
ON THE SPECTRUM OF RANDOM MATRICES 

L. A. Pastur 

A study is  made of the dis tr ibut ion of eigenvalues in a ce r ta in  ensemble  of random par t i -  
c les  that contains as a special  case the ensemble  used by Wlgner to give a s ta t i s t ica l  
descr ip t ion  of the energy  levels  of heavy nuclei,  tt is shown that the dis t r ibut ion function 
of the e lgenvalues  divided by the fac tor  N {the o r d e r  o~ the mat r i ces )  becomes  nonrandom 
In the limit N ~ ~ and can be found by solving a definite functional equation. 

We shall  study the dis t r ibut ion of e igenvatues  in an ensemble  of random ma t r i ce s  of suff icient ly high 
o r d e r .  P rob l e ms  of this kind a r i se ,  for  example,  in nuclear  physics in connect ion with the des i r e  to de- 
sc r ibe  s ta t is t ica l ly  the very  complicated s t ruc tu re  of the energy  spec t ra  of heavy nuclei [1, 2] and in s ta t i s -  
t ica l  physics  i n  the study of the thermodynamic  p roper t i e s  of d i so rdered  condensed sy s t em s  [3]. 

The problem considered below is s imi la r  to problems  studied by Wigner on a number  of occasions 
(see [1, 2]) in which he showed that the dis tr ibut ion density of the eigenvalues  of N-dimensional  s y m m e t r i c  
m a t r i c e s  ~Sth random, s ta t i s t ica l ly  independent e lements  of a definite form has a fa i r ly  s imple nature in 
the l imit  N ~ ~. Wigner obtained this resu l t  by making an asymptot ic  (N ~ ~) study of the t r a ce s  of the 
powers of the random mat r i ces ,  i .e . ,  essent ia l ly  by per turba t ion  theory .  This c i rcumstance ,  in par t icular ,  
led to fa i r ly  s t r ingent  res t r ic t ions  on the probabil i ty p roper t i e s  of the ma t r ix  e lements  [see the conditions 
(1.10) below] and necess i ta ted  ve ry  subtle combinator ia l  arg-uments. On the other  hand, Marchenko and 
the author of[4] have provosed a method of studying the spec t r a  of random o p e ra to r s  which a re ,  putting it 
imprec i se ly ,  the sum of a large  number  of one-dimensional  random o p e ra to r s ,  tn the present  paper  we 
shal l  show how this method, with some technical  modif icat ions,  can be applied to the study of the d i s t r ibu-  
t ion of the eigenvalues in a ce r ta in  ensemble of random m a t r i c e s  containing Wigner ' s  ensemble  as a spe-  
cial  case .  Moreover ,  since our method dif fers  significantly f rom that of Wigner, we do not need to im-  
pose near ly  such s t r ingent  conditions on the dis t r ibut ion functions of the ma t r ix  e lernents  [see the condi-  
t ions (1,5) below]. 

1 .  S t a t e m e n t  o f  t h e  P r o b l e m  a n d  t h e  R e s u l t s .  E x a m p l e s  

Le t  I-I N be a s y m m e t r i c  randor~ mat r ix  of o r d e r  N having the form 
Ys 

R,, = h., + - - : -_ .  
7N ~1.1) 

where  the ma t r ix  h N is diagonal and the numbers  hi, i = 1, 2 . . . . .  N, on the diagonal are  real ,  identically 
d is t r ibuted  random var iab les  with distr ibution function a(h), and the ma t r ix  VN is rea l  and s y m m e t r i c  and 
i t s  e lements  Vik a re  independent - except  for  the i r  s y m m e t r y  - random var iab les  that sa t is fy  the condi- 
t ions fl ~5) below. 

We shall  be in te res ted  in the function v(h; t/N) , - the number  of e igenvalues ,  divided by N, of H N to 
the left of ~; we shall  call this the normal ized spec t ra l  function of the m a t r i x  H N (in the physical  l i t e ra tu re  
this  function is f requent ly  called the number  of s ta tes) .  For  any I/N, the function v(34 HN) is obviously a 
nondecreasing;  p iecewise-eonstant  function of h and 0 -< v(Z; HN) < 1. The main burden of the presen t  paper  
is  to find this function. Pa r t i cu l a r  in te res t  at taches to the case  of large N, since it f requent ly  happens that 
~,(h; I-IN) tends in the l imit  N ~ ~o in some sense  to a nonrandom function v(D. Expre s sed  more  prec ise ly ,  
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the problem Is to es tabl ish,  above all, ~hich probabili ty proper t ius  of the ma t r i ce s  l[ N of the form (1.1) 
ensure  the ex is tence  of a nondecreasing and nonrandom function ~(~) such that at all its points of con- 
tinuity 

for any ~ > O. The principal problem consists, of course, of finding the limit function vO0 itself. 

We begin by remark ing  that both these  problems can be easi ly  solved for  the diagonal ma t r ix  h N in 
(1.1); for the normal ized spec t ra l  function of hN Is, by definition, 

t =ffit �9 ,1.3)  
Bl~-'lk Iml 

where  0(~) is the Heavlside function, 1 ~ . ,  

e(~),=~' i, ~. > o, 
iO ,~ .  ~ 0 .  

Since the random var iab les  hi a re  independent, it  follows f rom the law of large numbers  that for each ~ and 
any r  

Lm P~{I,'(~-; h , , ) -  o(~.) i > ~} - -  0. (1.4) 

Thus,  the normal ized  spec t ra l  function of the "unper turbed w mat r ix  in (I .I)  posses ses  the proper ty  (1.2) 
and t h e  ro le  of the l imit  function u(~) is s imply played in this ease  by the distr ibution function a(h) of the 
random var iab les  h i- 

We now turn  to the ma t r i x  H N. Suppose the random var iab les  Vik - the e lements  of the "per turbing" 
m a t r i x  V N - which a re  independent fo r  i -< k sa t is fy  the fu r the r  conditions:* 

a) MVik=0,  l, k = l ,  2 . . . . .  N; 

b) MV~k=V ~, i ,  k = l ,  2 . . . .  , I~; 

c) fo r  any 1" > 0 

lira "~-i ~'~" I z~dF"(z)"---O" 
" "  n " - "  (1.5) 

where Flk(X) is the distr ibution function of the random var iable  Vik. 

Note that t h e  condition c) is none other  than the well-known Lindeberg condition of probabili ty theory 
[5] for  the validity of the cent ra l  l imit  theorem.  For  this condition to be sat isf ied,  it is sufficient,  fo r  ex-  
ample,  to r equ i re  that the var iab les  Vik have a bounded moment  of o rde r  2 + 5, 5 > 0, uniformly in i and k, 
I .e . ,  

Xiv~[ *+~ ~ C. 

If all  the Vik a r e  distr ibuted in the same manner ,  the condition c) is  a consequence of b). 

As we have a l ready mentioned, our  problem is  to  prove the exis tence and, above all, actually find 
the function u(~) defined by formula  (1.2). However,  r a the r  than u(~) it is m o re  convenient to find its Stielt-  
| e s  tr~rL_~form 

,(z) ----- Sd~v ( ~  z ) (Imz =/= 0), 

f r o m which, if i t  is known, one can find u(Z) at all points of continuity f rom the well-known in v e r s io n  f o r -  
mulas .  

The  main  resu l t s  of the paper  a re  contained in the following theorem.  

THEOREM. Suppose H N is  a random mat r ix  of the fo rm (1.1) that sa t isf ies  the conditions (1.5). Then 
1) the sequence o f / lo rmal ized  spec t ra l  functions P(Z; H N) of the random mat r i ces  H N as N ~ .o con- 

v e r g e s  in probabil i ty to some nonrandom, nondecreasing function u(~) at all of its points of continuity and 

~(d:m)  = o(• 

*We shall use the symbol M { . . .  } to denote averaging over  the real izat ions of the corresponding random 
var iab les .  



w h e r e  a(h) is the distr ibution function of the var iab les  h i on the dlagona| of the mat r ix  h N in (I A); 

2) the Stioltjes t r an s fo rm  f(z) of v(D is the solution of the functional equation 

i da().) /(:) ~= ~ -, - v'l(,) ~1.6) 
-m 

in the class of functions that are analytic in z for Im z ~ 0 and such that Im f x Im z > 0 for lm z ~ 0. The 
solution of thls equation exists In the given class, is unique, and can always be found by the method of suc- 
oesslve approximations. 

Recalling that the limit normalized spectral function of hN is, In accordance with (1.3), simply a(~), 
the  main a s se r t ion  of the theorem e~pressed  by formula  (1.6) can also be writ ten in the form 

/{z) = h{z + ~l(z)), 
w h e r e  

/,(z) = f fo(~) (1.7) 
aA--~ 

is the Stiel t jes t r a n s f o r m  of the l imit  normal ized spec t ra l  function of the ma t r ix  h N. In other  words, the 
function f(z) of the "per turbed"  o p e r a t o r  H N is obtained f rom the function f0(z) corresponding to the ur~per- 
turbed ope ra to r  h N by a shift of i ts a rgument  by the amount v2f(z}. 

Before  ~e turn  to the proof  of the theorem,  let us consider  some examples .  

1. h N - O. In this  ease a i d  = 0(;~) and Eq. (1.6) t he re fo re  takes the form 
! 

1 = , + o'l" 
Solving this equation for  f, we obtain 

- , + ~  
1 ( : )  - -  2v  ~ , 0 . 8 )  

where  fo r  Im z > 0 one must take the branch of the root such that Im f > 0.  Applying the invers ion formulas 
to CI.8), we find that 

d v  ( ; , )  t .... 
d =  = { --~.~, ]/4v' -- i', ;~' ~ -<4v~ , 

, A' ~ 4v j. (1.9) 

This  is the so-ca l led  " s emic i r c l e  law." It was es tabl ished by Wigner [2] under the following res t r ic t ions  
on the dis tr ibut ion function of the var iab les  Vik (the e lements  of VN), which a re  independent for  i --- k : 

a) i ,  k - - 1 . 2  . . . . .  N. t = 0 . 1  . . . .  ; 

b) Mvik=V 2, i , k = l ,  2 . . . .  N; 

e) uniformly in i and k 

Mva"~C~, 1 = t ,  2 . . . .  (1.10) 

Thus,  a co ro l l a ry  of the theorem is that the s em ic i r c l e  law (1.9) of the distr ibution of the eigenvalues 
of  the random s y m m e t r i c  mat r ix  VN~N with e lements  that a re  independent for  i -< k is valid under the much 
less  s t r ingent  conditions (1.5), except  the condition MVik = 0, requ i re  essent ia l ly  only that the var iables  Vik 
h a v e  the same variance~ which is  all that f igures  in the final resul t .  

2, The random var iables  h i have a dis tr ibut ion function ~(D of the fo rm (1.9), i .e. ,  

da f4a - -  ~.', ~.' ~<~ 4a 1, 
d-'T = ( 1 . 1 1 )  

( O, ;~ I> 4a ~. 

In this case f0(z) has the form (1.8) with a 2 instead of v 2. Substituting z + v2f instead of z in accordance 
with (1.7) into (1.8), and making some simple calculations, we find that dv/dlalso has the form (1.9) with v 2 
rep laced  by v 2 + a 2. Since the normal ized spec t r a l  function of the unperturbed m a t r i x  is (1.11) in accordance 
with (1.3), the r e su l t  we have obtained van be formulated as follows: if a diagonal ma t r ix  that a l ready sa t i s -  
f ies  the semic i rc l e  law with the pa r ame te r  a 2 is per turbed by a random mat r ix  of the form VN/~fN we again 
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obtain a semic i rc l e  law who~c p a r a m e t e r  is the sum of the unper turbed p a r a m e t e r  and the variance v 2 of 
the e lements  of the per turbing mat r ix  V N. 

3, 

In this case  

bd~ 
do(~),=, n(b, + ;~,) , b~.O. 

i 
s+~b 

and t he r e fo re  

dv I {~f[(~.lS~bt)(k~t~b~)]v,--~.s-[-4v*~b~ b} 
d~, 2 n o  ~ 2 ' 

~,., == ~ • 2v. 
It can  be seen  that in cont ras t  to the f i r s t  two cases  the l imit  spec t rum occupies  the ent i re  axis - not s u r -  
pr is ingly,  because  the unper turbed ma t r i x  has this p roper ty .  

Final ly,  we should like to point out that the de te rmina t ion  of f(z) and a for t ior i  v(~) in an explicit  fo rm 
is ,  as a rule ,  not at al l  easy,  s ince Eq.  (1.7) for  f(z) ca~mot in genera l  be solved explict ly.  In  this sense 
the examples  given above a r c  except ions .  Never the less ,  one can frequently study the qualitative nature of 
the spec t rum - t h e  number  and d i spos i t ion  of i ts  connected components  and also the behavior  of v(~) near  
the boundar ies  of the spec t rum.  However,  we shall not dwell on this  fu r the r  - the paper  [4] shows how this 
mus t  be done in a s i tuat ion ve ry  s imi l a r  to ours .  

$ .  P r o o f  o f  t h e  T h e o r e m  

The  gist  of the proof  is  as  follows. For  e v e r y  rea l iza t ion  of the random ma t r ix  H N a chain of ma t r i ces  
HN(n) is introduced in a special  manner  [see (2~)] such that HN(0) = 0 and HN(N) = H N. We then consider a 
function u(t, z; HN), which for  eve ry  z is a broken line for  tE[0, 1], its ve r t i ce s  having the absc issas  t 
= n/lq and the values  N-ISpRz(n), where Re(n) = (HN(n) - z )  -1. It can be shown that u(t, z: H N) in the limit 
N ....o sa t i s f ies  a f i r s t : o r d e r  d i f ferent ia l  equation in z and t [see (2.10)]. This  equation can be solved and 
u(t, z)  found, admit tedly  only implici t ly .  Then,  r em em b er in g  that u(1, z) is none o ther  than the Stieltjes 
t r a n s f o r m  of the normal ized  spec t ra l  function of HN, we can readi ly  prove all the a s se r t ions  of the theorem.  

Now the deta i l s .  Note f i r s t  that the final resul t  does not depend on whether  the diagonal e lements  
o f  V N vanish o r  not; fo r  se t  

H:,-.~- Hs-]- D~, 

where  DN is a diagonal m a t r i x  with the var iab les  vii/~'N on the diagonal. Then 

Rx - -  R~ ~ - - R ~ , D , ~ I ~ ,  (2.1) 

where  R N = (I-I N -  z) - i ,  R"N = (HN-z)  - i ,  Im z ~ 0. It follows f rom (2.1) and (1.5) that with probabili ty 1 

lira N-' Sp(R~. --  R~) ~ 0, 

f r o m  which it  is readi ly  concluded that the l imit  normal ized  spec t ra l  functions of H N and HN are  identical.  
We may the re fo re  regard  only m a t r i c e s  VN with zeros  on the diagonal. 

We shall  a lso f i r s t  a s sume  that the random var iab les  h i a r e  bounded by a cer ta in  constant C, i .e. ,  

Ih,[ ~ c ,  ~ = L 2  . . . . .  N. (2.2) 

F o r  what follows it is  convenient to in t roduce the ope ra to r  te rminology,  i .e . ,  to assume that we a re  given 
an  H-dimensional  Eucl idean space E N with or thonormal ized  bas is  el ,  e 2 . . . . .  e N. Then the ma t r i ce s  n 
in  (1.1) will co r respond  to l inear  selfadjoint  o p e r a t o r s  in E N. We shall  denote them by the same symbols 
as  the m a t r i c e s .  

Le t  L(a, b) (a, b EEN) be an ope ra to r  in E N that acts  on the vec to r s  x E EN in accordance with the 
fo rmula  

L(a, b ) z~  (z, a)b, 
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where  (x, a) is the sca la r  product in E N. The mat r ix  of this ope ra to r  is obviously bia k. 

Now consider  some real izat ion of the random mat r ix  {I.1) and r ea r r an g e  s imultaneously the columns 
and rows In it in such a manner  that the h i a re  labeled in nondecrcas ing order :  h 1 ~ h 2 ~ . . .  {this does not 
affect the spectrumS), introduce a chain of self,q~ljolnt operators fiN{n), setting fIN{0) -- 0, 

Ha(n) •= H~(n -- I) -4- L(t,,_,, e.) "b L(e.,o._,) + h.L(e.,e.), (2,3) 

where  

u.., ---- N-v,{o,., v, ...... t,,_,. ,,0 .... 0}. 

Obviously, HN(n) is obtained from H N by replacing by zeros the elements for which at least one of the sub- 
scripts exceeds n. 

Let Rz(nl be the resolvent {Green's function) of the operator HN(n) ~ i.e., the operator {HN{n)-z) -I 
{Ira z # 0). It is readily seen that Rz(n) carries vectors for which the components with label greater than n 
vanish into vectors of the same form. If Pn is the operator of orthogonal projection onto the first n unit 
vectors e i, e 2 ..... e n, this fact can be expressed in the form 

R , ( n )  = P.R,(n)P. i _ ~ Q,, r 

where Qn = E -Pn is the projector onto the last N-n unit vectors. 

With each  H N w e n o w  associa te  a function u{t, z; H N) defined fo r  nonreaI  z and t El0,  1] by the equa-  
t ions 

tt(t, z; H,,) = N-'Sp R.(nl + Sp {R,(n q- t ) - -  R,(n) } ( t -- N ) (2 .5) 

fo r  t E[n/N, n + 1/N], n = 0 . . . . .  N - 1 .  

z; HNI = - z  "l,  and u{1, z; HN) is the $t ie l t jes  t r a n s f o r m  of the normal ized  spec t ra l  Note that u(0, 
function of HN: 

u ( i , z ; H . ) =  N - ' S p R , ( N ) =  jr  ~ . - ~  . (2.6) 

In addition, u(t, z; HN) is continuous in both variables in the region Imz #0, tel0, 1], and it is analytic in 
z and plecewise linear in t. 

To derive the equations mentioned above we shall above all use the following formula for the difference 
of the traces of the resolvents Rz and R z of two selfadjoint operators .~ and A in E N {see, for example, (3, 
41): 

~ t  

Sp R, --  SpR, ~ - - - ~ z  In det[E + R , ( J  -- A)]. 

Substituting HN(n) and HN(n-1 ) as .~ and A into this equation and taking into account (2.31-(2.5), we obtain 

g ,z;H~ --uX---=--. ,z;Hs 

g,r(n,z) = 1--m+.--, r.= 7, R~(n)o,,.-,v~,._,. (2.7) 

The right-hand side of (2.7) can be represented in the form 

i 8 In h. vs , n-- i 6 

where M6N(n , z) -,'0 as n, ,N -r ,o and ~[m z~->3,0 > 0. This representation can be proved in the same way as 
Lemma 2 in [4] and uses the following assertion, which is proved in the appendix. 

LEMMA 1. Suppose xnEE N has the form N-I/2~i , ~2 ..... ~n, 0, .... 0}, where the random variables 
~i are independent and satisfy conditions of the type (1.51, i.e., M~ i = 0, M~= v ~ > 0, and for any ~-> 0 

i " 
lim-- 0. ...n Z ~ ~ d F , ( z ) =  

Fu r the r ,  suppose R is some ope ra to r  in EN with ma t r ix  Rik. 
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Then  

lml 

where ~Rll is the norm of R, ~(n) does not depend on e ,  and 

lira e(n)  ~ 0. 
Ib=~II 

Now, using the represen ta t ion  (2.8), and proceeding essent ia l ly  as in the proof  of Lemma 4 in [4], we can 
show that the mathemat ica l  expectat ion of 

I "'','-;"-'+a§ i I f [  I ~et,.,! z -~- ln  t - - ,  " :s '-t- ~('~,z;H~)-t- & (2.9) 
~ o  

tends to zero as N -- ~. 

He re  G is any bounded set  in the z plane that does not contain the rea l  axis and h(t) is  the function 
that is the inverse  of o(x) - the dis t r ibut ion function of the random var iables  hi.* The function h(t) possesses  
the following proper ty  [4], which is used in the proof  of (2.9): with probabil i ty 1 

I 

Here hN(t ) = h i+  1 for  t Eli/N, (i + I ) / N ] ,  i = 0, 1 . . . . .  N - l ,  and the numbers h i - - -h2"~. . ,  form a 
rea l iza t ion  of the random var iab les  h i labeled in nondecreasing o rd e r .  

Since (2.9) holds and the famil ies  {u(t, z; HN) } and {a/~z u(t, z; HN) ) a re  compact  (see [4] for  the details) 
the famUy{u(t, z; HN) } contains a subsequence which converges  uniformly in zEG and te l0 ,  1] in the limit 
N --- ,o to a function u(t, z) that sa t i s f ies  the equation 

~(t, s) -~ - t _ I'-=-ln ~(x, z)d~, 

v' ! t. (2.10) 
, ( , . , ) _ ,  A(,) ~ [~(, . . )§ ; ] �9 -~-  

o r  

-t-aaz l n w ~ 0 ,  ~J,.0== 
! 

�9 - '--~- (2.11) Z 

Making a minor  modif icat ion of Haa r ' s  method [6], one can show that this equation has a unique solu-  
t ion  tn the cons idered  c lass  of functions that a re  continuous in (t, z) (tEl0, 1], Im z > 0) and analytic  in 
z(Im z > 0) for  fixed t .  Then,  a f te r  the manner  of [4], one can prove that the f i r s t  a s se r t ion  of our  theorem 
holds if  the h i a re  bounded. We shall  show that the second a s se r t i o n  also holds for  such h i . 

We introduce a function g(t, z): 

E(t,z)==t § - ~  [ ~ (t, z) -]- ~ - ~ -  l . (2.12) 

Direc t  ver i f ica t ion  shows that we obtain the general  solution of the different ial  equation (2.10) if we define 

g(t, z) implici t ly  as follows: 

h(.~)- zeCt, z) Cz.13) 

where F(z) is an arb i t rary  function. As regards the solution of the Cauchy problem (2.10)-(2.11), i t  can bc 
obtained by vir tue of the uniqueness theorem mentioned above by taking F(z) = v-2z (g(0, z) = 1). Since the 
Stlol t jes  t ranGfcrm f(z) of the l imit  norma! ized  spec t ra l  function ~,.~) is, in accordance  with (2.6) and (2.12), 
r e l a t ed  to g ! l ,  z) by the equation 

g(t.~)-~ t +~ l ( z ) .  
Z 

i t  follows f rom (2.13) with F = v-2z that 

*On the sect ions of s t r i c t  i nc rease ,  h(t) and cr(~ a re  functions that a re  the inverses  of each o ther .  To con-  
s tancy in tervals  of o(x) there  co r respond  discontinuit ies of h(z); to discontinuit ies  of ~(x), constancy i n t e r -  

vals  of h(t). 
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dT t I0) J. "h(~)- s - o'I{~) $ 

This  equation can, in view of the definition of h(r),  be now writ ten in the form (1.6), l ~ . ,  

i dalX) t(')ffi', x-,- e / O )  ' {2.14) 

Equation (2.14) can be solved by the method of successive approximations. To thisend, wc introduce a dis- 
lance in the set ~ of functions that are analytic in the upper half-plane and have there a positive imaginary 

part: 
p(l,,h) = sup I/,(ly)-l~{~)I 

In this m e t r i c  ~ becomes  a complete me t r i c  space.  A simple es t imate  shows that the right-hand side of 
(2.14) defines fo r  Y0 :' v a contracti~ve ope ra to r  in ~ ,  this resul t  being t rue  even without the res t r i c t ion  (2.2) 

{in es t imat ing  the norm of the ope ra to r  we used only the inequality i dcr(~) < 1). This r e m a r k  enables us 

to  prove our  theorem in complete  general i ty ,  i .e . ,  without the r e s t r i c t i o n  (2.2). The arguments  that are  
used a r e  essent ia l ly  the same as in ~5 of [4]. 

In conclusion, let  us point out some possible general iza t ions .  For  example,  the condition (1.5) could 
be imposed on only the "major i ty"  of the e lements ,  since,  as can be shown by means of Eq. (1.5), a p e r -  
turbat ion of V N by a ma t r ix  for  which the number  of nonva nishing e lements  is in o rde r  of magnitude tess  
than N3/~ does not affect  the final resul t .  But then for  eve ry  n a par t  of Vin that has o rd e r  less than Nt/~ 
need not sa t i s fy  the condition (1.5). This suggests  that the condition of independence of the Vin in one column, 
i .e . ,  fo r  the same n, could be replaced by a di f ferent  condition which could be satisfied by dependent random 
var iab les .  Examples  o f  var iables  of this kind a re  given in [4], which also contains formulat ions of general  
suff icient  conditions fo r  weakly dependant famil i t ies  of random var iables  of this kind. In [4] an analog of 
Le m ma  1 for  random vec tors  of this kind is also proved.  

Final ly,  one need not assume that the opera to r  h N in (1.1) is random; r a th e r  one can requi re  that the 
normalized spectral function of this operator, i.e., an expression of the form (1~3), converges sufficiently 
rapidly in the limit N ~ ~ to some limit distribution function. 

I should like to thank V. A, Marchenko and I. M. Slivnyak for their interest. 

A p p e n d i x  

P r o o f  9f Lemma 1. 

and we then have 

For  b rev i ty  we denote by r the quantity 

(Rz.,z.)-~ ~ ~ R~,~,~, 
i.t~$ 

Xr =---e ~,  R,,. 
N 

We now introduce var iab les  ~i and ~:i that a r e  independent fo r  different  i by sett ing 

, i , =  o, l~,l>a, 

and we r ep re sen t  r in the fo rm 

whore 

Then 

r ~ r i  q-  r ,  + r, ,  

r~ ffi= W -  

t ~ !  tg~k ~s,,t 

-I.R  R I = . I . - . . i  <- . i .  . § + - , . 7  
~ t  
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Estimating each term on the right-hand side of this inequality by means of the relations 

where '=' "+ 

4 g  I ,.,+,'.<+. 
i,,,, l l l l > a  

we find that 

m~-~i  ~,+,,++<n,~ '+" + m+~,,,o~+ +"C',,+,++~]") �9 
t ~m t n  n 

Setting ~ = T~fa in this inequality, we see that the lemma holds by v~rtue of (1.5). 

+ 

2. 

+ 

4.  
5.  
6.  
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