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Two Methods with Different Objectives: 
Splines and Kriging 1 

Olivier Dubrule  2 

When drawing a eontour map from a set o f  irregularly spaced data points, two methods are 
orten used: The first corresponds to a rather aesthetic criterion and consists o f  obtaining 
contour lines which will be as "'smooth '" as possible and will honor the data points. This 
generally is the obfective o f  the draftsman, and it can be automatically performed by the 
method o f  spline interpolation. The other method, used in kriging, is to compute the 
Best Linear Unbiased Estimator (B.L.U.E.), that is, to obtain a map as accurate as possibIe. 
Is it possible, in practice, to predict whether the aesthetic map will also be accurate? In this 
päper, we first examine the theoretical point o f  view: Spline interpolation is equivalent to 
kriging with a given (generalized) covariance. We then take an example to show how this 
question can be answered in practice: by testing how well the spline covariance is suited 
to the data. 

KEY WORDS: kriging, splines, measurement errors, generalized covariance, structural 
identification. 

INTRODUCTION 

In automatic cartography, the first step is to interpolate the variable onto the 
nodes of  a regular grid. Kriging and splines have two different points of  view 
for doing this. Kriging computes an estimate which is on average as accurate 
as possible. In contrast,  splines work on the shape of the interpolating function. 

KRIGING AND SPLINES 

Kriging 

Consider a linear combinat ion X assigning the weights ?t a to the points x t .  

X is called a generalized increment of  order k (k - GI)  if it filters all the mono- 
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mials of  degree up to k in the coordinates of  the points x a = (Xœl » xŒ2 ) 

~2 a«,m,.n,, ~«l~«œ =0 ,  forallm,nsuchthatO<~m+n<~k (1) 

Z(x) is called an intrinsic random function of  order k (k - IRF)  ifi ts k - GI are 
stationary (in the weak sense) with zero mean. I fZ(x)  is a k - IRF, there exists 
(Matheron, 1973) a function K(h) such that, for all k - GI X 

Var [Z(X)I = E[Z2(X)] = Z Z ~«~~K(x« - x m) (2) 
a t~ 

K(h) is called the generalized covariance (GC) of  Z(x). So, a k -  IRF is charac- 
terized by 

• its order k, which is interpreted as the degree of i t s  local drift 
• its GC K(h), which gives the statistical structure of  the variable once its (local) 

drift has been ffltered. 

The program BLUEPACK-3D automatically determines k and K(h), in the step 
called "automatic structure identification." The model o f  covariance which is 
fitted to the variable is isotropic and polynomial. Its expression depends on the 
value of  k 

k = 0  K(h)=Co6(h)-bolh[, Co>/O, boßO 

k = l  K(h)=Coß(h)- bolhl + bl[h[3, 

Co >~O, bo >~O, bi ~0 

k = 2  K(h)=CoS(h)-ao]h]+b,[h[3-»2]h[ s, 

Co >10, bo>lO, b21>0,  bi >l-(lO/3)(bob2) ~/2 

Co6(h) is the nugget effect: 6(h) = 0 if h ~ 0 and 6(0) = 1. The constraints on 
the coefficients ensure that the expression (2) is always positive. 

Once k and K(h) are estimated, many problems can be treated. 

Kriging 

Z(x) is estimated by a weighted average of  the values at neighboring data 
points 

ZK(X) = ~ X~Z(x«) 
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The error 

Z(x) - ~2 x~z(x«) 

is a k - GI if [see (1)] 

Z )c~ m n m n ù x« lx«2=xl  x2, fo ra l lm ,  n, O < ~ m + n ~ k  (3) 
o~ 

From (2), its variance is 

Var [Z(x) - ZK(X)] = K(o) - 2 ~ X«K(x« - x) + ~ ~ XaX~K(x« - x/3) 
« « /3 

It is possible to compute the X ~ which minimize this variance under the con- 
straints (3). We obtain an estimate which is as accurate as possible on average, 
and we also have the value of  Var [Z(x) - ZK(x)] ,  the "kriging variance," which 
informs us about the accuracy of  the estimate at the point x (Delfiner, 1975, 
Chilès, 1977). 

Cokriging 

When the values at data points are observed with a random error e(x), one 
only knows the measures 

r (x« )  = z(x«) + e(x«) (4) 

In order to estimate Z(x) from the Y(xc,), we "cokrige" the variable Z(x) using 
the variable Y(x). If e(x) is such that 

I~ 
[e(x~)] = 0 

ov [~(x«), ~(x~)] = s ~ G ~ ,  

Cov [e(x~), z (x~) l  o 

we get 

for aU « 

for all c~, ~, 

for all a, 

(ö {0, if ~x4=~ / 

aD= 1, if c~=~ /  

ot ot 

Then it is easy to compute the X a minimizing this variance under the constraints 
that Z(x) - ~ XaZ(x«) is a k - GI [see (3)] .  

c¢ 

Splines 

Orlly the "thin plate" splines, which are the most offen used in practice, 
are considered here. The general theory of  splines is presented in Laurent (1972) 
and Ahlberg et al. (1967). 
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In terpo lating Splines 

When using spline interpolation, one wants to obtain contour lines as 
"smooth" as possible; that is, a map which looks like what a draftsman would 
obtain manually. The method for that is to compute a function having the shape 
of a thin plate ("plaque mince," in French) which would be forced to pass 
through the data points. One assigns the value a(x) to each point x, where o 
is among all the functions fpassing through data points, the one minimizing 

R2 
+ 2 ~ OX13X21 dxl dx2 

A ( f )  is equal, in a first approximation, to the bending energy of a thin plate 
represented by f. 

Smoothing Splines 

When there is a measurement error on the data [see (4)], the function o(x) 
should pass "not too far" from the experimental values. The smoothing spline 
is the function f which minimizes 

The "smoothing parameter" P determines the relative importance of each term 

• the first term represents the "smoothness" o f f  
• the second represents the proximity of f to the data 

Comparing Splines and Kriging 

Matheron (1980) has shown that, for a given set of data, the interpolating 
spline is equivalent to kriging in k - IRF with 3 

k = 1, K(h) = ]h[ ~ Log [h[ 

As for the smoothing spline, it is equal to cokriging in k -  IRF with (Du- 
brule, 1981b) 

k = 1, K(h) = p[h[ 2 Log lh] 

3The definition of K(h) for h = 0 does not lay any problem 

( K(°)= lim 
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A practical test has also shown (Dubrule, 1981a) that both methods attain 
their ends: kriging is accurate, while spline interpolation gives some smooth con- 
tour lines. 

At this stage, it may be asked whether it is possible to find a way to com- 
bine the qualities of both methods. 

MODIFYING THE AUTOMATIC STRUCTURE IDENTIFICATION (ASI) 

The Fit of the Späne Covariance 

Here we suppose that the first part of the ASI has given k = 1. In this case 
the model for GC prescribed and fitted by BLUEPACK-3D is 

K(h)=Co~(h)-bo[h]+al]h]  3, Co>~O , bo»-O , b~>~O (5) 

In addition, it might be interesting to fit a mode1 of the form 

K(h)=bs[h[ 2 Log]h], bs>~O (6) 

Kriging with such a covariance will be equal to the interpolating spline, since the 
kriging system does not change if K(h) is multiplied by a constant (only the krig- 
ing variance is multiplied by this constant). The constraint on b s ensures that 
K(h) is an acceptable model of GC. 

If model (6) is the best one for the variable under study, it is clear that bY 
using it for kriging, the user will obtain a map which will be both aesthetic and 
accurate. Moreover, he will be able to compute the kriging standard deviation 
map. If model (6) is not well suited to the variable, the user will know that he 
may lose some precision using spline interpolation. 

Calculation of the Smoothing Parameter p 

Users of smoothing splines always have the problem of choosing the value 
of p. Some methods based on cross-validation have been developed to determine 
p (Utreras, 1979, Wahba, 1979). Although they can give good results, these meth- 
ods are heavy to use in practice. 

When the covariance (6) is weh suited to the structure of the variable Z(x), 
the problem of choosing p can be solved as follows: if the Z(x«) are measured 
with a random errõr [see (4)] we know that cokriging with model (6) is equiva- 
1ent to the smoothing spline obtained with 

p = b  s 

So this value of p gives an interpolating function which is 

® äccurate (since it is cokriging) 
® aesthetic (since it is a spline function) 
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Fitting a Spline Covariance with a Nugget Effeet 

In the previous section, we supposed that the covariance 

K(h~-- b~lh ? Log Ihl 
of Z(x) was known. In fact, we implicitly assumed that some of the data had no 
measurement errors, and that a first ASI on them had given K(h). 

What happens when the error affects all the data? The ASI can only be per- 
formed on the variable: 

Y(x )  = z ( x )  + e(x)  

If  the variance of e(x) is the same for all the data 

Cov [c(x«), e(x~)] = Coa«~ 

we have, for all k - GI X 

Var[~X«Y(xc, q=Var[~X««(x«q + Var [ ~ i  X«e(x«)] 

= E E X«X~K(xa - x#) + Co E Xt2 

-- ~ ~ x«x ~ [K(x« - x~)  + Coa(X« - x~)] 

So the GC of Y(x) is obtäined by adding the nugget effeet Co to the ¢ovarianee 
K(h) of Z(x). That is why it might be interesting to apply the ASI, not only to 
model (6), but also to the covariance 

K(h) = Co~(h ) + a'~lh] ~ Log lh[ 
If this mode1 is the best one, the nugget effect can be explained in two different 
ways 

« either the data are affected by an error having the constant variance Co 
« or there is a "microstructure" that can be modeled by a variogram with a stil 

C o and a range smaUer than the shortest distance between two data. 

In the first case, we use cokriging with 

gar  [e(x«)] =Co,  f o r aUa  and K(h)=bA]hl2 Log Ih] 
! 

that is equivalent to the smoothing spline obtained with p = b s. In the other 
case, there is no error, and without additional information, we krige Z(x) with 

K(h)  = Coa(h) + b;]hl= Log Ih[ 
It is easy to show that both estimates are equal except at data points where the 
latter is equal to the experimental value, which is not the case for the former. 
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So they will give the same map, since a point of the estimated grid is almost 
never merged with a datum point. 

A New Model for K(h) 

When k = 1, the ASl might be performed on the model 

K(h)=Co6(h ) -  bo[h [ + òs[hl 2 Log [h[ + bi ]h[ 3 (7) 

Such a model is more general than (5) and, eancelling b o and bi,  one finds the 
particular oase of spline covariances. The constraints on the coefficients are 
(Dubrule, 1981b) 

Co ~ 0  , bo ~ 0  , b 1 ~ 0 ,  b s > -  3(hohl )  112 ( 8 )  

A Practical Example 

The variable under study is the tkickness of a geological layer, measured at 
60 wells (Fig. i). The output of the ASI performed on this variable is given in 
Fig. 2. 

Hefe we do not explain the first part of the ASI, that is the way to deter- 
mine k. In short, the order k which is chosen is the one that gives the best fit of 
the data using local trend surface polynomials of degree k (Delfiner 1975, Chilès 
1977). In our example, the value k = 1 has been found. So we can fit model (7). 

Using (2), we get for all 1 - GI X 

Œ 2 

where Ko(X), Ks(X), and Kl (X) are the variances corresponding to each elemen- 
tary covariance. For instance 

Ks(X) = E Z X«Xfl ]x t -  x~[ = Log ] x t -  x~l 
« fl 

(9) is a regression equation of Z 2 (X) on the four variables Co, bo, bs, and b, .  
The method for determining these coefficients is to compute a large number 
(about 1000) Z(Xm)=~  Xr~Z«, for Xm satisfying the relations (1), and to 
minimize 

b.Ks(Xm) - b l K1 (Xm)] 
2 

The weights W2m are introduced to equalize the variances of the Z2(Xm) (Del- 
finer, 1975). 
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Fig. 1. Thickness of  a geological layer measured at 60 wells: unit = 1 m; scale = -1 /125,000.  



Two Methods with Different Objectives: Splines and Kriging 253 

I w '  ; I I I I i ; 
I ß  l I I I I l I 
I ~  (D I I ~  I I "  I f,O I ILtl I I~l I I "  I 
I : ~ :  ~ | IM I ~ I  I O'l I ~ I  I I l l  I I/') I 
I ~  ~ I ¢0 1 f ~  I f.O I ¢ 0  I «  I I ~  I 
13~ h I r ~  i co I ~ *  i r ~  | L Q  I r "  I 
i t a  . i  . i  o i  . i  . i  . i  - i  

I G3 1 ' - )  I I I l I | l 
| b I l l  I Il I I I I I 
I L J I  I I I I I I I T-~ 

I ~ l ~ i  I I ~ I  I I i I I I 
I I I I ~ I "  I I I i I I 
I I I I ~ 1  I * I I I I I ~.~ 
I I J I Q ~ I  U') (%1 I ~ I I~l I ~ J l ~  I l D  I 

I J i l B )  I (tJ I e i l  I I I %  CO I ~ I Cll I lO I GO I ~ I I. ' l i O 
l a :  ù,=' l ¢ l ~ l l G I I  I , - J  ILi ,  J I l  ~ I"" l a [ : l l : : l ' *  I [ " ' *  I 1  I l " "  I 

1 ( -31  I «  I I ¢ l t  I ~ 1 ¢ ~ 1 1 1  I I~li I I I ~ 1 « 1  
I l  I l I I . i c l  : I i I i i I ~,~ ~ 

I 8 I I I i . .  I I I I l l ' - I  
, O ' l  I , , I i L L i l  I I I I ' I I ~ l i  ~ 
I . i I  I I I I l E : l «  t-4 I ~ l ~ l » ' i l ~ l ~ l - - I  
IŒ  I I I I IC31  I I I I I l ;~ 
I ~  1 «  - -  I ~ I,~'~ I I U . I I  I I I I I I I 

I I I I I I I ~  
I I-'~I~ I I I I I I-'* I i%i I ICl I r ~  I o l  i ( I l  I I ~  I 
I ~ " i  I I I I i i..- i ~ i ~  i ~~i i i ' ,- i ¢lil i P.. i i~ l  i 
l l l l i ~  i I ~ I  I I I IC~i l - ~ . l I c i  ~ l i ~ l i l o  i u ~  I i ~ i  l l i ' i  i l~i  
i"I"{I=1 ~ llfl li~ I J ~ I (%1 1 i~i p I ~0 i=P Ip lli~i I p I 

I U . / l i =~  - I  . I  . I  I . J1  l ~ i ~ l i ~ l i l i ~ i l ~ l lZ l i l iO l  , .  

I C i ~  i ~ I I I ~ l i - - I  I '~ i I I i I 
I Z l  I I I i I I i ~11~"  I I I 

I ~ l , l ~ l l  I I I ei l  l l , l , l l . l ~  ~ 1 ~ 1 « 1 ~ " ~ 1 " " *  * ' * 1  

~ ' l [  i I - - Œ  I i i I ~¢~ ~ i  ' ' i  I ' ' ' ' I ' 
I~l : :  I I",l ~ 1 ~ 1 ~ 1  l l i ~ l  I I I I I I I 4 .  

Z ' l l  I l  I I I I b.J IU. I  I ~ I O} l~D I :~l* I r',- I « I « I I I l.l.i 
l ~ i  I Œ  I i I I i I l .  i I-ù i r " - r " -  i I i I~l i :~~* I iI%l l (%11 I Ô 

I fr" I I I l i - -  I X l ".~ I CPI U~ I a l  I U:i l i d  l « I I f l  I 
i,,OO @~ ,LIJ . . . . .  I P I =:i" , l ~  , U1 I r ** , 

i ~ l ~  I I o l i l l - - i  I l i i J I  • " l  " l  i l  " 1  ° 1  " I  
« I I l l ' ~ J I l l œ l  I l " .  I I « l l S ~ l ~ l l l l l l l l l  

I 1¢,2 i l  - I  - I  . I  ~ :  I ~ 1  I 1 I I I I i i - -  
« I I Z l l ' * , l  I ~ I - -  I (JD I,~.1 I I I I I I I I I I n '-~ 

i ~ ' K  I I ~ 1  I I I Lril,ri I U ' l l  I I I . I  I I I I ' 

~llll«=, i I l l l ~ l  I I I I ¢~i I « I ~ I ,,'-~ I ~ I « I ~  I ~ I ~ I I-,'* I 

!~_i , , , , , ,  . . . . .  , , , , , , , , . , .  

I I I I I I r',- l i . i~ i P l  i al l  i m i i~il i ¢~D i ~ i csi i co 1 U . I  
I I "1 I I I Il l l i : l  i c~~ i I~~ i ¢~~ i csi 1 csl I el i  i e~, I 
i t - l i  i t I - l i  1 .1~ i I i I ~  I ~  I'--" f ~ l  . I ~ I i . -  I + l .i- I -G l -I- I -i- 1 4- I ÷ I U . / I  

I I f , -  I i'ri I o i  I C~) I I~il I c~'i I ¢%J I ~ 1 . I I I :: l '  I 1~7 I G*l I 
1 I l i ~ l  I I I l~i I I I "% I ~ l  I r ' ~  I r ~  l « I l~l  I o3 I e3 1 13:1 ~ 
I I I @ 1 . 1 . 1 4 - I  ~ ~ I t l  • I I o'i I i~" l I'%/" I (~i I ¢~I I U)  I I I I  l :~I' I ~ I  

. :~i . I  I .=i I i~/ I b.i i W I ~ = i  " I i I.~ I iO I I D  I l i~ I / '~ I l i : l  I I I I  i W I ~ I  
I I ~ I  - I  - I  . I  - I  - I  - I  . I  i ~ l  Eat~  ' l l l ~  I l  I I I l "  I ~ 

I I b I l D  I eD I :~* I ~ I ¢1~  II II Il (~l I I I CSl I I I I I Cli I m I i  I I I I I I Ol~l"l ~~P 

I I I 1 I I I I I ! I - I  l ~= , t l  I I ~ I II%l l ~rl I ~JD I Im O'l (1¢: 
I--,'l¢ I I I - I  - I  - I  I - - I ~ 1 - - 1 ~ 1 - - 1 « 1 - - 1 ~ 1 ~ 1  .?~ 
l~ ,~ i  I l I l i C l D  l l I  ~ ~ : ' i I I I I I I l i " - I  

CJ 'K I I ~ I ~ I ~ I ~ I  bJ « " r "  ~ : I I I ÷  I +  I @  I I I I l ' i "  i 4 "  i O l  

l l ~ l  I ::i'* I P'l I ll~l I m ~~(~  l l l '  I I ~ I œ I (311 ~~) I U'J i / ~  I ¢~11 1 

« IŒII I bJ I UJ 1Ls.I i0[~~ I I L , I  I l  I 1 1 1  I 1 1 ¢ % 1 1 1 1 1  Gt 
I " ~ I I  l l n l r ' - l ~ O  , I I I o i  . I  , I  . I  - I  - I  - 
I ¢;~ ¢::11 ¢.~i I ;~'* I I~~l I O1 ~J ~ "  I I I CSl I ~~ll I ¢II I Clli I (~ll I I I ~ l  I~J 
11,~=i~[: 1 "~  I ,li~ I I I I'%,1 

i ~  ' = " " ' = ' °  ==  ' " ' ' ' " " ' '  ' ' ' ' ' ' -==~_ 
I Z i l . i l i ~ : l .  , I  - I  • Z Z  I U I ~ I « I » I ~ I ~ I ~ I , " ~ I «  
I (T .  I I I I i!D I l!i) ~:IC~ 1 3 1 1  I I I I I I I (%r 

t l  i l i l  I I I I c311,1 I Œ I  I I ~  I ~ii I ~ i  1 ~ I œ I ::P I =~P 

l - -  I ~ 1 .  I 1 . *  i l  I!.~11 "l- 14"  14"  1 4 '  I.IN 1 " i  I I 

I I =P I O'l I f f i  I ~ -  ~ I I~l I (~l I I~iI I I~~l ¢1 I 4Yi =3" 

I « 1 ÷  1,1- I +  
I I b J  I bJ IU . I  I (.3 ~l~'l I ~il ' I ~  , 1  I œ  I I~l I ¢lll , 131 I I I l ¢ 0  l i l l ~  ~ I ~  
I I t r l  I ( l ' l  I l'%1 

I Z  I ~ l  I P -  I O I  I I I J 
I ~  I ~ d  I U )  I U 1  i P I I I I / ~'~ 
I~l - I  " I  • IU .  ~ 1 ~ 1 ~ 1 ~ 1 ~  ~ I ~  ~ ~ ~'~ 
I i i l l  i ~~i I Oll I ~  I i I I 

'--,-',<~,, , . . . . . . .  ,' ,, ,:~= ~,,+,=, o ,=, : ,  o,-,-,- , :  :'*+'~ o = = ~  
I = 1  I I l U  - -  ~ i  I t n  I :;P . . . . .  N 0 
I (.2 l l% l  1 « I i I - -  ùJ I I « l « l œ  l l ~ i  l Cfl 
I I L I I  I I I l , , .  - I  - I  - I  . I  - • * I 

l:::i I I I I b . .  I~3 1 (:~i I I~I I ,l~i I I ~ l l  œ 
I I I I ILi. l  I I I I I I 
, - .  ~ - -  i - - ,  , - .  i ~ o  I I I I I ~i~ 

I I I I I 

~ ~,+,+,+,+ 
J I~~ l # I cD I :::P I I~3 1 « I 

I Z  « I I l i ' ~ l  l i ~ i  I ~ l i ~ i  I « 

I ~ ; '  " '  " '  " '  " i , ~ '  " '  I «~1~ I i2= I c l i  I œ l l 3 t l  
I I I il I I I 

I I I $ I I 



254 Dubrule 

But nothing ensures that the regression coefficients will be in accordance 
with the constraints (8). That is why BLUEPACK-3D runs as many regressions as 
there are possible models of  GC, cancelling in turn one, two, or three coefficients 
of  K(h). At least, models with only one term will be acceptable; for instance, 
the coefficient of  the elementary spline covariance will be 

wZmKs(Xm ) Z 2 (km) 
m 

b s - ~ .w~K2s(Xm)  
m 

b s is always positive, as K(h) = Ihl ~ Log lhl is a GC for k /> 1 (Dubrule, 1981b). 

Fig. 3. Map obtained with k = I and K(h) = 21.54 
~(h)- 0.141 lhl. Elem~nt~y ~~~h of th~ k~ig~d 
grid (500 X 500 m). Each grid point is kriged us- 
ing its 24 nearest neighbors: unit = 1 m; scale = 
-1/125,000. 
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In out  example,  seven models are appticable. In Figure 2, each line corre- 

sponds to one model.  The printed coefficients are successively: NUGGET = Co, 
LINEAR = - b o ,  SPLINE = bs, and CUBIC = b i .  The question is: How to choose 
the best one among these models? 

« The first criterion is the value of  Q(Co, bo, bs, bi). The column RES/TOT 
gives the value o f  

Q(Co, bo, bs, b l ) 
Q(O, o, o, o) 

This ratio is smaller than 1, and i t  is clear that  the lower it is, the bet te t  the 
model.  

ofBõo'-?--•O ~ .  

0 0 O0 
o 0 0 ~ 

,iôo 0o oo°.~ ~_ 

~)OoXgO ~o { E 

~)?j« 
Fig. 4. Kriging standard deviation map obtained 
with k = 1 and K(h) = 21.54 6(h) - 0.141 [h[. Leg- 
end as in Fig. 3. 
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• The final criterion used in BLUEPACK-3D is more related to our final objec- 
tive (that is, to obtain a good fit for the variances of the k - GI). If K(h) is 

the estimator of K(h), we want the ratio 

E[Z2 (Xm)] 
m 

P = ~ E [ g ( X ~ ) ]  
m 

to be close to one. The JACKKNIFE is an estimate of p. 

In our example, the model 

K(h) = 21.545(h) - 0.1411h ] 

Fig. 5. Map obtained with k= 1 and K(h)= 
0.3853 X 10 -« Ihl 2 Log Ihl. Legend as in Figs. 
3 and 4. 
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»btains the best JACKKNIFE (0.8027), and also the lowest value of  RES/TOT. 
Fhe map obtained with K(h) is given in Fig. 3, and Fig. 4 is the corresponding 
map of  kriging standard deviations. The spline covariance 

K(h) = 0.3853 X 10 -4 Ihl 2 Log]h[ 
obtains a JACKKNIFE of  0.5182: we would expect the spline map (Fig. 5), al- 

though closer to a draftsman's map, to be less precise than the kriged one. 
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