effects are then due to changes of porosity and velocity mag- 
nitudes along xl. If the cross-section areas of the tubes are constant, we have 

f I=0 (51) 

and inertial effects could only arise from local inertia, i.e., if 

d• 
a t  p ~  0. 

In the definition of fl (46), two terms do not contain the scalar quantity K, 
namely (6 �9 V6)6 and 6Ve. The former contains information only on the geometry 
of the microscopic flow. (Bachmat (1965) derived an equation analogous to (48), 
but with a scalar coefficient associated with the quadratic term. This coefficient is 
defined solely in terms of the void space geometry.) Furthermore, one can show 
that the curvature magnitude [k[ of a streamline curve, as defined in three- 
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dimensional space, can be expressed in the form (Stoker, 1969) 

I kl  = ~/OllOlkdOlrn~k,rn. (52) 

In addition, we can write 

al~k,l = ~ k , l  = C~lC?k.l + ~l~k,l (53) 

employing the definition of ~. Thus, we see that one part of [-I, associated with the 
squared velocity magnitude, is directly proportional only to the curvature of the 
microscopic streamline field integrated over d V r. 

The tensorial character of [! stems from the tensor (V~K) and the fact that 
vectors of the remaining five terms in (46), as well as the gradient in porosity, will 
not, in general, give a resultant in the same direction as ~. Clearly, with various 
possible irregular configurations of dA fs, there is no a priori reason why these 
vectors should be colinear with (~. 

Estimating the magnitude of individual terms of (44), or (46), is difficult and 
one is not able to say whether the terms containing K are small as compared to 
(~- V~), which is a function of the flow geometry only. In general, for a random 
configuration of a porous medium, the microscopic velocity magnitudes change 
considerably within d V r and the terms containing K could make a significant 
contribution to the total value of [1. Considering Equation (47) for the case when 
p = p(r, t), we see that besides the resistivity term assumed proportional to ~, 
there appears an additional term proportional to ~, namely S �9 9. The tensor S is 
defined in terms of local changes of K and ~. Although one can perhaps assume 
this term to be small, it seems that for the general case of microscopically varying 
fluid density, when one measures the resistance (i.e., the conductivity), one is 
really measuring R (i.e., {R} -1) of Equation (47). In other words, considering the 
definition of R, one can say that the total resistance proportional to ~ consists of 
two additive parts: one directly associated with physical properties of the fluid 
(e.g., tx) through friction over d A  # and with the configuration of d A  is, while the 
other is directly associated with the kinematical field only, i.e., with local changes 
of the flow pattern within d V s. 

From the definition of [1 it follows that 

l'Ikl = l'Ik~(X, t) (54) 

or, for steady-state flow, 

i lk,  = flk,(x). (55) 

If one now considers the macroscopically uniform and unidirectional flow in a 
porous region with a homogeneous and isotropic configuration of the void space 
d V f (where [I = [] since V e = 0), one could probably assume [] to be constant 
and isotropic. However, if one treats high velocity fluid flow which is not uniform 
and unidirectional, i.e., macroscopic streamlines are, for example, curved and 
possibly change in time, then even for a homogeneous and isotropic porous 
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region 

I Ik ,=  IL,(x, t), (56) 

i.e., the continuum coefficient Il will also depend on the macroscopic boundary 
conditions. 

It follows from the definition that l-I is not a constitutive coefficient in the same 
sense as R, due to the dependence of both e = e(r, t) within a R E V  at x on the 
macroscopic flow curvature at x and, in general, of K = K(r, t) on ~ (through A). 
Hence,  variations of ll in space will not only result from possible heterogeneities 
in the configuration of the pore space d V ~ within the macroscopic flow region, 
but also due to possible changes in the macroscopic flow. Employing the 
averaging procedure,  a microscopic differential field equation (4) (Euler's first 
law) has been transformed into a macroscopic linear momentum balance equation 
(47), i.e., (48). In this form, (47), i.e., (48), can be considered as a constitutive 
equation for high velocity fluid flow in a porous medium, relating the macro- 
scopic dynamic field (pressure) to the macroscopic kinematic field (velocity) in an 
anisotropic and nonlinear manner, with two material type of coefficients, fl and R. 
However ,  in contrast to the latter coefficient, which may be taken as independent 
of the macroscopic velocity field, the former should, in general, be treated as a 
function of the macroscopic velocity field, e.g., of the macroscopic streamline 
curvature. Although this essentially supports the major conclusion of Barak and 
Bear (1981), it is clearly in contrast with the conclusions drawn, for example, by 
Ahmed and Sunada (1969), and with the assumptions made by other authors (see 
the reviews in Scheidegger (1960) and Bear (1972)), namely, that the coefficient 
associated with the quadratic term for high velocity flow in a porous medium is 
material, i.e., constant for a specific porous region. 

Based on definition (46), one is not able to directly evaluate components of [l. 
However ,  one could possibly quantitatively estimate their values if a specific, 
simplified flow pattern, and a specific distribution of microscopic velocity mag- 
nitudes (i.e., of K), within d V r, is assumed. Nevertheless, definitions given in 
(46), give a good qualitative insight into the nature and origin of coefficients 
generally employed for nonDarcy flow in a porous medium. 

6. Comparison with Previously Developed Relations 

Due to the analogous forms of Equations (47) and (48), we shall write them both 
as 

Ik + gCk~g~ + R*~5~ = Jk (57) 

where tensors C, R* and the vector I will take, respectively, values P, R' and I, 
~ ~ 

i.e., values I1, R and ep(O~/Ot), depending on whether we are assuming the 
microscopic flow to satisfy, respectively, p = p(r, t), i.e., p = const. 

Based on Equation (57), we show, in the following steps, how various 
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established relations for nonDarcy flow in a porous medium can be recovered as 
special cases. This will be mainly based on assuming isotropy conditions. 

Neglecting for the moment  the local inertia term I, we shall assume the tensor 
R* to be invertible and multiply Equation (57) by its inverse to obtain 

(,~O*, + 8k,),~, = K~,J, (58) 

where 

and 

* - -  @ - - 1  Kk, = {R k,} (59) 

Okl = Kk , ,C , , l .  (60) 

If one now assumes that K* can be expressed as a multiplication of a scalar /x 
(microscopic fluid viscosity constant) and a tensorial quantity as 

K*, = k*~2, (61) 
/x 

we have 

0'~, = _1 k~,~Cm, =--1 Qk,. (62) 
/x /x 

Assuming a further isotropy of (1, i.e., 

Okt = rt 8kl, (63) 

we write Equation (58) in the form 

/x ( g ~ +  1)Ok = k~tJl. (64) 

Employing the specific discharge vector  defined as q =  e{ instead of { in 
Equation (64), we get 

( "r/ ) =ek*,J , .  (65) /x q~--~+l qk 

If the tensor k* is also isotropic and 

k~z = k* Ski, (66) 

Equation (65) can be written for a specific flow direction as 

J = aq + bq 2, (67) 

where 

= ~ b ~- e2k, .  (68) a - Ek* ' 
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Equation (67) could have been obtained directly from (57) by assuming the 

isotropy of both C and it*, i.e., 

Ckl = C •kl, R*l = R*  6kl. (69) 

Furthermore, if one can write 

R* = --~ (70) 
k* 

we have from (57), in terms of r and written in one-dimensional form: 

J ~. ~ C q2. (71) 
k*-~ q + e -5 

Thus, 

C = --~ (72) 
k*" 

Including the local inertia force for the case p = const., we can write 

J = aq + bq 2 + pE 20q (73) 
Ot 

for a specific flow direction, since the solid matrix has been assumed nondeform- 
able. 

Most of the relations for nonDarcy flow in a porous medium proposed by 
different authors, based either on semi-empirical or theoretical grounds, have the 
form given by Equation (67) (see, e.g., Scheidegger, 1960, Bear, 1972, Hannoura 
and Barends, 1980). Equation (73) has been derived for unsteady flow when local 
inertia should be included which is analogous to most relations given for this 
case. The coefficient associated with local inertia term here is independent of the 
microscopic flow only for p = const. Generally it is claimed that the effect of local 
inertia in a porous medium is small. In the review article by Hannoura and 
Barends (1980), a contrary observation is reported, i.e., in some types of porous 
media (coarse granular media), the term associated with local inertia can be 
significant. 

Equation (65) has been derived for a more general case where the porous 
medium is anisotropic in terms of K*. The coefficient tensor k* is referred to as 
the permeability tensor and is obtained from K*, if It* is assumed to be invertible. 
Equation (65) has a form analogous with the result of Bachmat (1965). The 
definition of the scalar coefficient r t in the first term on the left-hand side is, 
however, different and, as we have shown, was obtained with isotropy assump- 
tions from its more general expression given in (57), which accounts for an 
inertial type of anisotropy. One of the important assumptions in the work of 
Bachmat (1965) is fluid incompressibility at the microscopic level. Even when 
employing the assumption P = const., (i.e., Op/Ot= p,k = 0, which is a stronger 
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restriction than microscopic incompressibility implying 

0s + v~p,~ = 0) (74) 
Ot 

the coefficient associated with the quadratic term in Equation (48) has a tensorial 
character. In other words, the inertial anisotropy associated with this term has a 
different nature than the anisotropy associated with k*, and although k* may be 
for a specific medium, taken as isotropic, the coefficient C will, in general, 
maintain a tensorial character. This is partly in agreement with the result of 
Barak and Bear (1981). These authors propose a third-order tensor associated 
with the quadratic term which could account for the inertial type of anisotropy. 
However, we shall see further in the paper that a third- and fourth-order tensors 
can be obtained from a higher-order expansion of the dissipative part of the 
resistivity force qF, in terms of ~. 

Although we have shown that most of the established relations for nonDarcy 
flow can be recovered with isotropic assumptions from (57), an open question 
remains as to how justified are, in general, the approximations made by introduc- 
ing isotropic conditions. 

In the following paragraphs we shall recall an alternative and more standard 
approach for obtaining a macroscopic linear momentum balance equation for 
flow through a porous medium, which is also based on continuum considerations. 
The reason for this is to show that from such a procedure the extension to 
nonDarcy flow is not straightforward and not clear. This approach is presented 
systematically in the work of Hassanizadeh and Gray (1980), although similar 
equations to their final form of the macroscopic linear momentum balance 
equation may be found elsewhere (see, e.g., Raats and Klute, 1968; Raats, 1972; 
Whitaker, 1969; Slattery, 1967; Mueller, 1971; Bear, 1972; Gray and O'Neill, 
1975). 

Instead of separately defining deviations of v (microscopic velocity magnitude) 
and e (microscopic velocity direction), i.e., t3 and ~, we could have defined a 
deviation velocity vector r as (see Figure 2) 

~(r, t)~ v(r, t ) -  9(x, t) (2) 

for a specific x and d V. After applying an averaging procedure on the micro- 
scopic linear momentum balance equation, and employing (2), a term with 
dimensions of stress is obtained and incorporated with the stress tensor as 

't* = d-A a 3:t* �9 n da, (75) 

where 

t* - - t -  p~' (76) 

The macroscopic stress tensor �88 is then obtained from 'r* in an analogous 
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manner as i is obtained from ,r (see Appendix II). Furthermore, assuming a 
macroscopically Newtonian fluid and a linear expansion of the resistivity force in 
terms of ~, a macroscopic linear momentum balance equation is finally derived in 
the form 

O~k+ 
fi Ot Pt~lt~k'l 

= -- e/5,k + (,~ d,),k + 2(r  akt),l + Rklt~l + 0fk- (77) 

In their paper, Hassanizadeh and Gray (1980) state that Equation (77) ac- 
counts for all inertial effects. Neglecting inertial terms (left-hand side) and 
macroscopic viscous forces (second and third term on the right-hand side), and 
assuming the invertibility of It, they obtain Darcy's law. It seems, however, that 
Equation (77) accounts only for what may be considered as a macroscopic part of 
inertial effects. To demonstrate this point, one may consider a case of a 
macroscopically uniform, unidirectional and steady flow through a homogeneous 
porous medium. According to Equation (77), since the left-hand side will 
identically vanish, we have 

--e~,k + fifk = -- R k l ~ .  (78) 

It would thus follow that for macroscopically uniform, unidirectional and steady 
flows, only Darcy's law is valid (assuming R invertible), irrespective of the 
macroscopic velocity magnitude. This clearly contradicts the experimental evi- 
dence for high macroscopic velocities. Therefore, we conclude that Equation 
(77) is incomplete and does not account for all inertial effects. It accounts for 
what may be considered as the macroscopic part of inertia, while significant 
remaining, or microscopic inertial effects, have been neglected in Equation (77) 
within the linear theory development. 

A natural question arises as to whether a higher-order expansion of either �88 
(which contains (p~-~)), or T, in terms of ~, could ensure the experimentally 
observed quadratic dependence of J on ~ for high values of ~5. One can show, 
however, that for an isotropic case, the form of Equation (1) cannot be obtained 
within the above-mentioned investigation. 

Considering the term (p~,~) which arises employing (2) in (4i and averaging, 
one could have alternatively treated it as a separate macroscopic quantity, 
instead of incorporating it in the macroscopic stress tensor, and developed a 
separate constitutive relation for (p~-~). This has been, for example, presented in 
the work of Gray and O'Neill (1976). However, similar problems arise when one 
attempts to use their results to describe the simplest flow situation, namely a 
uniform, unidirectional and steady flow in a homogeneous medium, with isotropic 
conditions; one will not be able, for this case, to obtain the quadratic dependence 
of J in terms of the velocity ~. 

Both Gray and O'Neill (1976) and Hassanizadeh and Gray (1980) employ an 
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averaging procedure. As discussed earlier, the change of scale through averaging 
is the procedure of redefining a spatial (Eulerian) point, which finally results in a 
mixture of phases, thus transforming an inconvenient discrete system into a 
convenient system of overlapping continua. Following the derivation of the 
macroscopic balance equations, constitutive relations are defined in order for the 
theory to be applicable to particular flow systems. The procedure for obtaining 
constitutive equations, employed by the above authors, is essentially analogous to 
the one used in classical mixture theory (see, e.g., Eringen and Ingram, 1967), 
and is based on the axioms of constitutive theory (Eringen, 1965). Our conclud- 
ing remark, however, is that the above-mentioned treatment is not adequate 
when dealing with inertial phenomena. More precisely, inertial effects for flow in 
a porous medium should not be treated in the same manner as, for example, the 
macroscopic resistivity force, or macroscopic stress, with regard to defining their 
macroscopic constitutive equations. Both the resistivity force and the macro- 
scopic stress have their origin in microscopic forces, either over dAts or within 
d V r, while the macroscopic inertial forces, as it has been shown, are of different 
nature, i.e., they are of kinematical origin and are direct functions of the 
microscopic flow. 

Apart from the continuum considerations which employ an averaging pro- 
cedure, numerous works have appeared in the literature analysing fluid flow in a 
porous medium through application of the mixture theory (see, e.g., Mueller, 
1971; Fulks et al., 1971; Bedford and Ingram, 1971; Raats and Klute, 1968; 
Raats, 1971; Morland, 1972; Kenyon, 1976a, b). In terms of inertial phenomena, 
however, this approach will essentially lead to an incomplete description of the 
macroscopic balance of forces. To demonstrate this point more clearly, we shall 
briefly discuss some of the results on flow through porous media obtained by 
direct application of the classical mixture theory. 

In these considerations the spatial point x is initially assumed to contain both 
phases simultaneously, i.e., the media is treated only macroscopically. Local 
balance equations are taken analogous to the ones valid in mixture theory (see, 
e.g., Truesdell, 1965), where exchange terms for different thermodynamic quan- 
tities are present. Based on axioms of constitutive theory, the constitutive 
relations are obtained. With regard to the linear momentum balance equation, 
however, a similar problem can be observed as the one mentioned earlier related 
to the work of Hassanizadeh and Gray (1980), namely that these equations are 
incomplete and do not include the microscopic inertial phenomena. 

Mueller (1971), for example, derives a linear momentum equation resembling 
(77), where R is assumed isotropic and the macroscopic viscosity is neglected, 
reducing it to Darcy's law for an acceleration-free flow. Contrary to experience, 
however, for a macroscopic acceleration-free flow (namely, a macroscopically 
uniform, unidirectional and steady flow), one would have Darcy's law valid 
irrespective of the velocity magnitude. 

Raats (1971) specifically discusses inertia in flow through a porous medium, 
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based on a linear momentum equation essentially identical to the one considered 
by Mueller (1971). He then reduces it to Darcy's law for negligible inertial forces. 
As it has been shown, however, this form of the linear momentum balance 
equation is incomplete. It includes what one may refer to as macroscopic inertia, 
but does not account for significant microscopic inertial phenomena. Similar 
observations can be made in other works (see, e.g., Raats and Klute, 1968; Fulks 
et al., 1971). 

Thus, we may conclude that the macroscopic inertial forces for flow in a 
porous medium can be fully understood only if one considers the microscopic 
flow phenomena. In this respect, employing an averaging procedure provides an 
important advantage, since considerations are made on both the microscopic and 
macroscopic levels. This is in contrast to the direct application of the mixture 
theory, where one treats the porous medium only macroscopically, i.e., as a 
mixture of phases, without analysing the microscopic flow phenomena. 

7. Some Possible Extensions of the Derived Equation 

Equation (57) (which represents (47) for p = p(r, t), and (48) for p = const.) has 
been derived assuming the dissipative part of the resistivity force T as a linear 
function of ~. One could suppose, however, this approximation to be insufficient 
for high macroscopic velocities. Thus, we shall propose in the following the 
macroscopic linear momentum balance equation in form of a constitutive relation 
for high velocity fluid flow in a porous medium, when a higher-order expansion of 

in terms of 9 is assumed. 
We now write Equation (57) in the form 

Ik + vCk,Ot +Sktvt = Jk + Tk (79) 

where S = S, i.e., S = 0 if we assume, respectively, p = p(r, t), i.e., p = const. 
Employing an expansion of 1" up to the third order in (79), yields 

2) - - 3) - - - = Jk + Rktv, + R~l,,vtv,,  + R~l,~,vlv,~v, (80) 

where 

a 2  ']~k 
U ( 2 )  _ 

k l m  ~ - -  

R (3) __ 0 3  "Fk 
k l m n  0 ~O~J,~O~,~ (81) 

evaluated for ~ = 0. 
Neglecting the effect of I and S, Equation (80) can be written as 

Jk =/~k,~ + ~Ckl~, + Rk~,.~,. + R kt,..~5,t~,.~. (82) 
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where 

R k l m  =~ - -  R (2) R k l m n  ~ -  - -  R (3) (83) 
k l m  ' k l m n  " 

Equation (82) is somewhat similar to a relation obtained in the work of Barak and 
Bear (1981). These authors maintain both the third- and fourth-order tensors, but 
do not have a third-order velocity term. 

For an isotropic case, we have Rk~,. = 0 and Equation (82) can be written in the 

form 

Jk =/~Sk + ~5C~5k + R'~52~Sk (84) 

where 

Ckt = C 8kt, l?kt = 1~ 6kl (85) 

and R' has been obtained from isotropy of R kl~,. Formally, one can write (84) as 

3 
ark = '~ 15(i-~)hjzSk, (86) 

j=l  

where hj are assumed constant and are to be determined experimentally for a 
specific medium. Equation (86), i.e., (84), partly gives support to the power series 
relation (Hannoura and Barends, 1980), but it is a question of whether one is 
justified in accepting 

N 
Jk = ._-,V ~O-1)hj~k, (87) 

j=l  

with N >  3, as a generalized concept.  

However,  with local inertia negligible, we have a rational basis to consider (82) 
as a macroscopic linear momentum balance equation in form of a constitutive 

relation for high velocity flow through an anisotropic medium, that will include 
higher-order effects in terms of ~ as compared to (57). For a fully isotropic case, 

Equation (84) should be employed. 
In the work of Hassanizadeh and Gray (1980), it is shown that for nonisother- 

mal conditions i" is also a function of V 0. Thus, expanding qr in terms of V 0 in a 
similar manner as it was done in terms of {, and maintaining terms up to second 

order, we can write (79) for the nonisothermal, anisotropic case as 

Ik + FCklFt + Rktvl 

= + + + R +  ,emO. 

where the coefficients 

(88) 

kz ~ 003 , 00,z 00~  

are both evaluated at equilibrium (i.e., for re = 0 and V 0 = 0). 

(89) 
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For a fully isotropic case, Equation (88) yields 

Ik + ~SCtSk + R~Tk = Jk + E 0 k  + RO215k 

91 

(90) 

where 

2kt = ~ 6kl. (91) 

An additional restriction for the derivation of Equation (57) was laminar 
flow within d V f. In other words, we have assumed the magnitude of microscopic 
fluid velocities to be within a range when turbulence has not developed in the 
flow region. With this assumption, the microscopic flow field can be considered as 
deterministic, i.e., for a specific configuration of the void space V r and specific 
boundary conditions over A rS (see Figure 1), a unique solution of the fields 
v = v(r, t) and p = p(r, t) can be obtained from Equations (3) and (4), assuming 
the fluid Newtonian; from v = v(r, t) a unique and continuous streamline field 
follows. However, if one considers microscopic velocities with magnitudes 
exceeding a certain limit for a specific region, turbulence will develop. In this 
case V f and the boundary conditions over A r do not uniquely determine the field 
v =v(r ,  t), and an essentially chaotic behaviour will take place (see, e.g., 
Rabinovich, 1978). 

Although for a turbulent region we are not able to uniquely determine the 
velocity field, nevertheless, we know that developed turbulent flow is charac- 
terized by increased circulation. Instantaneous streamlines, in general dis- 
continuous, will chaotically change their position, size and shape in the course of 
time, without external cause (i.e., without changing boundary conditions). 

If we now consider a possible application of Equation (57) to fluid flow in a 
porous medium with developed turbulence, the main formal difficulty arises from 
the discontinuity of streamlines. Thus, quantities such as ~, or V~, associated with 
the streamline curvature, would have to be redefined through a limit as one 
approaches the discontinuity point along the streamline at time t. 

Without attempting to introduce such formal analysis, we could consider 
Equation (57) essentially valid for a porous region with a developed turbulence. 
This is due to the very nature of the turbulence which implies an occurrence and 
increase in a similar type of inertial phenomena, namely the convective inertia is 
greater in a turbulent flow region as compared to a laminar one due to fluid 
particle circulation. 

One could, therefore, expect that for turbulent flow in a porous medium, the 
coefficients 12 of Equation (57) would increase in magnitude, while the form of 
the equation would remain identical. This is what has been observed in experi- 
ments for the isotropic case (see, e.g., Scheidegger, 1960). With regard to the 
resistivity force, the higher-order expansion in terms of ~, as given in (82), could 
be more appropriate as compared to the linear approximation given in (57), when 
one treats turbulence in a porous medium. 
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8. Summary 

Based on microscopic continuum considerations, employing an averaging pro- 
cedure, and introducing macroscopic quantities, Equation (57) has been derived, 
representing Equation (47) for the case when p = p(r, t), and Equation (48) for 
the case p = const. 

If the dissipative part of the resistivity force T can be taken as a linear function 
of the macroscopic fluid velocity ~, Equation (57) may be considered as a 
generalization of Forchheimers formula for nonDarcy flow that has a rational 
basis. It has been shown how one can recover from Equation (57) most of the 
established relations for nonDarcy flow as special cases, by employing isotropy 
assumptions. If the magnitude of the fluid velocity is small, the first and second 
terms on the left-hand side of (57) will be negligible, and a linear relationship 
between J and ~ is obtained. 

Although (57) is essentially the macroscopic linear momentum balance equa- 
tion for the fluid phase, due to its form one can consider it as a constitutive type 
of relation for high fluid velocity magnitudes, when treating fluid flow in a porous 
medium as a system of overlapping continua. Equation (57) relates the dynamic 
quantity J to the kinematic quantity rr in a nonlinear and anisotropic manner, 
involving inertial continuum coefficients which should only be conditionally 
considered as material and, in general, depend on both the microscopic 
(configuration of the void space) and macroscopic boundary conditions (e.g., the 
curvature of the macroscopic streamline field). 

Assuming a higher-order expansion of the resistivity force in terms of the 
macroscopic velocityl Equation (88) has been proposed for flow in a porous 
medium with possible temperature gradients. 

Constitutive equations derived in the present work have been based on a 
specific conceptual model, that is, on a specific decomposition of the kinematic 
field, and are essentially qualitative in nature. The magnitude of obtained 
constitutive coefficients, as well as the significance of discussed effects (such as 
anisotropy due to macroscopic curvature), could further be quantified only 
through physical experiments. 

Appendix I 

Rewriting condition (25), 

ffd p'~(~)~k + fi6k + ~3tik) dv = 0 
v 

we first derive the integral locally with respect to time and get 

lid~ d V v ~ (P3')(f)d~k + ~d~k + f)d~k) dv 

(i.1) 
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Ot (pd~k) + 

+ O(p~ t  ) + ( p O  (fJ&k)) (1.2) 

Deriving Equation (I.l) spatially with respect to r and multiplying both sides 
with f~, we have 

dv 

= { ,~k(o~, , )  + o(o,~k,~) + 

+ (p6ak,,) + (pt3 tak)} ~,. (1.3) 

Adding (I.2) and (I.3) gives 

l fd Dr dV v ~  (p3")(f)dk + Od~k + l)~k) dv 

Ot Ot / 
+ ~(P~k,l) Vt + (p~k~,l) Vl + (p~k,ttl) ~ (I.4) 

where 

D f 0 
D~ (mY) =- Ot (p3") + tSt(P3')"" (I.5) 

Identity (1.5) can be further developed as 

D f Op 
D--~ (p3") = --~ 3"- pw~3",, + ~,(p,,3" + p3",,) 

= (~ t  + g l p 3 ) y + p ( w l - g , ) 6 ( r - r t S ) n t  (I.6) 

where 

03'_ 
0 t -  - w z y ,  t ( I . 7 )  

and 

3",i = - n l S ( r  - r i s )  ( I . 8 )  

have been employed (see Gray and Lee, 1977). 
From previous assumptions, it follows that the velocity of the interphase 
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surface is zero, i.e., 

wl = 0 (1.9) 

and we shall assume the fluid velocity at the interphase boundary as zero (no-slip 
condition), i.e., 

v(r fs, t) = 0 (I.lO) 

which also implies 

v(r fs, t )=  ~(x, t)+ 0(r fs, t )=  0. (I.11) 

Thus, the left-hand side of (I.4) can be written as 

l fa Df 
d V v ~ (PT)(O~k + ~Sc~k + t3~k) dv 

- dvll dv\ot(op+olp'') 7(Oak+~d~k+fid~k) dv-  

- d ~  ~lVk pnt d a (I. 12) A f~ 
where Equation (1.11) has been employed. 

Applying a theorem which relates microscopic and macroscopic gradients (see, 
e.g., Gray and Lee, 1977), the integral of the last term on the right-hand side of 
(I.12) can be written in the form 

d l  ldAjs pn da = d@ Idw Vrp dv-  Vx~ (l.13) 

where Vr and 7x denote the gradients with respect to r and x, respectively. 
Furthermore, the average fluid density t~ can alternatively be expressed in terms 
of the intrinsic fluid density t~ and porosity as 

~=-~-~ v, P d v = e ~ ?  vrodv=-ep. (1.14) 

Thus, in component form, Equation (I.13) becomes 

l fd l fd = P,l d v - (t~) 3 . (I. 15) d-V A~' pnl da - ~  vr 

If one now assumes local and spatial variations of the microscopic fluid density 
to be negligible, i.e., Op/Ot = p,k = 0, Equation (I.12) can be written, employing 
(I. 15) in the form 

l l d D f  dV v -~  (Pv)(Oak + ~d~k + Oak) dv = O~gkpe~ (I.16) 
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where 

p ~ p =  const. 

Therefore, when (I.17) is valid, one can write (I.4) as 

OtOkpE, t 

95 

(I.17) 

(I.18) 

Appendix !I  

The derivation of the macroscopic stress tensor t is analogous to the one 
presented in Hassanizadeh and Gray (1979a, b), the essential difference, 
however, being in the definition of the microscopic stress tensor. In the above 
reference it is defined as 

t* = t -  p~#, (76) 

i.e., it contains a significant microscopic part of inertia, while in this work the 
microscopic stress tensor is t. 

Integrating the average (y~7. t) over the entire volume of the medium V, with 
a volume element at x denoted by d Vx, we have 

Iv ('~% " t) d Vx = fv  (% " (t~')) d V~ - fv  (t " Vr'y) d V. 

( V  r " (t~//)) d V x -[- ~ (t" n 6(r-- rt*)) d Vx (11.1) 
J V J V  

where ( ) is defined as 

( ( ) ) ~  ( ) d r  
V 

and (I.8) has been employed. Relation (II.1) can 
Theorem IV in Hassanizadeh and Gray (1979a), as 

Iv (Vr t )y dVx 

further be 

(u.2) 

written using 

(II.3) 
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It is now assumed that the stress vector  -r, defined at the macroscopic  boundary 

surface element  dAx and obtained from 

'Id -r = ~-~ A n" t~ /da ,  (II.4) 

may be expressed through an existing stress tensor i as 

"r = N "  t (11.5) 

where N is a unit normal on the surface element dAx, of A that bounds V. 

Using the divergence theorem, the left-hand side of (II.1) is finally written in 
the form 

Iv(TVr "t) d Vx = Iv { ~  IdA~ n ' t  da} dVx + IvVx " i d Vx 

= ~ ~T d V~ + IvVx . t d V~ , (11.6) 

where t is the macroscopic  fluid stress tensor, and T is defined as 

Xld n.  t da (II.7) 
T = - f i d V  At' 

with n being oriented from the fluid to the solid phase (see Figure 2). 
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