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Abstract. Stokes flow through a rigid porous medium is analyzed in terms of the method of volume 
averaging. The traditional averaging procedure leads to an equation of motion and a continuity 
equation expressed in terms of the volume-averaged pressure and velocity. The equation of motion 
contains integrals involving spatial deviations of the pressure and velocity, the Brinkman correction, 
and other lower-order terms. The analysis clearly indicates why the Brinkman correction should not 
be used to accommodate a no slip condition at an interface between a porous medium and a bounding 
solid surface, 

The presence of spatial deviations of the pressure and velocity in the volume-averaged equations of 
motion gives rise to a closure problem, and representations for the spatial deviations are derived that 
lead to Darcy's law. The theoretical development is not restricted to either homogeneous or spatially 
periodic porous media; however, the problem of abrupt changes in the structure of a porous medium 
is not considered. 
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O. N o m e n c l a t u r e  

R o m a n  Letters 

Mr interfacial  area of the /3-0- in terface  con ta ined  within the macroscopic  

system, m 2 

Mt3e area of en t r ances  and  exits for the /3-phase con ta ined  within the macros-  

copic system, m 2 

At3, interfacial  area of the /3-0- interface c on t a i ne d  within the averag ing  

vo lume ,  m 2 

A ~  interfacial  area of the /3-0-  in terface  con ta ined  within a uni t  cell, m 2 

At3e area of en t r ances  and  exits for t he /3 -phase  con ta ined  within  a uni t  cell, m 2 

B second order  tensor  used to represen t  the veloci ty  dev ia t ion  (see E q u a t i o n  

(3.30)) 

b vec to r  used to represen t  the pressure dev ia t ion  (see E q u a t i o n  (3.31)), m -1 

d d is tance  be tween  two points  at which the pressure  is measured ,  m 

g gravi ty  vec tor ,  m/s 2 

K Darcy ' s  law permeabi l i ty  tensor ,  m 2 
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characteristic length scale for volume averaged quantities, m 
characteristic length scale for the/3-phase (see Figure 2), m 
characteristic length scale for the o--phase (see Figure 2), m 
unit normal vector pointing from the /3-phase toward the ~r-phase (n~  = 
-n~) 
unit normal vector for the entrances and exits of the /3-phase contained 
within a unit cell 
pressure in the/3-phase, N/m 2 
intrinsic phase average pressure for the 13-phase, N/m 2 
p~ _ <p~)0, spatial deviation of the pressure in the/3-phase, N/m 2 
radius of the averaging volume and radius of a capillary tube, m 
velocity vector for the/3-phase, m/s 
phase average velocity vector for the/3-phase, m/s 
intrinsic phase average velocity vector for the el-phase, m/s 
v~ - (v~)  ~, spatial deviation of the velocity vector for the/3-phase, m/s 
averaging volume, m 3 
volume of the el-phase contained within the averaging volume, m 3 

Greek 

P~ 

Letters 

VoI~V, volume fraction of the/3-phase 
mass density of the /3-phase, kg/m 3 
viscosity of the/3-phase, Nt/m 2 
arbitrary function used in the representation of the velocity deviation (see 
Equations (3.11) and (B1)), m/s 
arbitrary function used in the representation of the pressure deviation (see 
Equations (3.12) and (B2)), s -1 

1. Introduction 

The process of flow through porous media is of interest to a wide range of 
engineers and scientists, in addition to politicians and economists who recognize 
the importance of groundwater flows and a variety of tertiary oil recovery 
processes. The one-dimensional empiricism discovered by Darcy in 1856 has 
served as a starting point for numerous practical applications and as a constant 
challenge for theoreticians. While the original conditions studied by Darcy are 
found in many practical situations, it is the extensions to more general cases that 
are especially deserving of theoretical analysis for they usually represent situa- 
tions in which experiments are difficult to perform. The first such extension is to 
fully three-dimensional flows which abound in the practical world of ground- 
water flows and oil recovery processes. While this form of Darcy's law is used 
with great frequency, there appears to be no experimental verification of the 
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obvious tensorial representation of Darcy's empiricism. On the other hand, there 
are marly theoretical treatments that lead to this result (Gray and O'Neill, 1976) 
and summaries of the subject are available in the work of Bear (1972) or in the 
more recent treatise of Greenkorn (1984). Beyond the three-dimensional exten- 
sion, there are two challenging areas of considerable practical importance: flow 
at moderate Reynolds numbers and multiphase fluid flow. In multidimensional 
form, these flows represent extremely difficult experimental problems and reliable 
theoretical results are of great value. Further extensions would include the case 
of deformable solids (Biot, 1962) and the flow of nonlinear, viscoelastic fluids 
(Slattery, 1967). All these extensions have received some type of theoretical 
treatment, but in every case, one or several constitutive assumptions were made 
enroute to the final result. The single exception would appear to be the work of 
Brenner (1968) in which Stokes flow in a spatially periodic porous medium was 
analyzed in order to produce Darcy's law for the case in which the volume- 
averaged velocity vector was a constant. 

In this work we are not restricted to either spatially periodic or homogeneous 
porous media, and the analysis is devoid of any constitutive assumptions. Al- 
though the final result is a foregone conclusion, the analysis provides a frame- 
work for the study of important extensions such as those mentioned above. 
Two-phase flow is of particular interest since recent studies of drying granular 
porous media (Whitaker, 1984) indicate that the traditional ideas concerning 
relative permeabilities and irreducible saturations need a careful reexamination. 
The problem of two-phase flow in porous media is investigated in Part II of this 
paper and Part III treats the linear problem associated with deformable media. 

2. Volume Averaging 

The system under consideration is illustrated in Figure 1 in which the macro- 
scopic length scale is identified by L and an averaging volume is indicated by ~V. 

The details of the system are shown in Figure 2 in which r has been used for the 
characteristic length of the liquid phase and G as the characteristic length of the 
solid phase. Traditionally one thinks of the method of volume averaging as being 
applicable for systems in which the length scales are constrained by (Whitaker, 
1969) 

( 4  ro ~ L (2.1) 

where ro is the radius of the averaging volume, ~ In reality, this inequality is 
nothing more than a convenient restriction that is satisfied by many systems of 
practical importance; however, it is not  an inherent restriction in the method 
itself. The recent work of Ross (1983) concerning the flow in the region between 
a porous medium and a homogeneous fluid makes this point clear, and in the 
following theoretical development we will be careful to point out where length- 
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Fig. 1. Macroscopic system. 

scale constraints are imposed and the consequences that result when the con- 
straints fail. 

The boundary value problem under consideration can be expressed as 

0 = -~Tpo + Pr +/zt3V2v~, (2.2) 

~ 7 .  vt  ~ = 0 ( 2 . 3 )  

Fig. 2. Solid-fluid system. 
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B.C.1 vt3=0, on ~d0~, (2.4) 

B.C.2 vt3=f(r , t) ,  on ~ e -  (2.5) 

Here we have carefully identified quantities associated with the /3-phase with an 
appropriate subscript in preparation for the subsequent analysis of two-phase flow 
in porous media. The interracial area between the fluid and solid phases has been 
identified by s~t3~ while ~r has been used to represent the area of entrances and 
exits for the macroscopic system illustrated in Figure 1. While the boundary 
condition at ~t3e is generally unknown except in terms of averages, Equation 
(2.5) will serve as a reminder of what we do not know and will help to identify the 
assumptions made about the effect of this boundary on the flow field. 

There are two types of volume averages that are commonly encountered in 
the study of multiphase transport phenomena, and both are used in the traditional 
formulation of Darcy's law. The first of these is the phase average which is 
defined by 

1 Yv 6t3 d V. (2.6) 

Here V 0 represents the volume of the /3-phase contained within the averaging 
volume ~U. In general, (60) is not the preferred average since it is not equal to th0 
when the latter is a constant. The intrinsic phase average is represented by 

( ~bt3)t3 = @--~ Iv ~ tp~dV (2.7) 

and it is clearly more representative of the conditions in the/3-phase. These two 
averages are related by 

(005 = Eo(~0t3) t3 (2.8) 

in which e0 is the volume fraction of the/3-phase. This is given explicitly by 

@ = Vt3/~V. (2.9) 

In this work, the averaging volume should be thought of as a sphere of constant 
radius, while V0 depends on the nature of the porous medium under con- 
sideration and will only be a function of the spatial coordinates for a rigid porous 
medium. The matter of time and space-dependent averaging volumes has been 
explored briefly by both Gray (1983) and Cushman (I983). 

When the average of Equation (2.2) is formed, one obtains the average of a 
gradient while it is the gradient of an average that is desired. The latter can be 
obtained from the former by means of the spatial averaging theorem (Anderson 
and Jackson, 1967; Marie, 1967; Slattery, 1967; Whitaker, 1967). For some 
quantity qso associated with the ]3-phase, this theorem takes the form 

{ V Ot3) = V (Ot3) + ~  nt~,,~Ot3 dA. (2.10) 
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Here At3~ represents the interfacial area contained within the averaging volume 
and rig, represents the unit outwardly directed normal vector for the /3-phase. 
Veverka (1981) has raised questions about the validity of Equation (2.10), and in 
a recent study Howes and Whitaker (1985) have re-examined the derivation with 
great care. Their work confirms the correctness of Equation (2.10) and points out 
that under certain pathological conditions the derivative of the average may not 
be defined at a countable set of points. However, this does not prohibit the use of 
Equation (2.10) nor the integration of the partial differential equations that result 
from the method of volume averaging. 

It is important to note that both Marle (1967) and Anderson and Jackson 
(1967) used weighting functions in order to define the averages used in their 
studies, and that Equations (2.6)-(2.10) represent special cases in which the 
weighting function is constant within the averaging volume and zero everywhere 
else. Baveye and Sposito (1984) and Cushman (1984) have pointed out that the 
approach of Marie and of Anderson and Jackson can be used to rigorously match 
theory and experiment since the weighting function can be chosen to correspond 
to the characteristics of the measuring device. This presents a situation in which 
different properties may be associated with different weighting functions and gives 
rise to additional complexities in the theoretical development. This aspect of 
spatial smoothing was considered earlier by Bear and Braester (1972) in terms of 
a property-dependent REV, and the problem of precise comparison between 
theory and experiment still remains as an important area of investigation. 

In a theoretical and experimental study of heat conduction in porous media, 
Nozad et al. (1985) were able to show that experimental values of 'point 
temperatures' could be used to accurately determine changes in the spatial 
average temperature. A similar situation occurs during mass transfer in porous 
media (Ryan et al., 1981; Carbonell and Whitaker, 1984), thus in these cases 
there is no need to precisely match the measuring instrument characteristics with 
the definition of the dependent variable in a spatially smoothed transport equa- 
tion. The pressure field for single-phase flow in porous media represents another 
situation in which point values can be used to accurately deduce changes in 
averaged values and the arguments supporting this point of view are given in 
Appendix A. 

Intuition suggests that the volume-averaged velocity for single-phase flow in 
porous media will be insensitive to the choice of ~ provided 7# is sufficiently 
large; however, two-phase flow processes are undoubtedly more complex and 
Baveye and Sposito cite the problem of measuring the moisture content as an 
example in which instrument characteristics need to be carefully considered. In 
general, one might think that local heterogeneities represent the most severe 
problem in effecting a closure between theory and experiment. One line of attack 
is the use of weighting functions to remove any uncertainty between the defined 
dependent variable and the measured quantity; however, the effects of these local 
heterogeneities must be captured theoretically if a precise correspondence be- 
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tween dependent variables and experiments is to be useful. An alternative may be 
the relaxation of the constraint suggested by Equation (2.1) and the inclusion of 
higher order terms in the spatially smoothed transport equations. The work of 
Ross (1983) represents an example of this approach. 

While unanswered questions remain concerning the comparison between 
theory and experiment, the approach taken here has proved to be useful in prior 
studies and has the desirable feature that a method of closure is available. This 
means that the form of the spatially smoothed transport equation is obtained 
without constitutive assumptions, and a method is available to predict the 
coefficients that appear in the smoothed equation. 

2.1. CONTINUITY EQUATION 

We begin the process of averaging with the continuity equation to obtain 

(V v~) V ( % ) + l f a  �9 = �9 nt3~ �9 vt~ dA = 0. (2.11) 

Use of the no-slip boundary condition given by Equation (2.4) leads to the 
traditional form of the averaged continuity equation for an incompressible flow 

v �9 (%) = o. (2.12) 

The solenoidal characteristic of the phase average velocity is certainly a motivat- 
ing factor in the use of Equation (2.12) rather than the intrinsic phase average 
form which can be obtained by use of Equation (2.8) in Equation (2.12) to give 

V �9 (v0) t3 = - e ~  1 V et3 �9 (v~) ~. (2.13) 

However, we will need this latter form of the continuity equation in subsequent 
developments since prior experience (Gray, 1975) indicates that it is best to use 
the intrinsic phase average in defining spatial deviations. It is of some importance 
to note that no length scale constraints have been imposed in the derivation of 
either form of the continuity equation. 

2.2. EQUATIONS OF MOTION 

The phase average form of the Stokes equations is given by 

0 = -  V ( p r  n ~ p o d A + % p o g + l x ~ ( V  �9 Vv~). (2.14) 
,~o- 

While the phase average velocity is generally perferred in the analysis of flow in 
porous media, we require the intrinsic phase average of the pressure since this 
more closely corresponds to the measured value or the value imposed at a 
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boundary. This requires the use of 

(p~) = et3(p~) t3 

along with Gray's (1975) decomposition 

p~ = (p~)~ + 08.  
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(2.15) 

(2.16) 

Use of these relations in the first two terms of Equation (2.14) yields 

- V ( p ~ ) - - ~  nt3~pt~ d A  = - ~t3 V (pt3)t3 - (p t3) t3V et3 - 
13a 

7/" nt3~(pt3} t~ d A - - ~  nt3,~p~ dA. (2.17) 
/3~ /3,r 

It is intuitively appealing to think of (pt3) t3 as a constant with respect to 
integration over At3~, and Carbonell and Whitaker (1984) have shown that the 
relation 

1 ~ dA} (pt3) t~ (2.18) 

is satisfactory when the following length scale constraint is valid 

2 

(2.19) 

Since the radius of the averaging volume is generally small compared to the 
macroscopic length scale illustrated in Figure 2, this constraint is usually satisfied. 
In addition, if the constraints given by Equation (2.1) are accepted at the outset, 
Equation (2.19) is automatically satisfied. The origin of the constraint given by 
Equation (2.19) is indicated in subsequent paragraphs by Equations (2.26) and 
(2.27). 

One can use the averaging theorem (with ~b~ = 1) to prove that 

-~ no~ dA = - V e0 (2.20) 

and use of this relation with Equation (2.18) in (2.17) leads to 

I IA e L  nt3dSo dA. (2.21) - V ( p t 3 ) - - ~  ,,rnt3~pt3 d A =  - e~ V (Pc3)~ - ~  ,~ 

This is essentially an application of Gray's (1975) modified averaging theorem, 
and it represents the first use of a length-scale constraint. A similar result is given 
by Raats and Klute (1968). It is important to note that the inequality given by 
Equation (2.19) results from an order o f  m a g n i t u d e  analys is  and the precise 
nature of the constraint that allows one to use Equation (2.18) will require a 
detailed study of special cases. 
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Substitution of E:luation (2.21) into (2.14) and use of the averaging theorem 
with the viscous term leads to 

0 = - e~ V (pt3) t3 - ~  nt3,~/St3 d A +  et3Pt3g + 

+ btt3{ V "(Vvt3)+ 1YIa nts'~ �9 Vvjs dA}. (2.22) 

A second application of the averaging theorem provides 

( V v ~ ) =  V(v~)+ 1 I ~a nt3o_vt3 dA (2.23) 

with the no slip condition leading to the obvious simplification. Use of this 
relation in Equation (2.22) yields 

1 [ nt3,:,./St 3 dA + et~Pt~g + 0 

/xt3 {VZ(v~) +--~ IA ~ dA}. (2.24) + ,T ! i~  �9 t7 Vt3 

We can now repeat the development given by Equations (2.15)-(2.11) using the 
decomposition 

vt3 = (vt3) t3 + vt3 (2.25) 

in the last term in Equation (2.24). This leads to the following solution 

i -@ nt~ ~ �9 Vvt3 d A = -  Vet3 �9 V(vt3)t3 + +  nt3,,. V~t3 dA (2.26) 
t3~ t3= 

provided the length-scale constraint indicated by Equation (2.19) is valid. It is of 
some interest to note that when Equation (2.19) is not  valid, the operation 
associated with Equation (2.25) leads to higher order terms, i.e,, 

nt3~.Vvt3 dA =-VEo. V(vo) t3 + 

+1 L 
-~ nr V~o d A +  H: V V{vt3)~ + --- (2.27) 

The work of Carbonell and Whitaker (1984) indicates that H can be ap- 
proximated by 

2 

I't ~ --~-~[Ig2e~3 + 2 V V e~] (2.28) 

and this is the origin of the restriction imposed by Equation (2.19). 
We now return to Equation (2.24), represent the phase average velocity in 

terms of the intrinsic phase average velocity, and make use of Equation (2.26) to 
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obtain 

0 ~--- - -  V (p) /3  -I'- /9/3g "q- ].I,/3{V2(V/3)/3 n t- e ~  1 V ~/3 " ~7 (/30)/3 Ac E~l (v /3) /3vZE/3}  - -  

V/3 n/3dS/3 dA + n/3~. V ~/3 dA. (2.29) 
~,r r 

Here it becomes apparent that representations for both/5t3 and ~ are required in 
order to obtain a closed form and, in general, constitutive assumptions have been 
used to obtain the closure. For example, one can evoke the linear transformation 
(Whitaker, 1969) 

v/3 = N" (v/3)/3 (2.30) 

in order to develop expressions for p/3 and ~/3. This approach can be fortified with 
the principle of material frame indifference (Slattery, 1980), and Gray and 
O'Neill (1976) have utilized this approach in order to include inertial effects in 
the analysis. 

In this work, closure is obtained directly in terms of the governing differential 
equations for /5/3 and ~ .  This approach not only allows one to determine the 
correct form of the representations for/5/3 and ~/3, but it also provides a means for 
calculating the coefficients that appear in these representations. Before proceed- 
ing with that development, we must make certain that Equation (2.29) is 
consistent with the length-scale constraint given by Equation (2.19). Since the 
length scale for ~/3 is t~/3 as indicated in Figure 2, we have the estimate 

V ~/3 = O(i,/3/(/3) (2 .31)  

From the decomposition given by Equation (2.25) and the no-slip condition 
imposed at the/3-o- interface we know that 

~/3 = O((%) ~) (2.32) 

and the last term in Equation (2.29) can be estimated as 

~/3 [ nt3,~. V~t3 dA = O(/x/3(v/3)/3/(~). (2.33) 
V/3 3 A~  

An examination of Equations (2.25)-(2.27) will indicate that the restriction given 
by Equation (2.19) is based on the idea that the length scale associated with 
averaged quantities, i.e., e/3, (p/3)t3, and (v/3)/3, is the macroscopic length scale L 
indicated in Figure 1. This leads to the following estimates 

/x/3V2(v/3)/3 = O(/x/3(%)/3/L2), (2.34) 

~ / 3 e ~  1 V E/3 " V (v/3)/3 = O(/zt3(v0)e/La), (2.35) 

/&/3e~1(v/3)/3V2e/3 = O(/zt3(v/3)~ (2.36) 

On the basis of Equation (2.19) and the natural requirement that (/3 < ro, we see 
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that all the viscous terms estimated by Equations (2.34)-(2.36) are small com- 
pared to the last term in Equation (2.29). In addition, we can see that these three 
terms are large compared to the last term in Equation (2.27), thus it is permissible 
to retain these terms in Equation (2.29). However, in view of the length scale 
constraint given by Equation (2.19), there is absolutely no reason to retain these 
terms since their contribution to the determination of the velocity field will be 
negligible. In particular, it is not permissible to retain the term often referred to as 
the Brinkman correction (Brinkman, 1947) in order to develop a no slip condition 
for the average velocity. Under these circumstances the characteristic length 
scale for ~ and (v~) ~ is on the order of the radius of the averaging volume, to, 
and Equation (2.29) is no longer valid*. For this reason we express Equation 
(2.29) as 

0 = - V(p~)t3 + p t 3 g - ~  n,~/~t3 dA + - ~  nt3~. Vi,~ dA 
~c~ /30 

(2.37) 

and consider the analysis to be restricted to systems in which the length scale for 
Et3, (pt3) ~ and (v~) t3 is large compared to to. This immediately raises a question 
about the relation of ro to (t3 since the latter is generally known a priori, and we 
would like to say something definitive about L and ro relative to gt3. A reasonable 
requirement for r0 would be that E~, (p~)t3 and (v~) t3 are well behaved functions 
in the sense that they satisfactorily describe observed phenomena. Here we are 
confronted with the fact that (p~)t3 and (vt~) t3 are rarely, if ever, measured 
directly**; however, this is not the case with the void fraction and we have no 
other choice but to develop arguments on the basis of this variable. If we let the 
calculations of Eo as a function of r0 serve as a guide (Howes and Whitaker, 
1985), we would require that r0 >-5gt3. On this basis we think of Equation (2.37) 
as being restricted to situations in which averaged quantities undergo significant 
variations over distances that are at least fifty times larger than C a . 

3. Closure 

The general closure problem requires first that we obtain representations for po 
and ~e in terms of the dependent variables (pt3) ~ and (vt3) ~, and second that we 
be able to determine the coefficients that appear in these representations from a 
purely theoretical point of view. This sets the stage for a detailed comparison 
between theory and experiment in terms of parameters describing the geometry 
of the porous medium. 

* This occurs because higher order derivatives, such as those indicated in Equation (2.27), must be 
included for both the velocity and the pressure if the restriction indicated by Equation (2.19) is not 
imposed. In addition, the lower order terms in Equation (2.29) must be retained if the Brinkman 
correction is to be used in the region near a solid boundary. Nield (1983), following a somewhat 
different line of analysis, has also concluded that the Brinkman correction is not justified. 
* *  The matter of experimental measurement of (pt~) t3 is discussed in Appendix A. 
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Our initial objective is to derive the governing differential equations for/58 and 
~ ,  and to do so we make use of the decompositions given by Equations (2.16) 
and (2.25) in Equations (2.2)-(2.5) to obtain 

- V/5t3 +/xt~V2~o = - [ -  V (p~)O + ot3g + ]&clV2(v/3)/3 ] (3.1) 

V �9 ~,~ = - V �9 ( v ~ )  ~ ( 3 . 2 )  

B.C.1 ~t3=-(vt3)  ~, on ~ ' ~  (3.3) 

B.C.2 ~t3=g(r , t ) ,  on Jt~e- (3.4) 

Here we have used g(r, t )=  f(r, t ) -  (vt3) ~ to represent ~0 at the entrances and 
exits of the macroscopic system. Even though Equation (2.37) is not applicable at 
the surface of the macroscopic system, the average velocity and pressure are 
defined on that surface and Equations (2.2) and (2.3) are valid on that surface. 
Thus Equations (3.1)-(3.4) represent a valid boundary value problem for 158 and 
~ even though g(r, t) may be difficult to specify from a practical point of view. 

One of the first simplifications we can make in the closure problem concerns 
the continuity equation for ~ .  In the general case, each of the three terms on the 
left-hand side of Equation (3.2) will be on the order of (v~)~/(t3 while each of the 
three terms on the right-hand side will be on the order of (vt3)~/L. Under  these 
circumstances the source term, V �9 (v~) t3, in the continuity equation for r162 will 
have no effect on the ~o-field and the latter can be treated as solenoidal. This 
allows us to write Equation (3.2) as 

V �9 ~t~ = 0 (3.5) 

without requiring that the volume-averaged velocity field be uniform. This type 
of argument is peculiar to the continuity equation and cannot be used to simplify 
Equation (3.1) since V(p~) ~ and Pt~g are generally not negligible compared to 
the terms on the left-hand side. In this case we follow the method of Crapiste et 
al. (1986) and form the intrinsic phase average of Equation (3.1) to obtain 

l f v  ~ Vt 3 [ -  ~ 1013 +/xt3V2v/3] d V = - [ -  V(pt3)t~ + peg + ItZ/3~Ta(V/3)/3]. (3.6) 

Here we have made use of ideas presented in the previous section and treated the 
right-hand side of Equation (3.1) as a constant with respect to integration over 
Vt3. A comparison of Equations (3.6) and (3.1) allows us to express the boundary 
value problem for/5t3 and ~'t3 as 

1 I - V/5~ + p,~V2Ce~ = ~ [ - Vpt 3 + txt3V2~] d V, (3.7) 

V �9 ~t3 = 0 ,  ( 3 . 8 )  

B.C.1 i~o = - ( v ~ )  r on ~9~, (3.9) 

B.C.2 g't3 = 13- (v~) t3, on s~e .  (3.10) 
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Here we have used g(r, t) = G �9 (vt3) t3 as a matter of convenience in writing the 

second boundary condition. It is important to note that Equations (3.7) and (3.8) 
are not restricted to single phase flows and we will use both of these results, 
without change, in a subsequent study of two-phase flow. 

At this point we seek a solution of the form 

% = B �9 (v~) ~ +~b, (3.11) 

/5t3 =/~t3b �9 (vt3) ~ + p.t3s ~ (3.12) 

in which t~ and s ~ are completely arbitrary functions. This allows us to specify B 
and b in any way we wish, and we choose to specify these two functions by means 
of the following boundary value problem 

f [ -  V b + V 2 B ] d V ,  (3.13) V b + V2IR = -~-~ v, 

V �9 B = 0 ,  ( 3 . 1 4 )  

B.C.1 B = - I ,  on ait3~ , (3.15) 

B.C.2 B = G ,  on Mt3e , (3.16) 

(b) t3 = (B) t3 = 0. (3.17) 

It is worthwhile to note that we expect that the boundary condition given by 
Equation (3.16) will have little influence on b and B, and in practice these fields 
will be determined in some representative region of a porous medium. Under 
these circumstances Equation (3.16) will be replaced with a spatially periodic 
condition (Brenner, 1980); however, at this point we wish to keep the analysis as 
general as possible. 

The boundary value problem for ~b and s is obtained by the substitution of 
Equations (3.11) and (3.12) into Equations (3.7)-(3.10). When this is done, and 
Equations (3.13)-(3.17) are applied, we find that ~ and ~ are determined by 

- l l v  ~ V~ [ - V  ~ + V2t~] d V-l-V (v/3)/3 "b (3.18) 

- 2 [  V (Vt3)t3]T [ V (B r)  - ( V  (BT))t~]- B .  VZ(v~) t3 , 

V �9 q, = - V (vt3) ~. B T, (3.19) 

B.C.1 0 = 0 ,  on aqt3r (3.20) 

B.C.2 ~ = 0 ,  on dt3r (3.21) 

(~)~ -- (~)~ = O. (3.22) 

It is appealing to assume that the solution to the homogeneous problem* 
associated with Equations (3.18)-(3.22) is the null solution, ~ = 0 = 0. While we 

* This is obtained by requiring that (v0} t3 is constant so that all terms involving V(vo) ~ are zero. 
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have no general proof of this, it can be proved for spatially periodic porous media 
and t~is is done in Appendix B. Because of this, we need only estimate (Whitaker 
(1983), Sec. 2.9) the magnitude of the nonhomogeneous terms in order to 
develop estimates for s ~ and #. A little thought will indicate that Equations (3.18) 
and (3.19) can be expressed as 

- - V ~ + V 2 # = O {  B " (vt3)/3 b " ~t3)t3}, (3.23) 
ee L ' 

V " # = o { B ' ~  e)e} (3.24) 

since we seek only an estimate for ~ and #. Here we have made use of the idea 
that the volume integral on the right-hand side of Equation (3.18) cannot be 
larger than the two terms on the left-hand side, and we have retained only the 
largest of the nonhomogeneous terms. 

We begin our estimation of the magnitude of # with Equation (3.24) and note 
that in general the left-hand side will consist of three terms of order # / re .  Under 
these circumstances the contribution of the source term in Equation (3.24) to the 
#-field will be B" (re) e (CelL). Moving on to Equation (3.23) we use the 
estimates 

V ~ = 0(~/(t3), V2# = O(#/e~), (3.25) 

to obtain 

These results must be compared with Equations (3.11) and (3.12), and when we 
do so we see that the first terms on the right-hand side of Equations (3.26) and 
(3.27) are smaller by a factor of f e lL  than the comparable terms in Equations 
(3.11) and (3.12). In order to compare the last terms in these two estimates with 
the representations given by Equations (3.11) and (3.12), we return to Equations 
(3.7) and assume that the pressure and viscous forces are of comparable mag- 
nitude. This leads to the relation 

/5t3 = O{/,e~,e/ee}. (3.28) 

and use of the representation given by Equations (3.11) allows us to estimate the 
pressure deviation as 

/5t3- / • " ~-~ l" (3.29) 

At this point we need only draw upon the inequality S 0 ~ L to see that the term 
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B. (%)t~/L in Equation (3.27) makes a negligible contribution to/5~ through the 
term /~r  in Equation (3.12). This line of thinking can be continued to conclude 
that ~b and s are always smaller by a factor of gt3/L than the other terms in 
Equations (3.11) and (3.12) and this means that ~ and /5t3 can be expressed as 

~z = B  �9 (vo) ~, (3.30) 

~ = / x ~ b  .(v~) ~. (3.31) 

While the form of these results offers nothing new in terms of prior studies, we 
now possess a boundary value problem for b and B and are in a position to 
determine the permeability tensor by direct theoretical means. 

At this point we return to the volume-averaged momentum equation given by 
Equation (2.37) and make use of Equations (3.30) and (3.31) to obtain 

0 = - V (po) t~ + Pt3g + ~ nt3~- (V B - Ib) dA �9 (vt3) t3. 
/3~r 

(3.32) 

Here we have used the approximations 

1 nz~(b. (vo) ~) dA = {~-~ .,r 
g ~  t3~ 

nt3,~b dA}-  (vt3) ~, (3.33) 

no~- V (B �9 (vo) r dA = nt3~" V B dA . <vt~) t3 (3.34) 
t3,r t3~r 

both of which can be justified on the basis of Equations (2.19) and the length- 
scale restriction t~t3 ~ L. It is convenient to use the definition 

c-----1 fA Vt 3 . n t 3 ~ ( V B - I b ) d A  (3.35) 

and express Equation (3.32) in the intrinsic phase average form of Darcy's law 

C-a 
<vt3) ~ . . . .  [ V (P~) ~ - Pt3g]. (3.36) 

Since the traditional form is given in terms of the phase average velocity, we 
define the permeability tensor by 

K = ff/3C - 1  

and express our final result as 

(3.37) 

K 
<vt3) . . . .  [ V (pt3) t3 - Pog] (3.38) 

/xt3 

Here it is important to note that the permeability tensor is given directly in terms 
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of the solution to the boundary value problem expressed by Eqs. (3.13)-(3.17) 
and the definitions given by Eqs. (3.35) and (3.37). 

SOLUTION OF THE CLOSURE PROBLEM 

In practice, one would never solve the boundary value problem in its present 
form in order to determine K. Instead, one would make use of the fact that the 
boundary conditions imposed at Jt3e will have little influence on the fields under 
consideration, and one would determine these fields in some representative region 
of a porous medium such as the one illustrated in Figure 3.This regionwouldquite 
naturally be treated as a unit cell in a spatially periodic porous medium (Brenner, 
1980) and the boundary value problem under consideration would take the form 

1 i- 
- V b +  V2B = - ~  Jv~ [ -  V b +  V2B] d r ,  (3.39) 

W �9 B = 0 ,  ( 3 . 4 0 )  

B.C.1 B = - I ,  on A ~ ,  (3.41) 

B.C.2 B(r + g~) = B(r), b(r + g~) = b(r), i = 1, 2, 3, (3.42) 

(b) t3 = (B) t3 = 0. (3.43) 

Here we have used A ~  to represent the area of the iS-o- interface contained 

Fig. 3. Representative region of a porous medium. 
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within a unit cell and Ci to represent the three nonunique lattice vectors that are 
needed to characterize a spatially periodic porous medium. For a system such as 
that illustrated in Figure 3, it should be clear that b and B will be dominated by 
the governing differential equations and the boundary condition imposed at 
A ~ .  The periodicity condition, used as a boundary condition at A~e, will have 
little or no influence on the b and B-fields. 

The fact that a unit cell in a spatially periodic porous medium will be used to 
determine l( in Equation (3.38), in no way limits that equation which is valid for 
any nonhomogeneous porous medium provided the length scale constraints are 
satisfied for eta, (pt3) t3 and (v~) t3. The determination of K by means of Equations 
(3.39)-(3.43) represents a formidable computational problem. However, a com- 
plex computational problem in one decade is often a routine problem in another, 
and at this time the problem of constructing unit cells that accurately charac- 
terize real systems represents a more challenging problem. For simple systems, 
such as a bundle of capillary tubes, Equations (3.39)-(3.43) are easily solved and 
this is done in Appendix C to obtain the Hagen-Poisseuille law. 

4. Conclusions 

The method of volume averaging has been used to derive Darcy's law from first 
principles without the use of any constitutive assumptions. The analysis has 
provided a means for the direct theoretical determination of the permeability 
tensor, and the necessary comparison between theory and experiment requires 
some complex numerical calculations and experiments that go beyond the 
original one-dimensional, macroscopic studies of Darcy. 

Appendix A: Pressure Measurement 

A detailed comparison between experiment and Darcy's law is difficult to achieve 
because of the problems associated with measuring volume-averaged quantities. 
Experimental determination of the volume-averaged velocity would appear to be 
extremely difficult; however, measurement of the pressure is another matter. As 
an example, let us assume that the point pressure is determined experimentally at 
two points a distance d from one another, and we would like to know when this 
measurement will provide a reasonable approximation for the change in the 
intrinsic phase average pressure. Use of Equation (2.16) allows us to express the 
pressure change as 

Apt3 = A(pt3) t3 + Ai6t~ (A.I) 

and we seek the constraint associated with A/5~ ~ A(p~) ~. Since the change in t58 
is on the order of/5t3 we can use Equations (3.28) and (3.3) to obtain the estimate 

A/~t3 = O(/~t~{vt~)t3/t~t3). (A.2) 
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From Darcy's law we have 

V (pt3) ~ = O(/xt3(v~)t3/e~) (A.3) 

and the first term of a Taylor series expansion yields 

A(pt3} ~ = O[/xt3(v~)t~ ( d ' ] ]  (A.4) 

In order that At0t~ be small compared to h(p~)t3 we require that 

et3 ~ d. (A.5) 

This constraint should be easy to satisfy in any experimental study of the pressure 
field for flow in homogeneous porous media; however, difficulties may arise when 
there are dramatic changes in the structure of the porous media. Under these 
circumstances A/5~ could be significantly larger than the estimate given by 
Equation (A.2). 

A p p e n d i x  B: U n i q u e n e s s  of  the  Closure  S c h e m e  

In the closure problem described in Section 3, the velocity and pressure devia- 
tions were represented as 

v~ = B" (vt3) ~ + $ ,  (B.1) 

/5t3 =/x~b- (vt3) ~ +/xt3 ~ (B.2) 

and an important part of the closure scheme required a demonstration that ~ and 
made negligible contributions to ~ and /5t3. For the general case, order-of- 

magnitude analysis was used to demonstrate that ~ and ~ were negligible when 
certain length-scale constraints were satisfied. Here we wish to prove that ~ and 
are zero for uniform flow in a spatially periodic porous medium. 

If (vt3) ~ is taken to be constant, the nonhomogeneous terms in Equations (3.18) 
and (3.19) are zero and the boundary-value problem for a spatially periodic 
porous medium takes the form 

1 I [ - V s c + V 2 ~ ] d V '  

v . 0 = 0 ,  

B.C.1 $ = 0 ,  on A ~ ,  

B.C.2 $(r + e,) = $(r), 

= (O) = o. 

~(r + s = ~(r), i = 1, 2, 3, 

(B.3) 

(B.4) 

(B.5) 

(B.6) 

(B.7) 

Here A~,, represents the area of the 18-o- interface contained within a unit cell. 
Formation of the scalar product of Equation (B.3) with ~ and application of 
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Equation (B.4) leads to 

--V -(I~I~)-~-lv2(t~I-It~)--Vlt~:V~t~IT----I.~I �9 ~ [ - V s c + V 2 , J d V .  (B.8) 

One normally thinks of the averaging volume as a sphere; however, this is not 
necessary and in this analysis we take ~ to be constructed by the lattice vectors, 
tel. Note that this does not compromise the length-scale constraint, g~ <~ to, since 
one can always choose a unit cell having a characteristic length that is large 
relative to te~. The situation under consideration is illustrated in Figure 4, and a 
little thought will indicate that integration over V~ always takes place over the 
/3-phase contained within an entire unit cell, although not necessarily the same 
unit cell. When 7/is chosen in this manner, the conditions given by Equations 
(B.6) require that the integral on the right-hand side of Equation (B.3) be 
constant. Under these circumstances, the integration of Equation (B.8) over 
leads to 

- ~ V - ( O ~ ) d  V+�89 ~ V2(t~ �9 t~) d V = [ V t~: V O T d V .  (B.9) 
3 v~ Ov~ Ov~ 

Here ~ represents the volume of the fl-phase contained within a single unit 
cell, and in arriving at Equation (B.9) we have made use of the second of 
Equations (B.7). One should note that V~ and V~ coincide only for the special 
case in which the centroid of ~ coincides with the centroid of the unit cell. 

Q2 

J 

L 

- - y  

Fig. 4. Averaging-volume in a spatially periodic porous medium. 
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Use of the divergence theorem and the boundary condition given by Equation 
(B.5) allows us to express Equation (B.9) as 

-IA no~'qJ~jdA+ja* (n~se" VqJ ) ' q JdA= I V~b:Vq~ T dV~ (B.IO) 

Here, A~3e represents the area of entrances and exits of a unit cell and n~e 
represents the outwardly-directed unit normal vector over A~e. The spatial 
periodicity indicated by Equation (B.6) requires that 

nt3e" *~:dA = ~ (nt3e " V*) " * d A  = 0 (B.11) 
;e ;,, 

and we are left with 

0 =  f V~ :  V ~  T dV. (B.12) 
Jv 

From this we deduce that qJ is a constant vector and from either Equation (B.5) 
or Equation (B.7) we conclude that 

0 = 0 .  (B.13) 

Use of this result in Equation (B.3) yields 

- V ~ = e~ (B.14) 

in which c~ is a constant vector. The solution for ~: is given by 

s c = - r "  cl + C2 (B.15) 

in which r is the position vector and c2 is a constant of integration. On the basis 
of the second of Equations (B.6) we deduce that c~ is zero and then we make use 
of the first of Equations (B.7) to conclude that 

~=0 .  (B.16) 

Here we have proved that ~ and ~ are zero when the nonhomogeneous terms in 
Equations (3.18) and (3.19) are zero and the porous medium is spatially periodic. 
However, the proof has been achieved with the use of a specific averaging 
volume that led to the right-hand side of Equation (B.3) being a constant. Clearly 
one could choose other averaging volumes that would lead to the right-hand side 
of Equation (B.3) being a function of position, and the proof would fail. Escape 
from this dilemma rests with Equations (B.7) for, strictly speaking, they require 
that the averaging volume used in the closure problem be comprised of unit cells, 
and this allows us to pass from Equations (B.8) to (B.9) without hesitation. 

A p p e n d i x  C: C l o s u r e  for  F l o w  in a Capi l lary  T u b e  

As an example, we wish to use Equations (3.39)-(3.43) to analyze uniform flow in 
a capillary tube with the thought that any theoretical analysis of Stokes flow in 
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porous media should produce the correct result for a bundle of capillary tubes. A 
little thought will indicate that for this special case only bz and B= are required 
and the boundary-value problem takes the form 

io Ol - Ob~ F I O (  OB=] 2 Ob~+lO(rOBz~]] rdr ,  
- O ~ -  r or \ r  Or / = r~o Oz r Or \ Or ! J 

(c.1) 

Here the length ~ is arbitrary and we have made the obvious assumption that 

vt~ = k ~5t3~. (C.6) 

On the basis of Equation (C.4) we see that neither b~ nor B~ is func/tion of z and 
Equation (C. 1) simplifies to 

lO( 2(o. q 
r = -- . (C.7) 

r Or Or / ro \~'- f  J r:ro 

The solution for B~ is given by 

= r2 (2~(OB= 1 + C1 ln r +  C2 (C.8) 
B= -4 \ro/ \ Or / . . . .  

and we need only impose Equation (C.3) and require that B~z is finite to obtain 

[ ( ] 1 -  -1 .  (c.9) B=z = - ~  \ Or / . . . .  ) ~0 

Use of the second of Equations (C.5) provides the final solution for B= given by 

Bzz = 1 - 2(--r ) 2 . (C.10) 
\ro/ 

We now return to Equation (3.32) and extract the z-component to obtain 

0 -  O(Pt~)t~ +p~gz+2~t3(vt3z)t3(OB~] . (C.11) 
Oz ro \ Or I ..... 

Use of Equation (C.10) leads to 

r 2 [O(p/3) t3 
1 

8/xt3 t ~z  Pt3g~j 
(C.12) 

which is the Hagen-Poiseuille law for flow in a capillary tube. For a bundle of 

0B~z 
- o, ( c . 2 )  

0z 

B.C.1 B= = - 1, r = ro, (C.3) 

B.C.2 B ~ ( z  + () = Bzz(Z), b~(z + 0 = b~(z), (C.4) 

fo' Io" b~r dr -- B~r  dr = O. (C.5) 
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capillary tubes of uniform diameter, this represents the intrinsic phase average 
form of Darcy's law. 
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