EQUATIONS FOR SPACE -~ TIME AND TIME CORRELATION
FUNCTIONS AND PROOF OF THE EQUIVALENCE OF
RESULTS OF THE CHAPMAN — ENSKOG AND TIME
CORRELATION METHODS*

A. D, Khon'kin

A study is made of the problem of determining the space—time or time correlation functions
in a many-~body classical system. The general correlation function of dynamical variables of
a binary type (it is precisely these functions that are encountered in applications) is expressed
in terms of the first two terms ofa sequence of functions that depend on an increasing num-
ber of arguments and satisfy Bogolyubov's chain of equations with known initial data. In the
lowest order in the density the correlation function can be expressed solely in terms of the
first function of the sequence. This function is the solution of the initial-value problem for
the linearized Boltzmann equation. An investigation is made of the initial-value problems for
the correlation functions that determine the transport coefficients of simple and multicompo-
nent gases. This investigation renders it possible to give a simple, complete, and rigorous
proof of the results of the Chapman—Enskog and correlation function methods. The proof is
based on the well-known properties of the linearized collision operator and it is possible to
avoid the divergences encountered in other investigations.

In recent years the methods of nonequilibrium statistical mechanics have been widely used in the the-
ory of irreversible processes. These methods enable one to obtain the transport laws and express a num-
ber of important characteristics, in particular, the transport coefficients of dense gases and liquids, in
terms of integrals over the time of time correlation functions.

One of the most important ways of verifying the new theory is to compare its results with those of
some special case, which has already been confirmed in practice. A good example of such a special case
is a Boltzmann gas, since its theory is well known [1-3], A number of papers [4-6] have been devoted to
proving the equivalence of the method of correlation functions and the Chapman~Enskog theory for the case
of single-component gases. However, Ernst et al. [4, 5] considered correlation functions with dynamical
variables integrated over the time and they were forced to work with integrals that do not converge abso-
lutely. Zwanzig [6] also arrived at diverging series and adopted an artificial summation of these series.
Thus, the rigor and elegance of the kinetic theory of gases would appear to be wasted. In addition, the
equivalence of the expressions for the transport coefficients of gaseous mixtures was not investigated at all.

In the present paper, we propose a general method of investigation of space—time and time correla-
tion functions of both simple and multicomponent media, (Similar ideashave also been developed by Tol~
machev [11], who has investigated conditional time distributions; it is, however, preferable to investigate
the correlation functions themselves for a number of reasons. For the different correlation functions one
obtains different initial-value problems, and each have their own specific features. The initial data enter
the approximate formulas for the calculation of the correlation functions and it is precisely the form of the
initial data that determines the form of the correlation functions [12].) In the Boltzmann limit, i.e., in the

*This paper was presented in 1966 atthe Seminar conducted by D. N, Zubarev at the Mathematics Institute
of the Academy of Sciences of the USSR (see also [7]) and at the Third All-Union Conference on the Dynam-~
ics of Rarefied Gases [8-9].
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lowest order in the density, this method enables one to give a rigorous proof of the complete equivalence
of the method of time correlation functions and Chapman— Enskog theory for all the transport coefficients.
The space—time and time correlation functions can be expressed in terms of new gg functions, which
satisfy Bogolyubov's chain of equations [10] with known initial data, In the lowest order in the density, the
correlation functions can be expressed entirely in terms of the gy functions, for which a closed equation
(the linearized Boltzmann equation) is obtained on the bhasis of ideas developed by Bogolyubov [10]. The
subsequent investigation is based on the use of the known properties of the linearized collision operator and
does not entail an analysis of diverging series or integrals.

It should be emphasized that the rigorous proof of the equivalence is merely an illustration, In our
opinion, it is most natural in the theory of fluctuations to start from the corresponding initial-value prob-
lems for Bogolyubov's chain of equations; these problems are formulated in §1.

In the present paper, we consider the correlation functions for structureless molecules that obey the
laws of classical mechanics. However, the treatment can be carried through for correlation functions of
multiatomic molecules that satisfy quantum mechanical laws,

1., Consider space—time correlation functions of the form
Y{r, 2, {)=lim <aﬁ(r) S(r', ). (1.1)
Vo0

Here, the limit sign stands for the thermodynamic limit when N, V — « with N/V =n = const and the an-
gular brackets stand for averaging over the ecuilibrium (or, possibly, locally equilibrium) ensemble py(xy,
.5 XN); X1 = (ri, pp) are the coordinates and momenta of the i-th particle. The dynamical variables a(r),

b(r), ... have the form
N N

O MRS Y

=1 =1

@ == a(P:)y Gi; = Gj: = a(Ps Pj Tis), YTi;=TFi-— T ;l(r; 1) = exp(—tHy) a (),

where exp (~tHy) is the evolution operator of a system of N particles. We assume that the potential of the
interaction &; and the functions aijj are short-range functions, i.e., they vanish for rij = o, where ¢ is
the range of the forces,

Using the symmetry properties of the functions c;, f), and pyy under permutations of the particles, we
can express (1.1) in the form

2
Y(r,v',8) = ngdzlalé (r —r) & (2|1, B) <+ -%‘ &dxldxzam?) (r —11) 2 (@1, 22|17, £), (1.2)

where we have introduced gg functions in accordance with the formulas

nsgs(xlﬂ e ,.'I:Sll'l,t _hm

lim (N ), SdzN~s5(r',t)pN. (1.3)

The gg functions satisfy Bogolyubov's well-known chain of equations [10]:

06gts +Hsgs = nZSd:IISJA [(D'g s+l gs+1] (1.4)

and, in addition, initial data that can be obtained from (1.3):

5 §

gs(xl,...,xs{r',t:0)=2[bi+——§— . ',bijlé(r’——ri)FS

i=1 J=1
n : ’
‘5" n dewlbs.&lé (:l" - 1vsa-l) Fs+1 + -i‘ Zl: des;\lbi,sd [(5 (r - rs+l)
=
N :
+ 9 (1" - ri)} Fs+1 + '_ni— Sd$5+idxs+2bs+l,s+2§ (l‘, - rs+}.) Fs+2; (105)
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where we have introduced the equilibrium s-particle distribution functions Fg:

N!
Wl (xg, ..., Z) =11m—”—s)7§d$’v"splv- (1.6)
Vs — )3

w (N

Thus, the determination of the g functions, in terms of which the correlation functions (1.1) can be
expressed, reduces to the initial-value problem (1.4)-(1.5) for Bogolyubov's chain of equations.

2. In the Boltzmann limit, i.e., in the lowest order in the density n, Eq. (1.2) yields

b, v, 1) = n\dpa(p) g (2|7, 8), z=(r.D). (2.1)

For small n one can readily obtain a closed equation for g;. Indeed, we shall seek the solution of the
chain (1.4) as an expansion

go=g" + g+ ... (2.2)
The equations for the functions of the zeroth approximation have the solution

g (t) = exp (— tH,) g (t = 0). (2.3)

We now combine Egs. (2.2) and (1.5) with s = 1 and 2 for ryy < o, t » Tgt ~ o (m/kT)Y2 T the lowest order
in n, we then obtain

géo) (@1, 23| 1", ) = Iy (24, Z3) {gﬁo) (@ |, 1) Fi(pa) + Fo(py) gio) (z2 ]2, D)1, (2.4)

Iy (xy, 25) == lim exp {— tH; (zy, z,)} exp {T [H (xy) + H (z2)]}.

in deriving (2.4) we have also used an expansion of the functions Fg with respect to n [10].

Restricting ourselves to the lowest order in n, we substitute (2.4), in which we now omit the super-
script (0), info the first equation of the chain, After the usual simple transformations of the collision in-
tegral [10], the resulting equation reduces to the linearized Boltzmann equation

91 , p dg1 _
A T nJ (g1), (2.5}

J(g1) =S[F1 Fhep i, ) Fipygi(o,r|v, ) — Fi(@ygu(prr|r', ) — Fi(py) g1 (p, v |1, £1gbdbde dp,,

where p' and py' are the momenta of the two particles after a collision characterized by the initial momenta
p and p;, the impactb, and the azimuth &; g = [p — p;|/m.

Equation (2.5) must be solved with the initial condition

gu(p, |t t=10) = b(p)d(r —r)Fi(p). (2.6)

For the time correlation functions

Cab(t)y, 2.7)

we obtain an analogous equation in the Boltzmann limit:
¥ (1) =n{dp ap) 61 (v, 1), (2.8)

where the function Gy(p, t) is the solution of the initial-value problem for the spatially homogeneous linear-
ized Boltzmann equation

%C‘T;i =nJ (Gl\)v Gi(p, t =0) = b(p) Fy(p). (2.9)
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In the case of a gaseous mixture consisting of L components the time correlation functions

W (t) = lim — <a b (), (2.10)

Ve V
L
=2

k=1 i

N

&

Ng,

o iL (kl)
[+ 5 ) Y ]

=1 ;z=1

H
Ul

are determined by a similar equation:
L
() =nY (dpat® (p) GP (p, 1), (2.11)
28

where functions G§k) (p, t) are the solution of the initial-value problem for the system of linearized Boltz-
mann equations

[(3)
o ‘”2 T (G, Gt =0)=HFP, (2.12)

=1

T @) =178 (0 6P (0, 5 + FP (0) 6P (0, £ — F (9) GP (py, 1) — F (py) G (p, 1)) guubdbddedp,,

— () () o -p
8rl = Ip/mk - pl/ml I1 nFl (p) - (21'kaKT)'/’ exp zm BT *

3. In nonequilibrium statistical mechanics the transport coefficients are expressed in terms of in-
tegrals over the time of the time correlation functions. Thus, the coefficients of shear n and dilatational ¢
viscosity and the thermal conductivity A of a simple medium can be expressed in the form

0 1 . ~
dtl P HCL t v
1= 5 ‘}_?:QNVKT( g ap (1)
(o] . ,1 “ e
= Sd Llﬂrgo v RT <Poalles (0,
0
g 1
h=(dilim e <Quf (1),
0
N
S iaMi] ‘ 6(Di. i p !p
PaB=ZI|:pr5ﬁ _-2—2 rija—grﬁ—]v [aﬁ=Paﬁ_—§PW6aﬂv (3.1)

o - O
g = Poo ‘3PV‘3<0E) (E — EV),* 8a=Qa— Pa,

. DPia 1 pm iB 95\
“='§,;[ m 2m 22 ( Dy~ Tijo 6rijg>]’
N N

a—me, E=Z[ 12@] h=E+P,

qe=1 d=1 J=

D>

-

E is the density of the internal energy; P is the pressure; p is the mass density; summation from 1 and 3 is
understood over repeated Greek indices.

Introducing G; functions instead of (3.1), we obtain the following equations in the lowest order in n:

. n
= BRT

fos)
— 3 dtgdppapsGmB (p, 1),
1]

2§ ae ane, 0,0, (3.2)

02 _
6KT2m28 dt Sdpp «P*C1a (B, ).
Q

*Since we are considering the canonical ensemble, the term describing the density fluctuations (see [14, 15])
does not occur here.
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The functions GiO!B (p’ t)a o, B = 15 2; 33 Gi(ps t)’ Gi&(p, t), o = 1, 2, 3 SatiSfy the Spatlally homo~
geneous Boltzmann equation (2,9) and initial data which have the following form in the lowest order in n:

! 1
Gop (p, £ = 0) = — [Papb' - —gp“éafs] Fi(p),

Gutpt=0) =2 (L 257 P, ),
Gi(p,t=0)= [(!’;- — SKT) 3 (%)n (épﬁ ——-%KT)}FI () =0, (8.3)

since P = nKT = 2E/3. From the last condition of (3.3) it follows that Gy{p, t) =0 and, hence, the coeffi~
cient of dilatational viscosity vanishes, ¢ = 0,

Let us investigate the initial-value problem (2.9) with the initial data (3.3). We recall the basic prop-
erties of the collision operator J. On the Hilbert space L%’Ti’ where F;i is the weight,* J is a symmetric
dissipative operator. There is a fivefold degenerate vanishing eigenvalue to which there correspond the
eigenfunctions Fy; paFy, @ = 1,2,3, (p/2m)F,. For a large class of potentials that Grad [13] has called
"hard," there exists a constant p > 0 such that

L <—off) ((f8)= SFi“(p)f(P)g(P)dP)y (3.4)

if the function f is orthogonal to the null space Z(J) of J, i.e., to the eigenfunctions that belong to the van-
ishing eigenvalue. For "hard" potentials, the solution of the initial-value problem exists and is unique,

If the initial function ¢(p) is orthogonal to Z(J), then the norm of the solufion is bounded in time by the func-
tion @[l exp (~pt).

We now note that the initial conditions (3,3) are orthogonal to Z(J) and, hence, all the functions G,(p,
t) (the subscripts o or o are omitted temporarily) are majorized by the functions {|G;({t = 0) [l exp (—pt).
Thus, the integrals over the time in (3.2) converge absolutely., Introducing the new functions

co

c) =\ 6. nayF (p), 1(p)=rFi(p) (3.5)
[}
[the function f(p) is a Maxwellian distribution normalized to the number of particles in unit volume nj}, we
obtain

1
N IOmET Sde (P) PapsGas (D),
1 o
= BmiKT Sdpf (P) PaP*Ge (D). (3.6)

Integrating both sides of Eq. (2.9) over the time from 0 to « and allowing for (3.3), we obtain equations
for the functions G(p)

1 1, Y
ey (Paps -7 P“%ﬁ) = [ (Gap),

_&(L_EKT) = 1 (Gy), (3.7

m

16) = {£(p) G @) + G (1) — G (p1) — G ()] gbilbdedp,.

The results (3.6) and (3.7) are identical with the corresponding results of the Chapman— Enskog the-
ory [1~-3]. In the Chapman—Enskog theory a further additional condition ensures unique solvability of the
second equation of (3.7). In the method of correlation functions this condition can he ohtained from the
auxiliary conditions imposed on the nonequilibrium distribution when the latter is found in the linear ap~
proximation in the gradients of the macroscopic parameters [14, 15], namely, from the condition that the cor-
rection to the locally equilibrium distribution makes no contribution to the total momentum, This condition

*Generally speaking, one should introduce dimensionless variables and functions. In order to keep the ex~
position as simple as possible, we shall assume that dimensionless variables are introduced withoutactual~
ly doing so.
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can be represented in the form

oo

(arlim ~—<p.,s ) = (3.8)

4 Voo
0

or, introducing Gg functions in the lowest order in n, in the form

$apf (p) paGa (@) = 0. (3.9)

4, Consider the transport coefficients of a multicomponent mixture. The coefficients of diffusion
Dy and thermal diffusion DlrE can be represented in the form

oo

Dy = § di II_I}C:OW <lea-[ku(t)>y

D7 = { dtlim S TraBa )y = dt lim —<oazm > (4.1)

o

The formulas for the coeff1c1ents m, { ¢, and ?»have the same form (3.1) as for a simple medium but the dy-
namical variables P ap’ Ha B Qa, Sa, and Poz in these coefficients must be replaced by the corresponding
expressions for an L-component mixture. For example,

L N L N
B [Pﬁmﬁ’ 1_2: V- m)amn)]
o = - ) 2j0 RE
k=1 i=1 e 1=1 j=1 u%

L e L M & Py &
~ p(i’;) pgk)t . 1 . p(ia) (D(kl) pgiﬁ) aq)(ijl)
Q“=Z [m 2m, ' 2 i\ Tm, 4 T T, Ty )

F=1i=1 k * =1 =1 k k i

ete. In formulas (4.1)
Np
o piRy R R e
Tu= ) G Tm=Jua= T B,

ni is the density of the number of particles of the k-th species; xi(k) = (ri(k), pi(k) are the coordinates and the
momenta of the i-th particle of the k-th species, i =1,..., N, k=1,..., L. The coefficients Dyj appear
as factors of the gradients vy (v = uk/ KT; ik is the chemical potential of the k-th component of the mix~
ture and K is Boltzmann's constant) in the expression for the vector flux Jj of the number of particles of the
k-th species and the coefficients DE appear as factors of the gradients V(KT)~! in the expression for Jy. and
of the gradients Vv in the expression for the heat fiux vector [14]. The coefficients DI are written down

in (4.1) in two equivalent forms (see [15]), of which we shall restrict ourselves in what follows to the first,
for example. Introducing G;* functions, we obtain from (2,10)-(2.12) the following equations in the lJowest
order in n:

o]
Dkk s dt \ dPPale (1) (pv t)’
n 0 pa P
D=2 dtSdp—“— Gk (0, 1), (4.2)
3; m; 2
n ¢ DaDB ()
"= [orT :1§dt3dp Gt 0, 1),
L oo
. n Po P (k)
- 3K7,2;§dtgdp o g Gle (0, 1)
n;n R
Gt = )=—’3“7(6kz—-—’5i)F§”,

2
Rt =0 = B (L 3R ppy, (4.3)

2m, 2 p
1 1
Gl t=0) = — (Papﬁ — g Pup ) P,
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The expression for the coefficient of dilatational viscosity ¢ is omitted here since £ = 0 in the lowest
order in n, as in the case of a simple gas.

One can readily show that all functions G(k) which are a solution of the initial-value problem (2.12}
with the initial data (4.3) decreases exponentially with the time., For let us consider the set of functions
G(k) k=1,..., L, as a column vector G with L. components and define the scalar product

L

@ m=Y S (F{Y 1 GO RPgp, (4.4)

k=1

Then the matrix of the linear collision operators J = lel}k =y regarded as a linear operator on the Hil-
bert space with the scalar product (4.4), possesses the propertles listed in 83 with the only difference that
0is an (L + 4)-fold degenerate eigenvalue to which there correspond the eigenfunctions

W= 0y P i=t, L W= pal?, 0= 1,2,3; 9 = ;; . (4.5)

It is readily shown that all the initial functions {4.3) are orthogonal to all the function (4.5} and hence,
the corresponding solutions of the initial~value problems decrease exponentially with the time, The in-
tegrals over the time in formulas {4,2) exist. Introducing the new functions

6P = 6P, 0y aFP (p), 17 (p) =nFr (p),

we obtain
D = - kgf‘k’(p)paG ‘a (p) dp,
L
{
r_ 1 Wy P P° )
= Y (100 2 L dp. (4.6)

1
1 ZL Pep)
— (k) o8 (k)

k
L
i o
v e 0 0 R o ) .
=1

Integrating both sides of Eq. (2.12) over the time from 0 to « and taking into account (4,3), we obtain
equations for the functions G:

_ P {5 mk”" Z T (Gua),

my
1 Lr2
T (Pap P 6(1? Z Torr (Gap), 4.7
5
_ Paf P Smknk[{’f
ms, <erzk ;1 Lew (G,

where

L (@) = £ (0) 167 (8,) + €% (1) — G (p) — G (p)] guibdbdedp;.

The results (4.6) and (4.7} are identical with the corresponding results of the Chapman- Enskog the~
ory [3]. The additional conditions imposed on the functions G(k) {p) and Gék) (p) in order to obtain unique
solvability of Eqgs. (4.7) can be derived, as in the case of a surnple gas, from the condition that the part of
the nonequilibrium distribution that is linear in the gradients of the macroscopic parameters make no con-

tribution to the total momentum. Using the independence of the thermodynamic forces (gradients), we ob-
tain L. + 1 conditions:
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dtlim —<P Sa(t)y =0,
V-sco 14

LIt 5

—

Sdthm—(l’alka(t»_i) k=1,..., L. (4.8)

oy

Introducing G(k) functions, we obtain the additional conditions of the Chapman— Enskog theory in the lowest

order in n from (4.8):
L

Y (o ) 68 o) =

k=1

L
Y (anr (m) 62 ) = 0. (4.9)
2 |

1

5. We have already mentioned that the transport coefficients of a simple (or multicomponent) medium
can be written in the form

=S (t) dt, ‘P‘(t)—h ~117< bt (5.1)
0
or, after the introduction of the G4 functions,
NI o
WO @i ) = lim S dzN-b (1) o (5.2)
in the form
=(ae{nSape v, + 5 deldpzdrma (B1, P T10) G (B, Py 10, )} (5.3)
0

Usually, one assumes that the correlation functions ¥(t) decrease exponentially with the time (this fact was
proved rigorously for the case of a Boltzmann gas in §§ 3 and 4). One can then introduce the new functions

(e o]

Qs (xlv"'1x5)=S Gs (-'171,-.- 1xs~t)dt (5'4)
[}

and express . in the form

= n{apa (8) 01 (@) + 73§ dprdiadrnss (b Ba, £10) @a (o, B T, 0. (5.5)

Integrating Bogolyubov's chain over the time from 0 to «», we obtain equations for the functions Qg(xy,
I S H

— Gzt =0) 4 B0 = Y (@0, ol dae. (5.6)

i=1

The functions Gg(t = 0) can be calculated by setting t = 0 in Eq. (5.2). The chain (5.6) does not contain the
time as a variable and differs from Bogolyubov's chain for the equilibrium distribution functions by the pres-
ence of the inhomogeneous term. Evidently, the chain (5.6) can be solved by several of the methods used in
the equilibrium theory of dense media.
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