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Two Methods with Different Objectives:
Splines and Kriging!

Olivier Dubrule?

When drawing a contour map from a set of irregularly spaced data points, two methods are
often used: The first corresponds to a rather aesthetic criterion and consists of obtaining
contour lines which will be as “smooth” as possible and will honor the data points. This
generally is the objective of the draftsman, and it can be automatically performed by the
method of spline interpolation. The other method, used in kriging, is to compute the
Best Linear Unbiased Estimator (B.L.U.E.), that is, to obtain a map as accurate as possible,
Is it possible, in practice, to predict whether the aesthetic map will also be accurate? In this
paper, we first examine the theoretical point of view: Spline interpolation is equivalent to
kriging with a given (generalized) covariance, We then teke an example to show how this
question can be answered in practice: by testing how well the spline covariance is suited
to the data.

KEY WORDS: kriging, splines, measurement errors, generalized covariance, structural
identification.

INTRODUCTION

In automatic cartography, the first step is to interpolate the variable onto the
nodes of a regular grid. Kriging and splines have two different points of view
for doing this. Kriging computes an estimate which is on average as accurate
as possible. In contrast, splines work on the shape of the interpolating function.

KRIGING AND SPLINES
Kriging
Consider a linear combination X assigning the weights A% to the points x,,.
A is called a generalized increment of order & (k - GI) if it filters all the mono-
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mials of degree up to k in the coordinates of the points x, = (X4, Xa2)

Do NExMxI =0, forallm,nsuchthat 0<m +n<k )]
31

Z(x) is called an intrinsic random function of order k (k - IRF) if its k - GI are
stationary (in the weak sense) with zero mean. If Z(x)is a k - IRF, there exists
(Matheron, 1973) a function K(h) such that, for all £ - GI A

E[ZV] =E [Z x“Z(xa)} =0

Var [ZWV)] =E[Z22N)] =3 T NNK(x, - xp) )
a f

K(h) is called the generalized covariance (GC) of Z(x). So, a k - IRF is charac-
terized by

e its order k, which is interpreted as the degree of its local drift
o its GC K(h), which gives the statistical structure of the variable once its (local)
drift has been filtered.

The program BLUEPACK-3D automatically determines k and K(#), in the step
called “automatic structure identification.” The model of covariance which is
fitted to the variable is isotropic and polynomial. Its expression depends on the
value of &

k=0 K(h)=Co8(h) - bo|h|, C, >0, by>0

k=1 K(h)=C,8(h)- bo|h|+b,|h]?,
Co>0, b,>0, b >0

k=2 K(h)=C,8(h) - by|h|+ by |h|* - by|h
C,>0, bo>0, b, >0, by>-(10/3)(boby)"?

S
’

C,8(h) is the nugget effect: §(7) =0 if 2 # 0 and 8(0) = 1. The constraints on
the coefficients ensure that the expression (2) is always positive.
Once k and K(%) are estimated, many problems can be treated.

Kriging
Z(x) is estimated by a weighted average of the values at neighboring data

points
Zg(x)= 2 NZ(xy)
Q
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The error

Z(x) = 3 N*Z(xy)

is a k - GILif [see (1)]

> N%[ixh, =xP'xf,  forallm,n, 0<m+n<k (3)
&

From (2), its variance is

Var [Z(x) - Zg(x)] =K(©0) - 2 3 NK(xo - %)+ 3 > MWK (x, - xp)
@ a f
It is possible to compute the A* which minimize this variance under the con-
straints (3). We obtain an estimate which is as accurate as possible on average,
and we also have the value of Var [Z(x) - Zx(x)], the “kriging variance,” which

informs us about the accuracy of the estimate at the point x (Delfiner, 1975,
Chilés, 1977).

Cokriging

When the values at data points are observed with a random error €(x), one
only knows the measures

Y(xo) = Z(xa) + €(xq) “

In order to estimate Z(x) from the Y(x,), we “cokrige” the variable Z(x) using
the variable Y(x). If e(x) is such that

Ele(xs)] =0 for all a
0, if a#8
Cov [e(xy), €(xp)] = S384s, forall a, B, 8op =
1, if a=8
Cov [e(x,), Z(xg)] =0 forall o, 8
we get

Var [Z(x) -3 )\"‘Y(xa)] = Var [Z(x) -3 )\“Z(xa)] +3 A% s?2

Then it is easy to compute the A* minimizing this variance under the constraints
that Z(x) - %‘3 N*Z(x4) isa k - GI [see (3)].

Splines

Only the “thin plate” splines, which are the most often used in practice,
are considered here. The general theory of splines is presented in Laurent (1972)
and Ahlberg et al. (1967).



248 Dubrule

Interpolating Splines

When using spline interpolation, one wants to obtain contour lines as
“smooth” as possible; that is, a map which looks like what a draftsman would
obtain manually. The method for that is to compute a function having the shape
of a thin plate (“plaque mince,” in French) which would be forced to pass
through the data points. One assigns the value o(x) to each point x, where ¢
is among all the functions f passing through data points, the one minimizing

A= ff[(axl) (ax2) +2(3x?;];2)2}dx1 &

A(f) is equal, in a first approximation, to the bending energy of a thin plate
represented by f.

Smoothing Splines

When there is a measurement error on the data [see (4)], the function o(x)
should pass “not too far” from the experimental values. The smoothing spline
is the function f which minimizes

2
f(xa) - y(xa)
A(f)+p ) [—ag—g“
o (47

The “smoothing parameter” p determines the relative importance of each term
e the first term represents the “smoothness” of f
o the second represents the proximity of f to the data

Comparing Splines and Kriging

Matheron (1980) has shown that, for a given set of data, the 1nterpolat1ng
spline is equivalent to kriging in k -~ IRF with?

k=1,  K(n)=|h|* Log |h|

As for the smoothing spline, it is equal to cokriging in k - IRF with (Du-
brule, 1981b)

k=1,  K(n)=p|h|> Log |A|

3The definition of K(#) for # = 0 does not lay any problem

<K(o) = lim [#]? log |A| = >
h—>0
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A practical test has also shown (Dubrule, 1981a) that both methods attain
their ends: kriging is accurate, while spline interpolation gives some smooth con-
tour lines.

At this stage, it may be asked whether it is possible to find a way to com-
bine the qualities of both methods.

MODIFYING THE AUTOMATIC STRUCTURE IDENTIFICATION (ASI)

The Fit of the Spline Covariance

Here we suppose that the first part of the ASI has given k = 1. In this case
the model for GC prescribed and fitted by BLUEPACK-3D is

K(h)=Cod(h) - bo|h| + by |h]>,  Co>0, b,=0, by =0  (5)
In addition, it might be interesting to fit a model of the form
K(h)=bg|h|* Log |n|,  by=0 6)

Kriging with such a covariance will be equal to the interpolating spline, since the
kriging system does not change if K(%) is multiplied by a constant {only the krig-
ing variance is multiplied by this constant). The constraint on b, ensures that
K(h) is an acceptable model of GC.

If model (6) is the best one for the variable under study, it is clear that by
using it for kriging, the user will obtain a map which will be both aesthetic and
accurate. Moreover, he will be able to compute the kriging standard deviation
map. If model (6) is not well suited to the variable, the user will know that he
may lose some precision using spline interpolation,

Calculation of the Smoothing Parameter p

Users of smoothing splines always have the problem of choosing the value
of p. Some methods based on cross-validation have been developed to determine
p (Utreras, 1979, Wahba, 1979). Although they can give good results, these meth-
ods are heavy to use in practice.

When the covariance (6) is well suited to the structure of the variable Z(x),
the problem of choosing p can be solved as follows: if the Z(x,) are measured
with a random error [see (4)] we know that cokriging with model (6) is equiva-
lent to the smoothing spline obtained with

p=by
So this value of p gives an interpolating function which is

e accurate (since it is cokriging)
o aesthetic (since it is a spline function)
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Fitting a Spline Covariance with a Nugget Effect
In the previous section, we supposed that the covarjance
K(h) = bg|h|? Log ||

of Z(x) was known. In fact, we implicitly assumed that some of the data had no
measurement errors, and that a first ASI on them had given K(h).

What happens when the error affects all the data? The ASI can only be per-
formed on the variable: '

Y(x)=Z(x) + e(x)
If the variance of e(x) is the same for all the data
Cov [e(xy), €(x5)] = Colag
we have, forall k - GI A

Var [Z " Y(xa)] ~Var [Z W(m] +Var [Z N"e(xco]

33 NNK (g - x)+ Cp 2N
a B @

=3 T AW [K(xy - xg) + Coblxq - Xp))
a B

So the GC of Y{(x) is obtained by adding the nugget effect C, to the covariance
K(h) of Z(x). That is why it might be interesting to apply the ASIL, not only to
model (6), but also to the covariance

K(t) = C,8(h) + bg|h|* Log | 4]

If this model is the best one, the nugget effect can be explained in two different
ways

o cither the data are affected by an error having the constant variance C,
e or there is a ““microstructure’ that can be modeled by a variogram with a sill
C, and a range smaller than the shortest distance between two data.

In the first case, we use cokriging with
Var [e(xy)] =C,,  foralla and K(k)=b|h|* Log |A|

that is equivalent to the smoothing spline obtained with p = b. In the other
case, there is no error, and without additional information, we krige Z(x) with

K(1)= C,8(h) + by||* Log |A|

It is easy to show that both estimates are equal except at data points where the
latter is equal to the experimental value, which is not the case for the former.
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So they will give the same map, since a point of the estimated grid is almost
never merged with a datum point.

A New Model for K(h)
When & = 1, the ASI might be performed on the model
K(#) = Cod(h) - bo|h| + bs|h|* Log |A| + b, |A[? 7

Such a model is more general than (5) and, cancelling b, and b, one finds the
particular case of spline covariances. The constraints on the coefficients are
{Dubrule, 1981b)

Co=0, 5,20, b, >0, by>-3(bobhy)? (8)

A Practical Example

The variable under study is the thickness of a geological layer, measured at
60 wells (Fig. 1). The output of the ASI performed on this variable is given in
Fig. 2.

Here we do not explain the first part of the ASI, that is the way to deter-
mine k. In short, the order & which is chosen is the one that gives the best fit of
the data using local trend surface polynomials of degree k (Delfiner 1975, Chilés
1977). In our example, the value k£ = 1 has been found. So we can fit model (7).

Using (2), we get foralt 1 - GI X

E [Z A“Z(xa)]z -, <Z A“Z) +boKo(0) + BN + 5K, () (9)

where K, (N), Kg(N), and K; (M) are the variances corresponding to each elemen-
tary covariance. For instance

K= > Aa)\ﬁ[xa - xg|* Log |xq - xg|
a f

(9) is a regression equation of Z*(\) on the four variables C,, b,, by, and b, .
The method for determining these coefficients is to compute a large number
(about 1000) Z(A,,) = % MnZy, for A, satisfying the relations (1), and to
minimize

Q(Co, bo, bs, bl) = Z Wrzn [ZZ(Km) - Co (Z )\;Inz) - boKoo\m)

- beK () - b1 K (xm)]z

The weights w2, are introduced to equalize the variances of the Z2 (N\) (Del-
finer, 1975).
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Fig. 1. Thi i
ig. 1. Thickness of a geological layer measured at 60 wells: unit = 1 m; scale = ~ 1/125,000
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But nothing ensures that the regression coefficients will be in accordance
with the constraints (8). That is why BLUEPACK-3D runs as many regressions as
there are possible models of GC, cancelling in turn one, two, or three coefficients
of K(#). At least, models with only one term will be acceptable; for instance,
the coefficient of the elementary spline covariance will be

Z WinKs(\m) Z* (\y)

Z W?nK.% )
m

by =

b is always positive, as K(k) = | 1|* Log | k| is a GC for k > 1 (Dubrule, 1981b).

e

Fig. 3. Map obtained with k =1 and K(#) = 21.54
8(h) - 0.141|#|. Elementary mesh of the kriged
grid (500 X 500 m). Each grid point is kriged us-
ing its 24 nearest neighbors: unit = 1 m; scale =
~1/125,000.
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In our example, seven models are applicable. In Figure 2, each line corre-
sponds to one model. The printed coefficients are successively: NUGGET = C,,,
LINEAR = ~b,, SPLINE = b, and CUBIC = b, . The question is: How to choose
the best one among these models?

e The first criterion is the value of Q(C,, b,, by, by). The column RES/TOT
gives the value of
O(Co, bo, bs, b1)
0(0,0,0,0)

This ratio is smaller than 1, and it is clear that the lower it is, the better the
model.

L~
g
/"'\
0/-5th
s .
0 oC
O 0 \

Fig. 4. Kriging standard deviation map obtained
with k=1 and K(h) = 21.54 8(h) — 0.141 || Leg-
end as in Fig. 3.
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e The final criterion used in BLUEPACK-3D is more related to our final objec-
tive (that is, to obtain a good fit for the variances of the k - GI). If K(h) is
the estimator of K(%1), we want the ratio

S E[Z2(0\m)]
P S EROw)]

to be close to one. The JACKKNIFE is an estimate of p.
In our example, the model

K(h)=21.545(h) - 0.141| |

Fig. 5. Map obtained with k=1 and K@)=
0.3853 X 1074 |n|? Log |#|. Legend as in Figs.
3 and 4.
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btains the best JACKKNIFE (0.8027), and also the lowest value of RES/TOT.
The map obtained with K(#) is given in Fig. 3, and Fig. 4 is the corresponding
map of kriging standard deviations. The spline covariance

K(#)=0.3853 X 107* | |* Log ||

obtains a JACKKNIFE of 0.5182: we would expect the spline map (Fig. 5), al-
though closer to a draftsman’s map, to be less precise than the kriged one.
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