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A study is  made of the p rob l em  of de te rmin ing  the s p a c e - t i m e  or t ime  cor re la t ion  functions 
in a many-body  c l a s s i c a l  sy s t em.  The genera l  co r re la t ion  function of dynamical  v a r i a b l e s  of 
a b inary  type (it is p r e c i s e l y  these functions that are  encountered in applications) is e x p r e s s e d  
in t e r m s  of the f i r s t  two t e r m s  of a sequence of functions that  depend on an increas ing  num- 
ber  of a rguments  and sa t i s fy  Bogolyubov 's  chain of equations with known initial  data.  In the 
lowest  o rde r  in the densi ty  the co r re la t ion  function can be e x p r e s s e d  solely in t e r m s  of the 
f i r s t  function of the sequence.  This  function is the solution of the in i t ia l -value  p rob l em for  
the l inear ized  Bol tzmann equation. An invest igat ion is made of the in i t ia l -value  p rob l ems  for  
the co r re l a t ion  functions that  de t e rmine  the t r a n s p o r t  coeff icients  of s imple  and mul t i compo-  
nent gases .  This invest igat ion r e n d e r s  it poss ib le  to give a s imple ,  comple te ,  and r igorous  
proof  of the r e s u l t s  of the C h a p m a n - E n s k o g  and co r re l a t ion  function methods.  The proof  is 
based  on the wel l -known p r o p e r t i e s  of the l inear ized  col l is ion ope ra to r  and it is poss ib le  to 
avoid the d ivergences  encountered  in other  invest igat ions .  

In r ecen t  y e a r s  the methods of nonequi l ibr ium s ta t i s t ica l  mechanics  have been widely used in the the-  
ory  of i r r e v e r s i b l e  p r o c e s s e s .  These  methods enable one to obtain the t r a n s p o r t  laws and exp re s s  a num-  
b e r  of impor tan t  c h a r a c t e r i s t i c s ,  in p a r t i c u l a r ,  the t r a n s p o r t  coeff icients  of dense ga se s  and liquids,  in 
t e r m s  of in t eg ra l s  over  the t ime  of t ime  co r r e l a t i on  functions. 

One of the mos t  impor tant  ways  of ver i fy ing  the new theory  is to compare  i ts  r e su l t s  with those of 
some specia l  case ,  which has  a l r eady  been conf i rmed  in p rac t i ce .  A good example  of such a specia l  case  
is  a Bol tzmann gas ,  since i t s  theory  is  well  known [1-3]. A number  of pape r s  [4-6] have been devoted to 
proving the equivalence of the method of co r re l a t ion  functions and the C h a p m a n - E n s k o g  theory for  the case  
of s ing le -component  ga s e s .  However ,  E rns t  et  al. [4, 5] cons idered  co r re l a t ion  functions with dynamical  
v a r i a b l e s  in tegra ted  over  the t ime and they were  fo rced  to work  with in tegra ls  that  do not converge  abso-  
lutely.  Zwanzig [6] also a r r i v e d  at d iverging s e r i e s  and adopted an ar t i f ic ia l  summat ion  of these s e r i e s .  
Thus,  the r igo r  and elegance of the kinetic theory  of ga se s  would appear  to be wasted.  In addition, the 
equivalence of the exp re s s ions  for  the t r a n s p o r t  coeff ic ients  of gaseous  mix tu re s  was not invest igated at all. 

In the p r e se n t  pape r ,  we p ropose  a genera l  method of invest igat ion of s p a c e - t i m e  and t ime  c o r r e l a -  
t ion functions of both s imple  and mul t icomponent  media .  (Similar ideas  have also been developed by To l -  
machev  [11], who has  inves t igated conditional t ime  dis t r ibut ions;  it is ,  however ,  p r e f e r a b l e  to invest igate  
the co r r e l a t i on  functions t h e m s e l v e s  for  a number  of r ea sons .  For  the di f ferent  co r r e l a t i on  functions one 
obtains di f ferent  in i t ia l -value  p r o b l e m s ,  and each have their  own specif ic  fea tures .  The initial data  enter  
the approx imate  fo rmu la s  for  the calculat ion of the co r re l a t ion  functions and it  is p r e c i s e l y  the f o r m  of the 
init ial  data  that d e t e r m i n e s  the fo rm of the co r re l a t ion  functions [12].) In the Bol tzmann l imit ,  i .e . ,  in the 

*This  pape r  was p re sen ted  in 1966 a t the  Seminar  conducted by D.N. Zubarev  at the Mathemat ics  Lnstitute 
of the Academy of Sciences of the USSR (see also [7]) and at the Thi rd  All-Union Conference on the Dynam-  
ics  of Rare f i ed  Gases  [8-9]. 
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lowes t  o rde r  in the density,  this  method enables  one to give a r igorous  proof  of the complete  equivalence 
of the method of t ime  co r r e l a t i on  functions and C h a p m a n - E n s k o g  theory  for  all the t r a n s p o r t  coeff ic ients .  
The s p a c e - t i m e  and t ime  co r re l a t ion  functions can be e x p r e s s e d  in t e r m s  of new gs functions,  which 
sa t i s fy  Bogolyubov 's  chain of equations [10] with known init ial  data. In the lowest  o rde r  in the densi ty,  the 
eo r re la t ionfunc t ions  can be e x p r e s s e d  en t i re ly  in t e r m s  of the gl funct ions,  for which a c losed equation 
(the l inear ized  Bol tzmann equation) is  obtained on the ba s i s  of ideas  developed by Bogolyubov [10]. The 
subsequent  invest igat ion is  ba sed  on the use of the known p r o p e r t i e s  of the l inea r i zed  coll is ion opera to r  and 
does  not entai l  an ana lys i s  of d iverging s e r i e s  or  in tegra l s .  

I t  should be emphas ized  that  the r i go rous  proof  of the equivalence is  m e r e l y  an i l lus t ra t ion.  In our 
opinion, i t  is mos t  na tura l  in the theory  of f luctuations to s t a r t  f r o m  the cor responding  in i t ia l -value  p rob-  
l e m s  for  Bogolyubov's  chain of equations; these  p rob l ems  a re  fo rmula ted  in w 

In the p r e se n t  pape r ,  we cons ider  the co r re la t ion  functions for  s t r u c t u r e l e s s  molecu les  that obey the 
laws of c lass ica l  mechan ics .  However ,  the t r ea tmen t  can be c a r r i e d  through for  co r re la t ion  functions of 
mul t i a tomic  molecu les  that  sa t i s fy  quantum mechanica l  laws.  

1. Consider  s p a c e - t i m e  co r r e l a t i on  functions of the f o r m  

(r, r ' ,  t) = lim <a~(r)/~(r', t)). (1.1) 
V-~co 

Here ,  the l imi t  sign s tands for  the the rmodynamic  l imi t  when N, V -~ oo with N/V = n = const and the an-  
gular  b r acke t s  stand for  averag ing  over  the equi l ibr ium (or, poss ib ly ,  local ly  equil ibrium) ensemble  pN(xi, 
�9 �9 �9 xN); xl = (ri, Pi) a r e  the coordinates  and m o m e n t a  of the i - th  pa r t i c le .  The dynamical  va r i ab les  a( r ) ,  
b(r ) ,  . . .  have the f o r m  

[. i N 
- 2 - E  ai~] 6 ( r -  ri) '  

f 

(r) = ,a~ + 
i = 1  ] = 1  

a ~ = a ( p J ,  a~=a~=a(p~,  p~, r~j), r ~ : r ~ - - r j ,  a(r,t)=exp(--tH~)a(r), 

where  exp (-tHN) is the evolution ope ra to r  of a s y s t e m  of N pa r t i c l e s .  We a s sume  that  the potent ial  of the 
in te rac t ion  6ij and the functions aij  a re  s h o r t - r a n g e  functions,  i . e . ,  they vanish for  ri j  >- ~r, where  a is 
the range  of the fo rces .  

Using the s y m m e t r y  p r o p e r t i e s  of the functions a ,  b, and PN under  pe rmuta t ions  of the pa r t i c l e s ,  we 
can e x p r e s s  (1.1) in the f o r m  

n~ ~dxidx~ai25 (r - -  h) g~. (xl, xz { r ' ,  0, (1.2) (r, r', t) =- n f dxlal6 (r - -  rl) gl (xl { r', t) =}- - - ~  

where  we have  in t roduced gs functions in accordance  with the fo rmu la s  

N! I dxN-sb(r" t) PN. nSgs (xi, �9 , xs I r ' ,  t) =v-~oolim (N -- s)[ 

The gs  functions sa t i s fy  Bogolyubov 's  wel l -known chain of equations [10I- 

s 

Ogso---t- -~- Hsgs : n 2  f dxs+l {(I]i's§ gs§ 
i : l  

and, in addition, initial  data  that  can be obtained f r o m  (1.3): 

(1.3) 

(1.4) 

i : 1  j = l  
s 

.',~n~dx~§ Fs.1 ~--~-2idxs.ibi ,s+l[6(r '-rs. i)  
i = l  

g/2 " 

-4- 6 (r' -- r~)] Fs+i t --~- ~ dxs+ldx..~b,+l,s~25 (r' - -  r~§ Fs+~, (1.~) 
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where  we have  in t roduced  the equ i l i b r ium s - p a r t i c l e  d i s t r ibu t ion  funct ions  Fs :  

N~ 
n'Fs (xi . . . . .  x~) = lira ! dx~-~pN. (1.6) 

v ~  ( N - - s ) !  

Thus ,  the d e t e r m i n a t i o n  of the gs  funct ions ,  in t e r m s  of which the c o r r e l a t i o n  funct ions  (1.1) can be 
e x p r e s s e d ,  r e d u c e s  to the in i t i a l -va lue  p r o b l e m  (1.4)-(1.5) f o r  Bogo lyubov ' s  chain of equat ions .  

2. In the Bo l t zmann  l imi t ,  i .e . ,  in the lowes t  o r d e r  in the dens i ty  n,  Eq. (1.2) y i e lds  

(r, r', t) = n I dpa (p) gi (x i r ' ,  t), x - -  (r, p). (2.1) 

F o r  s m a l l  n one can r e a d i l y  obtain  a c lo sed  equat ion fo r  gl.  Indeed,  we shal l  s eek  the solut ion of the 
chain (1.4) as  an expans ion  

n ~ ( i )  gs=g~~  ss + . . . .  (2.2) 

The equat ions  fo r  the funct ions  of the z e r o t h  app rox ima t ion  have the solut ion 

g(0) (t) = exp (-- the) g!0)(t = 0). (2.3) 

We now combine  Eqs.  (2.2) and (1.5) with s = 1 and 2 for  r12 -< r  t >> Tst ~ (r (m/kT)  1/2. In the lowes t  o r d e r  
in n, we then obtain  

, (o) , g~0) (xl, x2 I r ,  t) = f2 (xx, x~) [g~0)(x~ It ' ,  t) F~ (P2) + F~ (p~) gl (x~ [r , t)], (2.4) 

I2 (xi, x2) = lim exp {-- ~H~ (xi, x2)} exp {x [Hi (xl) H- Hi (x2)]}. 
z~oo  

in de r iv ing  (2.4) we have a l so  used  an expans ion  of the funct ions  F s with r e s p e c t  to n [10]. 

R e s t r i c t i n g  o u r s e l v e s  to the lowes t  o r d e r  in n, we subst i tu te  (2.4), in which we now omi t  the s u p e r -  
s c r i p t  (0), into the f i r s t  equat ion  of the chain.  Af te r  the usua l  s imple  t r a n s f o r m a t i o n s  of the co l l i s ion  in-  
t e g r a l  [10], the r e su l t i ng  equat ion  r e d u c e s  to the l i n e a r i z e d  Bo l t zmann  equat ion 

Ogl _~. P Ogi 
8t m Or -- n]  (gi), (2.5) 

J (gl) = f [F1 (p') gl (P~', r I r', t) + Fz (pl') gi (P', r [ r', t) - -  F~ (p) g~ (Pl, r ] r', t) - -  F~ (Pi) gz (P, r I r', t)] gb db de dp~, 

w h e r e  p '  and Pl '  a r e  the m o m e n t a  of the two p a r t i c l e s  a f te r  a co l l i s ion  c h a r a c t e r i z e d  by the ini t ial  m o m e n t a  
p and Pl,  the i m p a c t  b,  and the az imuth  e; g = IP - P t l / m .  

Equat ion (2.5) m u s t  be solved with the ini t ia l  condi t ion  

g~(p, f i r '  , t = O) = b(p)5(r- -r ' )Y~(p) .  (2.6) 

F o r  the t ime  c o r r e l a t i o n  funct ions  

( t ) =  lira -. (ab(t)>, 
V-~o V 

[a~ 1 ' 

i=i j=i 

(2.7) 

we obtain  an ana logous  equat ion in the Bo l t zmann  l imi t :  

~F (t) = n i dp  a(p) Gi (p, t), (2.8) 

w h e r e  the funct ion Gl(p, t) is  the solut ion of the in i t i a l -va lue  p r o b l e m  for  the spa t i a l ly  homogeneous  l i n e a r -  
i zed  Bo l t zmann  equat ion  

aG1 
- nJ(G~), G~(p,  t = 0) = b(o) F~ (p). (2 .9)  at 
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In the case of a gaseous mixture consisting of L components the time correlation functions 

a r e  d e t e r m i n e d  by  a s i m i l a r  equat ion:  

T (t) = l i ~ -  <a/~ (t)>, 

N k  ~ L Nl  

(2.10) 

L 

~F (t) = n 2 ~dpa(')(p) G @, (p, t), (2.11) 

w h e r e  func t ions  Glk) (p, t) a r e  the so lu t ion  of the i n i t i a l - va lue  p r o b l e m  for  the s y s t e m  of l i n e a r i z e d  Bo l t z -  
m a n n  equa t ions  

OG~k ) L 
at = n Z Jtk (G~), G(~ ~) (p, t = 0) --~l-- ~(~)~(a).-~ , (2.12) 

l = l  

J,k (Gx) = I [Fik) (P') G[~ (P~" t) -~ F[ ~ (p~') G7 ) (p', t) - -  Fi  k) (p) Gi t) (px, t) - -  Fi  z) (p~) Gi ~) (p, t)] g~,bdbdedpt , 

gkl = I p/mk - -  pdral [, nF~ k) (P) = n~ - -  p'~ (2~rakKT)V" exp "2-'mkKT " 

3. In n o n e q n i l i b r i u m  s t a t i s t i c a l  m e c h a n i c s  the t r a n s p o r t  coe f f i c i en t s  a r e  e x p r e s s e d  in t e r m s  of i n -  
t e g r a l s  o v e r  the t i m e  of the  t i m e  c o r r e l a t i o n  funct ions .  Thus ,  the coe f f i c i en t s  of s h e a r  r7 and d i l a t a~ona l  ~ 
v i s c o s i t y  and the t h e r m a l  conduc t iv i ty  X of a s i m p l e  m e d i u m  can be  e x p r e s s e d  in  the f o r m  

r 
l ^ ^ 

~1= ~ d t l im ~ < P ~  H ~  (t)>, 
0 

co 1 

] v ~  9 V K T  
0 
~o 

= ~ dt lim 1 ^ ^ 
0 

N N 

no,, 
i ~ l  ~ : 1  

OP h p~, 
n ' ~ a = [ ~ a a - - 3 P V - - 3 ( - ~ - - ~ )  ( h ' - - E V ) ,  * S a = O a - - - ~  

N N 
00~5 VI 

~ 1  j = l  

i=i i=l j=l 

E is the density of the internal energy; P is the pressure; p is the mass density; summation from 1 and 3 is 

u n d e r s t o o d  ove r  r e p e a t e d  G r e e k  ind ices .  

In t roduc ing  G~ func t ions  i n s t e a d  of (3.1), we ob ta in  the fol lowing equat ions  in the lowes t  o r d e r  in n: 
oo 

n i l  ~ - f fUTm dt dpp~G1 (p, r (3.2) 
o 

n ~ t 

o 

*Since we are considering the canonical ensemble, the term describing the density fluctuations (see [14, 15]) 

does not occur here. 
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The functions Graft(p, t), a ,  fi = 1, 2, 3, Gl(p, t), Gla(p, t), (~ = 1, 2, 3 satisfy the spatially homo- 
geneous Boltzmann equation (2.9) and initial data which have the following form in the lowest order  in n: 

l 
G ~  (p, t -----0)--~[p~p~--3p~6~t~]F,(p),  

G~(p,t_=o)=p~ ( p  2 5 ) -m 2m 2 KT Fl (p), 

OP p~ 

sinee P = nKT = 2E/3. F r o m  the last  condition of (3.3) it follows that G~(p, t) - 0 and, henee, the eoeffi-  
eient of dilatational v iscos i ty  vanishes,  ~ = 0. 

Let us investigate the init ial-value problem (2.9) with the initial data (3.3). We reca l l  the basle prop-  
e r t ies  of the coll is ion opera tor  J. On the Hilbert  space L ~ ,  where F~ -1 is the weight,* J is a symmet r i c  
dissipative operator .  There is a fivefold degenerate vanishing eigenvalue to which there correspond the 
eigenfunctions F1; p~FI ,  a = 1, 2, 3, (p2/2m)F1. For  a large  c lass  of potentials that Grad [13] has called 
"hard," there exists a constant p > 0 such that 

(1], ]) ~ --P(/, ]) ((], g) ---~ fF,-'(p)/(p)g(p)dp), (3.4) 

if the function f is orthogonal to the null space Z(J) of J, i.e., to the eigenfunctions that belong to the van- 
ishing eigenvalue. For "hard" potentials, the solution of the initial-value problem exists and is uniqne. 
If the initial function ~p(p) is orthogonal to Z(J), then the norm of the solution is bounded in time by the func- 
tion [[cpll exp {-pt). 

We now note that the initial conditions (3,3) are  orthogonal to Z(J) and, hence, all the functions Gt(p, 
t) (the subscr ipts  ~/3 or a are omitted temporar i ly)  are major ized  by the functions liG~(t = 0) II exp (-pt) .  
Thus, the integrals  over the t ime in (3.2) converge absolutely. Introducing the new functions 

co 

G ( p ) = f  G~(p,t)dt/F~(p), / (p )=nF~(p)  (3.5) 
o 

[the function f(p) is a Maxwellian distr ibution normal ized  to the number  of par t ic les  in unit volume n], we 
obtain 

t 
I dp] (p) p~pf~Ga{~ (p), ~1 IOmKT 

' t ~. = 6m~KT~ dp] (p) p~p~G~ (p). (3.6) 

Integrat ing both sides of Eq. (2.9) over the t ime f rom 0 to ~o and allowing for (3.3), we obtain equations 
for the functions G(p) 

t (P~Pt~ I p~5,~ ) I (G~), 
Vn - ~ = 

- - - - ~  2m------~ KT  = I (Ga), (3.7) 

(G) = f/(Pl) [G (Pl') + G (p') --  G (p~) -- G (p)] gbdbdedpl. I 

The resul ts  (3.6) and (3.7) are  identical with the corresponding resul ts  of the C h a p m a n - E n s k e g  the- 
ory [1-3]. In the C h a p m a n - E n s k o g  theory a fur ther  additional condition ensures  unique solvability of the 
second equation of (3.7). In the method of cor re la t ion  functions this condition can be obtained f rom the 
auxil iary conditions imposed on the nonequilibrium distribution when the lat ter  is found in the l inear ap- 
proximat ion in the gradients  of the macroscop ic  p a r a m e t e r s  [14, 15], namely,  f romthe  condition that the c o r -  
rect ion to the locally equil ibrium distr ibution makes no contribution to the total momentum. This eo~ldition 

* Generally speaking, one should introduce dimensi~  variables  and flmctions. In o rder  to keep the ex- 
posit ion as simple as possible ,  we shall assume that d imensionless  var iables  are  introduced without act-aal- 
ly doing so. 
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can be represented in the form 

oo 
4 

i dt lira "V- <PctS= (t)> = O, 
o 

(3.8) 

or ,  introducing G s functions in the lowest  o rde r  in n, in the f o r m  

I dp] (p) paGa (p) = 0. (3.9) 

4. Consider  the t r a n s p o r t  coeff icients  of a mul t icomponent  mix ture .  The coeff ic ients  of diffusion 
and t h e r m a l  diffusion D~ can be r e p r e s e n t e d  in the f o r m  Dkk, 

oo 

Dee, = f OeoSe,.(O>, 
V ~  , ~ V  

l} 

De r = ~ dtl im <JkaS.(t)> = dtlim ..:_ <0je~(t)>.  (4.1) 
v~co v~oo 3V 

o o 

The fo rmu la s  for  the coeff ic ients  77, ~, and X have the s ame  f o r m  (3.1) as for  a s imple  med ium but the dy-  
namica l  v a r i a b l e s  t)~fl ,  flail ,  Q~, s~ ,  and P~ in these coefficients  mus t  be rep laced  by the cor responding  
exp re s s ions  for  an L-componen t  mix ture .  For  example ,  

k = l  i=l / = 1  ~=I I 

 2L< " '  Qa = 2me ~ \ me ~ me 
e = l  i = 1  1 ~ 1  3 ~ 1  

etc.  In fo rmulas  (4.1) 

] k a  ~ i n  k 
4,=1 

n k is  the densi ty of the number  of pa r t i c l e s  of the k - th  species;  x (k) = (r (k) k) i " i , p~ a r e  the coordinates  and the 
m o m e n t a  of the i - th  pa r t i c l e  of the k - th  spec ies ,  i = 1 . . . . .  Nk, k = 1 . . . . .  L. The coeff icients  Did O appear  
as f ac to r s  of the gradients  V ~ ,  (Vk = t~k/KT; gk is the chemical  potential  of the k- th  component  of the m i x -  
ture  and K is BoltzmannYs constant) in the expres s ion  for  the vec to r  flux Jk of the number  of pa r t i c l e s  of the 
k - th  spec ies  and the coeff icients  D~ appear  as f ac to r s  of the g rad ien t s  V(KT) -1 in the expres s ion  for  Jk and 
of the grad ien ts  Vv k in the express ion  for  the heat  flux vec to r  [14]. The coeff icients  D~" are  wri t ten  down 
in (4.1) in two equivalent  f o r m s  (see [15]), of which we shall  r e s t r i c t  ou r se lves  in what follows to the f i r s t ,  
for  example .  Introducing G~ k) functions,  we obtain f r o m  (2.10)-(2.12) the following equations in the lowest  
o rde r  in n: 

Dee" = dt dpp~Gle,~ (p, t), 

L co 

Pa P~ (0 
l=1 0 

L oo 

= n m---~- la~ (P, t) ,  
k = l  0 

L co 
n 2 k 

l a  k P ,  ], 

k = l  0 

G 'k)'la (P, t = O) __-- ~Pa ( 2me p' 25 neKTm~p .) F (~), (4.3) 
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The e x p r e s s i o n  fo r  the coeff ic ient  of d i la ta t ional  v i s c o s i t y  ~ is  omi t t ed  h e r e  s ince ~ = 0 in the lowest  
o r d e r  in n,  as  in the case  of a s imple  gas .  

One can r e a d i l y  show that  all  funct ions  GI k) which a r e  a solut ion of the in i t i a I -va lue  p r o b l e m  (2.12) 
with the ini t ia l  da ta  (4.3) d e c r e a s e s  exponent ia l ly  with the t ime .  F o r  le t  us  cons ide r  the se t  of funct ions  
G(k), k = 1, . . . .  L, as  a co lumn  v e c t o r  G with L componen t s  and define the s c a l a r  p r o d u c t  

L 

(G, I t ) =  Z I (F(lk))-lG(k)H(k)dr" (4.4) 
k = l  

Then  the m a t r i x  of the l inea r  co l l i s ion  o p e r a t o r s  J = -.~;~Jl~l~Ll l' r e g a r d e d  as a l i nea r  o p e r a t o r  on the Hi l -  
b e r t  space  with the s c a l a r  p r o d u c t  (4.4), p o s s e s s e s  the p r o p e r t t e s  l i s ted  in ~3 with the only d i f fe rence  that  
0 is  an (L + 4)- fo ld  d e g e n e r a t e  e igenvalue  to which the re  c o r r e s p o n d  the e igenfunct ions  

Plk F~k)" .,.(~) - (4 .5 )  ~2!~) := 6~F~ ~) , i = i, . . . .  L; w,+~ -- P(~F(~ ~), a = t, 2, 3; v~+~~ = 2 

I t  is r ead i ly  shown that  al l  the ini t ial  funct ions  (4.3) a r e  o r thogona l  to all  the funct ion (4.5) and hence ,  
the c o r r e s p o n d i n g  so lu t ions  of the in i t i a l -va lue  p r o b l e m s  d e c r e a s e  exponent ia l ly  with the t ime .  The in -  
t e g r a l s  over  the t ime  in f o r m u l a s  (4.2) ex is t .  In t roduc ing  the new funct ions  

o~ 

(P) --- I Gi~) (P, t) dtlFi ~) (p), 1(~) (p) = nF~ (p), 
O 

we obta in  

1 (k) ~) 

t L 
D~T = - 3 Z  I ]g) (p) Pa P~ G~ m--~ ~ (~) ar, (4.6) 

L 
l 

~1 i--O-KT~ ! f(k," " P~P~ 
k~1  

L l 

In t eg ra t ing  both s ides  of Eq. (2.12) o v e r  the t ime f r o m  0 to ~ and taking into account  (4.3), we obtain 
equa t ions  for  the f imct ions G: 

L 

m k . 
k ' - - I  

L 

Y/'t k 
k ' ~ l  

Pa ( ~  5mknkKT 
rnk . 29 ") : ~k ~l -[kk'(Ga)' 

w h e r e  

[~k' (G) ---- I [(k') (p~) [G(*') (PL') + G (~) (P') --  G(~') (P~) - -  G(a) (P)] gklbdbdadp~. 

The r e s u l t s  (4.6) and (4.7) a r e  ident ica l  with the c o r r e s p o n d i n g  r e s u l t s  of  the C h a p m a n - E n s k o g  the -  
o r y  [3]. The addi t ional  condi t ions  imposed  on the funct ions  GCk)(p) and Gtk)(p) in o r d e r  to obtain  unique 

OE Cg 
so lvab i l i ty  of Eqs .  (4.7) can  be de r ived ,  as  in the c a s e  of  a s imple  gas ,  f r o m  the condi t ion that  the p a r t  of 
the nonequ i l ib r ium d i s t r ibu t ion  that  is l i nea r  in the g r ad i en t s  of the m a c r o s c o p i c  p a r a m e t e r s  make  no c o n -  
t r ibu t ion  to the total  m o m e n t u m .  Using the independence  of the t h e r m o d y n a m i c  f o r c e s  (gradien ts ) ,  we ob-  
ta in  L + 1 condi t ions :  
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dtlim - -  < PaSa (t) > = O, 
J w ~  V 
0 

~ d t l i m - T : < P ~ I k ~ ( t ) > = O  , k ~ -  i . . . .  L.  (4.8) 
r V - , .co  V 
0 

Introducing G (k) functions,  we obtain the additional conditions of the C h a p m a n - E n s k o g  theory in the lowest  
o rde r  in n f r o m  (4�9 

L 

2 1 dp/(k) (p) G~) (p) = O, 

L 

I d./c', (I,) (p) = o (4.9) 

5. We have a l ready  ment ioned that  the t r a n s p o r t  coeff icients  of a s imple  (or mult icomponent)  medium 
can be wr i t t en  in the f o r m  

oo 

o 

(5.i) 

Ors af ter  the introduct ion of the G s functions,  

n 'Gs(x  1 . . . . .  x~;t)  = lim N !  ~dxN-~b(t)  pN 
v - ~  ( N  - -  s)! 

(5.2) 

in the f o r m  
co 

• I dt{nl dpa(p)Gi (p,t)+ n~21 dpldpflri~a(pi, p~, ri2) G2 (pl, p~, ri~, t)}. (5.3) 
0 

Usually,  one a s s u m e s  that  the co r r e l a t i on  functions ~'(t) dec rea se  exponential ly with the t ime (this fact  was 
p roved  r igo rous ly  fo r  the case  of a Bol tzmann gas  in w w 3 and 4). One can then introduce the new functions 

co 

Qs (xi . . . . .  x,) = f 6, (xi . . . . .  xs, t) dt (5.4) 
0 

and e x p r e s s  ~ in the f o r m  

n~ I dpldpflr12a (Pi, P~, ri~) Q2 (Pl, P2, rla, O. = n l d p a ( p )  Ql(p) L T (5.5) 

In tegra t ing Bog01yubov's chain over  the t ime  f r o m  0 to r we obtain equations for  the functions Qs(xl, 

�9 � 9  , X s) 
s 

i = 1  

(5.6) 

The functions Gs(t = 0) can be calculated by sett ing t = 0 in Eq. (5�9149 The chain (5�9 does not contain the 
t ime  as a va r i ab le  and di f fers  f r o m  Bogolyubov's  chain for  the equi l ibr ium dis t r ibut ion functions by the p r e s -  
ence of the inhomogeneous t e r m .  Evidently,  the chain (5.6) can be solved by s eve ra l  of the methods used in 
the equi l ibr ium theory  of dense media .  
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