ON THE SPECTRUM OF RANDOM MATRICES

L. A. Pastur

A study is made of the distribution of eigenvalues {n a certain ensemble of random parti~
cles that contains as a special case the ensemble used by Wigner to give a statistical
description of the energy levels of heavy nuclel, If is shown that the distribution function
of the eigenvalues divided by the factor N {the order of the matrices) becomes nonrandom
in the limit N — = and can be found by solving a definite functional equation.

We shall study the distribution of eigenvalues in an ensemble of random matrices of sufficienily high
order. Problems of this kind arise, for example, in nuclear physics in connection with the desire to de-
scribe statistically the very complicated structure of the energy spectra of heavy nuclei {1, 2] and in statis-
tical physics-in the study of the thermodynamic properties of disordered condensed systems {3].

The problem considered below is similar to problems studied by Wigner on a number of occasions
(see [1, 2]} in which he showed that the distribution density of the eigenvalues of N-dimensional symmetric
matrices with random, statistically independent elements of a definite form has a fairly simple nature in
the limit N —®, Wigner obtained this result by making an agymptotic (N — %) study of the traces of the

- powers of the random matrices, i.e., essentially by perturbation theory. This cirecumstance, in particular,

led to fairly stringent restrictions on the probability properties of the matrix elements [see the conditions
(1.10) below] and necessitated very subtlie combinatorial arguments. On the other hand, Marchenko and
the author of [4] have proposed a method of studying the spectra of random operators which are, putting it
imprecisely, the sum of a large number of one-dimensional random operators. inthe present paper we
shall show how this method, with some technical modifications, can be applied to the study of the distribu-
tion of the eigenvalues in a certain ensemble of random matrices containing Wigner's ensemble as a spe-
cial case. Moreover, since our method differs significantly from that of Wigner, we do not need to im-
pose nearly such stringent conditions on the distribution functions of the matrix elements {see the condi-
tions (1.5) below]. '

1. Statement of the Problem and the Results. Examples

Let Hy be a symmetric random matrix of order N having the form

| 2%
Hy=hy + —— v
¥ -+ TN {1.1)

where the matrix hy is diagonal and the numbers h;, i =1, 2, ..., N, onthe diagonal are real, identically
distributed random variables with distribution function o(h), and the matrix V) is real and symmetric and
its elements vji are independent — except for their symmetry — random variables that satisfy the condi-
tions (1.5) below.

We shall be interested in the function »(A; Hy), — the number of eigenvalues, divided by N, of Hy to
the left of A; we shall call this the normalized spectral function of the matrix Hp (in the physical literature
this function is frequently called the number of states). For any Hy, the function v(X; Hy) is obviousiy a
nondecreasing, piecewise-constant function of A and 0 = »(}; HN) = 1. The main burden of the present paper
is to find this function. Particular interest attaches to the case of large N, since it frequently happens that
v{X; Hy) tends in the limit N — « {n some sense to a nonrandom function v(A). Expressed more precisely,
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the problem 18 to establish, above all, which probability propertizs of the matrices Hy of tho form (1.1}
ensure the existence of a nondecreasing and nonrandom function ¥{A) such that at all its points of con-
tinuity

,!I.ﬂl Pr{lv(2; Hy)— v(X)] > ¢} =0 (1.2}
for any € > 0. The principal problem consists, of course, of finding the limit function ¥(3) itself,

We begin by remarking that both these problems can be easily solved for the diagonal matrix hy in
(1.1); for the normalized spectral function of hy {s, by definition,

1 1 ¢
v(:hs) = 7.2: 1= Zo(a —~b), (1.3)

S
where 6()) is the Heaviside function, i.e., '
or={y; 2o
Since the random variables hj are independent, it follows from the law of large numbers that for each A and
any € >0
Jim Pr{]v(%; hx)— (1) | > ¢} =0. (14)
Thus, the normalized spectral function of the "unperturbed" matrix in (1.1) possesses the property (1.2)

and the role of the limit function »(}) is simply played in this case by the distribution function o(h) of the
random variables h;.

We now turn to the matrix Hy. Suppose the random variables v;; — the elements of the "perturbing”
matrix Vyy ~ which are indeperdent for i = k satisfy the further conditions:*

a) Mvjpy =0, 1, k=1, 2, ..., N;

by M =v% i, k=1,2, ..., N

c) forany 7 >0

R -
lim :Z j 2'dF . (z) = 0, 15)
img lalmeyns

where Fji(x) is the distribution function of the random variable v;j.

Note that the condition ¢) is none other than the well-known Lindeberg condition of probability theory
[5] for the validity of the central limit theorem. For this condition to be satisfied, it is sufficient, for ex-
ample, to require that the variables vji have a bounded moment of order 2 +6, & >0, uniformly ini and k,
ie.,

Mlvaf'* < C.
If all the v;) are distributed in the same manner, the condition ¢} is a consequence of b).

As we have already mentioned, our problem is to prove the existence and, above all, actually find
the function v(2) defined by formula {1.2). However, rather than v() it is more convenient to find its Stielt-
jes transform

f(z) = d:il: (Imz = 0),

from which, if it is known, one can find »(?) at all points of continuity from the well-known inversion for-
mulas.

The main results of the paper are contained in the following theorem.

THEOREM. Suppose Hy is a random matrix of the form (1.1) that satisfies the conditions (1.5). Then
1) the sequence of normalized spectral functions v(A; HN) of the random matrices Hy as N —~ = con-
verges in probability to some nonrandom, nondecreasing function v(A) at all of its points of continuity and

v(=k00) == (00},
¥We shall use the symbol M{. . .} to denote averaging over the realizations of the corresponding random
variables.

63



where o(h) (s the distribution function of the variables h; on tho diagonal of the matrix hy in (1.1);
2) the Stioltjes transform f(z) of v(}) is the solution of the functional equation
I do(d)
fley= 2

¢ A—z—v'f(z)

in the class of functions that are analytic in z for Im z #0 and such that Im{ XImz >0 for Imz #0. The
solution of this equation exists in the given class, is unique, and can always be found by the method of suc-

cesslve approximations.

{1.6)

Recalling that the limit normalized spectral function of hy is, in accordance with (1.3), simply o(),
the main assertion of the theorem expressed by formula (1.6} can also be written in the form

Kz) = 1z + V'(z),

where -

his)={

do(h) 1.7

h—3

ts the Stieltjes transform of the limit normalized spectral function of the matrix hy. In other words, the
function f(z) of the "perturbed" .operator Hy is obtained from the function f(z) corresponding to the unper-
turbed operator hy by a shift of its argument by the amount v’f(z}.

Before we turn to the proof of the theorem, let us consider some examples.
1. hyy = 0. Inthis case o(N) = 6(A) and Eq. (1.6) therefore takes the form

1
f==15s
Solving this equation for f, we obtain
—z+4 73— 4?
Ha) = s, 1.8)

where for Im z > 0 one must take the branch of the root such that Imf >0. Applying the inversion formulas

to (1.8), we find that
gv(d)

da

sz, Yav — 1%, 2t 4,
: 1.9)
0 LY

This is the so-called "semicircle law."” It was established by Wigner [2] under the following restrictions
on the distribution function of the variables Vik (the elements of Vy), which are independent for i = k

a) Mvil =0, 1, k=1,2, ..., N, I=0,1,...;
b) My =v%, 1, k=1, 2, ...N;
c) uniformly ini and k
Mu' < C, 1=1,2,... {1.10)

Thus, a corollary of the theorem is that the semicircle law (1.9) of the distribution of the eigenvalues
of the random symmetric matrix VNVN with elements that are independent for i = k is valid under the much
less stringent conditions (1.5), except the condition Mv;k =0, require essentially only that the variables vjj
have the same variance, which is all that figures in the final result.

2. The random variables h; have a distribution function o(A) of the form (1.9), ie.,

P
do Gat — 1%, AP << dat,
= .2-10’)] ¢ = (1.11)
0, At == 4at

In this case fy(z) has the form (1.8) with a? instead of v2. Substituting z + vf instead of z in accordance
with (1.7) into (1.8), and making some simple calculations, we find that dv/dA also has the form {1.9) with v?
replaced by v’ + a’. Since the normalized spectral function of the unperturbed matrix is (1.11) in accordance
with (1.3), the result we have obtained can be formulated as foilows: if a diagonal matrix that already satis-
fies the semicircle law with the parameter a? is perturbed by a random matrix of the form Vn/VN we again
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obtain a semieircle law whose parameter is the sum of the unperturbed parameter and the variance v? of
the elements of the perturbing matrix Vy.

3,
bdA
In this case
l o ---—.i-.
¢ s tb
and therefore

g _ 1 rV[u-’+b’nxa+b’>1'f'-— T __b}
a2l 2 '
dya= A £ 2v.
It can be seen that in contrast to the first two cases the limit spectrum occupies the entire axis — not sur-
prisingly, because the unperturbed matrix has this property.

Finally, we should like to point out that the determination of £(z) and a fortiori ¥(3) in an explicit form
is, as a rule, not at all easy, since Eq. (1.7) for f(z) cannot in general be solved explictly. Inthis sense
the examples given above are exceptions. Nevertheless, one can f{requently study the qualitative nature of
the spectrum — the number and disposition of its connected components and also the behavior of v(}) near
the boundaries of the spectrum. However, we shall not dwell on this further — the paper [4] shows how this
must be done in a situation very similar to ours.

2. Proof of the Theorem

The gist of the proof is as follows. For every realization of the random matrix Hy a chain of matrices
‘HN(n) is introduced in a special manner [see (2.3)] such that HN(0) = 0 and Hn(N) = Hy. We then consider a
function u(t, z; HN), which for every z is a broken line for t€[0, 1], its vertices having the abscissas t
= n/N and the values N"'SpRz(n), where R, (n) = (Hy(n) ~z)71, It can be shown that u(t, z: Hyy) in the limit
N —= gatisfies a first-order differential equation in z and t [see (2.10)]. This equation can be solved and
u(t, z) found, admittedly only implicitly. Then, remembering that u(l, z) is none other than the Stieltjes
transform of the normalized spectral function of Hy, we can readily prove all the assertions of the theorem.

Now the details. Note first that the final result does not depend on whether the diagonal elements
of Vyy vanish or not; for set

Hy=Hy+ Dy,
where Dy is a diagonal matrix with the variables vjj /N on the diagonal. Then
By — Ry = —R\DyRy, 2.1)
where Ry = (Hy-2)"!, Ky = fiy~2)"), Imz #0. It follows from (2.1) and (1.5) that with probability 1
Yim N-*Sp(Ry — Ry) =0,

H~r e

from which it is readily concluded that the limit normalized spectral functions of Hy; and fiN are identical.
We may therefore regard only matrices VN with zeros on the diagonal.

We shall also first assume that the random variables hj are bounded by a certain constant C, i.e.,
B <€ i=12,...,N 2.2)

For what follows it is convenient to introduce the operator terminology, i.e., to assume that we are given
an N-dimensional Euclidean space Ej with orthonormalized basis ey, €;, ..., eN. Then the matrices n
in (1.1) will correspond to linear selfadjoint operators in ENy. We shall denote them by the same symbols
ag the matrices.

Let L(a, b) (2, b €EEN) be an operator in Ey that acts on the vectors x € EN in accordance with the
formula

L(a, b)z=(z,a}b,



where (x, a) I8 the scalar product in Ey. The matrix of this operator is obviously bjay.

Now consider some realization of the random matrix (1.1) and rearrange simultaneously the columns

and rows in it in such a manner that the h; are labeled in nondecrcasing order: hy =< h, =. . . (this docs not
affect the spectrumf). Introduce a chain of selfadjoint operators Hy(n), setting Hyn(©) = 0,

Hy(n) = He(n — 1) + L(vao, e2) + L{ea, Vaes) + hoL(en,e.), (2.3)
where

Un~g =N'*‘U“‘, PanpeeoyUnet,my O, oes 0’-

Obviously, Hy(n) is obtained from Hy by replacing by zeros the elements for which at least one of the sub-
scripts exceeds n.

Let Ry(n) be the resolvent (Green's function) of the operator Hy(n), i.e., the operator (Hy(n) —-z)71
(Im z #0). It is readily seen that Ry (n) carries vectors for which the components with label greater than n
vanish into vectors of the same form. If Py is the operator of orthogonal projection onto the first n unit
vectors ey, €5, ..., e, this fact can be expressed in the form

' i
R;(n)-:"P.R,(n)P.—‘TQn, (2.4)
where Q, = E —P,, is the projector onto the last N—n unit vectors.

With each Hy we now associate a function u(t, z; Hy) defined for nonreal z and t €[0, 1] by the equa-
tions

(t,2; Hy) = N-'Sp R.(n) + Sp {Ru(n -+ 1) — R.(n)) (;-.1'_\',.) @.5)

fort€n/N, n+1N], n=90, ..., N~1,

Note that w{0, z; Hy) = -27! and uQ, z; Hy) is the Stieltjes transform of the normalized spectral
function of Hy:

a(h 5 By =N Sp R, (W) = [0 (2.6)

In addition, u(t, z; HN) is continuous in both variables in the regionImz =0, t€([0, 1], and it is analytic in
z and plecewise linear in t.

To derive the equations mentioned above we shall above all use gxe following formula for the difference
of the traces of the resolvents R, and R, of two selfadjoint operators A and A in Ey (see, for example, [3,

4)]):

SpR.—SpR, = --—g—z-ln det[E + R.(4 — 4)].
Substituting Hy(n) and Hy(n-1) as A and A into this equation and taking into account (2.3)-(2.5), we obtain
n n—1 i a
u(-—iv-nz.ﬂx)"u( N ,z,H,) —‘-“'W"EE'IDAN("J)»
TP PP I PL S o) YR P @.7)
LAV "";" B 2 y n &"'“ ‘ ik Gr=tVR a—g. .
The right-hand side of (2.7) can be represented in the form
19 ha 05 ., 1 n~—{ {
N @zm{i T+T(N SpR“"””"’T(‘ ] )]} toydlm2), @.8)

where Mdy(n, z) =0 as n,.N v~ and [Imz|=y,>0. This representation can be proved in the same way as
Lemma 2 in [4] and uses the following assertion, which is proved in the appendix.

LEMMA 1. Suppose xp€EN has the form N"/z{é,, &, «.. &, 0, ...,0}, where the random variables
§ are independent and satisfy conditions of the type (1.5), i.e., M§ =0, Mg = v? >0, and for any 7> 0
nmiz | zarz)=o.

Wiy n -
LETRE 2T

Further, suppose R is some operator in EN with matrix Rik.
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Then
M l (R.‘t..fn)"‘-v;"'}: Rul <R} -e{n),

where ||R|| is the norm of R, £(n) does not depend on R, and
lime(n)=20.

Now, using the representation (2.8), and proceeding essentially as in the proof of Lemma 4 in [4], we can
show that the mathematical expectation of

1 $ 9 hix)
= 2 H — o NRAAA.LL IS St Y R
g e (e | B
(-]
tends to zeroas N — o,
lim Moy =0,
Nowon

Here G is any bounded set in the z plane that does not contain the real axis and h(t) is the function
that is the inverse of o(x) — the distribution function of the random variables h;.* The function h(t) possesses
the following property {4], which is used in the proof of (2.9): with probability 1

Jim j {h(t)— ha(t) |dt =

Here hy(t ) = hj .y for t €(i/N, (i +1)/N}, i=0, 1, ..., N-1, and the numbers hy<h,=... forma
realization of the random variables h; labeled in nondecreasing order.

Since (2.9) holds and the families fut, z; Hy)}and {8/0z u(t, z; HN)} are compact (see [4] for the details)
the family {u(t, z; HN)} contains a subsequence which converges uniformly in z€G and t€[0, 1] in the limit
N —=+t0 a function u(t, z) that satisfies the equation

u(t,z) = —-—-——I—-—ln w(x, z)dx,

(2.10)
| T¢
‘ L Mg, z)+-—-——-]
or
du 1
-3-;+-——lnw =, ull-o = "";-\. 2.11)

Making a minor modification of Haar's method [6], one can show that this equation has a unique solu-
tion in the considered class of functions that are continuous in (t, z) (t€[0, 1], Imz > 0) and analytic in
z(Im z >0) for fixedt. Then, after the manner of [4], one can prove that the first assertion of our theorem
holds if the h; are bounded. We shall show that the second assertion also holds for such h;.

We introduce a function g, z):
» {i—1i
g(t.z)=i+-;—[u(t,z)+‘-—;—-—]. 2.12)

Direct verification shows that we obtain the general solution of the differential equation (2.10) if we define
g(t, z) implicitly as follows:

v . Y dt
S(t.z)=—;-F (z+v .I—m—h(t)——zg(t.z) )s 2.13)

where F(z) ts an arbitrary function. As regards the solution of the Cauchy problem (2.10)-(2.11), it can be
obtained by virtue of the uniqueness theorem mentioned above by taking F(z) = v2z (g0, z) =1). Since the
Sticltjes transform f(z) of the limit normalized spectral function »Q) is, in accordance with (2.6) and (2.12),
related to g(1, 2) by the equation

g0 =1+210),

it follows from (2.13) with F = v~2z that

*On the sections of strict increase, h(t) and c(%) are functions that are the inverses of each other. To con-
atancy intervals of o{x) there correspond discontinuities of h(z); to discontinuities of o(x), constancy inter-

vals of hit).
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4
. de
“"“-f W) — 2 — o[ (z)

This equation can, in view of the definition of h(r), be now written In the form (1.6), ie.,
7 do(A}
fa) :é- A1 —v()
Equation (2.14) can be solved by the method of successive approximations. To thisend, we introduce a dis-
tance in the set M of functions that are analytic in the upper half-plane and have there a positive imagirary
part:

(2.14)

p(fsfz) = sup 'U-(iy}- R |

In this metric ® becomes a compleie metric space. A simple estimate shows that the right-hand side of

(2.14) defines for y, > v a contractive operator in M, this result being true even without the restriction (2.2)

(in estimating the norm of the operator we used only the inequality S do(d) <1). This remark enables us
0

to prove our theorem in complete generality, {.e., without the restriction (2.2). The arguments that are

used are essentially the same as in §5 of [4].

In conclusion, let us point out some possible generalizations. For example, the condition (1.5) could
be imposed on only the "majority" of the elements, since, as can be shown by means of Eq. (1.5), a per-
turbation of Vyy by a matrix for which the number of nonvanishing elements is in order of magnitude less
than N%? does not affect the final result. But then for every n a part of vjp that has order less than Nt/
need not satisfy the condition (1.5). This suggests that the condition of independence of the v,y in one column,
i.e., for the same n, could be replaced by a different conditicn which could be satisfied by dependent random
variables. Examples of variables of this kind are given in [4], which also contains formulations of general
sufficient conditions for weakly dependant familities ofrandom variables of this kind. In [4] an analog of
Lemma 1 for random vectors of this kind is also proved.

Finally, one need not assume that the operator hN in {1.1) is random; rather one can require that the
normalized spectral function of this operator, i.e.,, an expression of the form (1.3}, converges sufficiently
rapidly in the limit N — = to some limit distribution function.

I should like to thank V. A. Marchenko and I. M. Slivnyak for their interest.

Appendix

Proof of Lemma 1. For brevity we denote by r the quantity

(Rz.,x,) == %—Z Ral,,

=

and we then have

v’ %
Mr TS e Riu.
X
We now introduce variables 7; and ¢; that are independent for different i by setting
g" 'g‘l S a,
W% 0, !ﬁ;!> a, & & s

and we represent r in the form
re=r trnr,
where

¥y == Tvi- ZR«&(’. Ty == n-:vvz Rulids, rs= '&L,'Z R.-(q.‘.

tasg Sk (£ 3}

Then

t] A
H (Rzlnzn)-'iN-Z Rﬂl =er—Mr'< er||+ ffﬂr‘,‘-{—-}’ﬁ”n“ﬂ{r!‘.
doui



Estimating each term on the right-hand sido of this incquality by means of the relations

Mop < o, Y Mt e gn, ), (R IRL Y (Ral? < A
(21

fmt

where
w(u,a)s-};\i g z'dF(z),
we find that -
M|r—Mr| sHRII{w(n'a)+%+'[%+g%1¢("' a+ema+t]) .

Setting o = 7Vn in this inequality, we see that the lemma holds by virtue of (1.5).
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