
Theoretical and Mathematical Physics, VoI. 101, No. 3, i994 

A D E L I C  M O D E L  OF H A R M O N I C  O S C I L L A T O R  

B. Dragovich 

Adelic quantum mechanics is formulated. The corresponding model of the harmonic oscillator is considered. 
The adelic harmonic oscillator exhibits many interesting features. One of them is a softening of the uncertainty 
relation. 

1. I N T R O D U C T I O N  

Since 1987, p-adic numbers have been applied in string theory [1-4], quantum mechanics [5-12], and 
in some other parts of theoretical [13] and mathematical [14-16] physics. The obtained models are p-adic 
analogues of some standard models constructed over real numbers. In particular, p-adic strings are very 
attractive because of their relevance to Planck scale physics and the product (adelie) formula for string 
amplitudes [2]. 

Much attention has been paid to constructing p-adic quantum mechanics, which has complex-valued 
wave functions and p-adic canonical variables. It is significant that such theory does exist and that it 
allows an exact solution of the harmonic oscillator. What is so far unclear is the connection between p-adic 
quantum mechanics and the standard one. This is not only the problem of p-adic quantum mechanics but 
also of other p-adic models. 

The most natural  framework which offer mathematics to unify standard and p-adic models is the analysis 
of adeles. So, according to adelic formula in string theory the product of standard four-point amplitude 
and all p-adic analogues is equal to a constant. Some aspects of an adelic approach in quantum field theory 
are considered in [17]. 

This article is devoted to a formulation of adelic quantum mechanics and its illustration by the harmonic 
oscillator. Adelic concepts are more fundamental than those of standard or p-adic quantum mechanics. 
The latter (standard and p-adic) are building blocks of adelic quantum theory as a whole. The problem 
of the connection between p-adic quantum mechanics and the standard one solves in this approach is as 
follows: they are independent components of adelic quantum mechanics. Standard quantum mechanics 
may be considered as an approximation of the adelic one when p-adic effects can be neglected. 

In Sec. 2 we present some of the main properties of p-adic numbers, adeles, and their analysis. Section 3 
contains a neccessary review of the harmonic oscillator in standard and p-adic quantum mechanics. Adelic 
quantum mechanics and adelic harmonic oscillator are presented is Sec. 4. In the last section we discuss 
the results obtained and make some conclusions. 

2. ADELES 

The set of rational numbers Q is the simplest infinite number field. Completion of Q with respect to 
the usual absolute value gives the field of real numbers R. An analogous completion with respect to the 
p-adic norms (valuations) yields the fields of p-adic numbers Qp (p -- a prime number). According to the 
Ostrowski theorem, R - Q ~  and Qp (for every p) exhausts all number fields which can be obtained by 
completions of Q. 

Recall that a series 
+cr 

g ~ akp k, ak = {0,1, . . . ,p--  1}, (2.1) 
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where c = +1 and  ak = 0 for k > /co, represents a real number,  tf e = 1 and ak = 0 for k <_ k0, the series 
(2.1) represents a p-adic number  in Qp. The ring of p-adic integers Zp consists of x = ~ k > 0  akP k or, in 
other words, Z ,  = {x E Qp : ]x Ip_< 1}, where I x [p denotes the p-adic norm of x. 

On the addit ive group Q+ there exists the Haar  measure dxp which is invariant under  translat ion,  i.e., 
d(x + a)p = dxp, a C Qp. Also on the multiplicative group Q; = Qp\{0} there is the Haar  measure d*x v 
invariant under  multiplication: d*(bx)p =] b [p d*xp, b C Q~. These measures are connected by the equality 

1 dxp (2.2) 
= i-p-1 

An adele is an infinite sequence 
a=(a~,a2, . . . ,ap , . . . ) ,  (2.3) 

where aoo E R, ap E Qp with the restriction that  all but a finite number  of ap E Zp. Let A be the 
set of all adeles, M a ring under  componentwise addit ion and componentwise multiplication, and A + an 
additive group with respect to addition. A multiplicative group of ideles A* is a subset of .4 with elements 
b = (b~,b2,...,bp,...) such that  boo r 0 and bp 7 ~ 0 for every p, and [ bp ]p= 1 for all except a finite number  
of p. A principal adele (idele) is a sequence (r,r,...,r,...) E .4, where r E Q (r E Q* = Q\{0}).  One can 
define a module  of the ideles, 

I b I=[ b~ Ioo I I  I b' Ip (2.4) 
p 

which for a principal idele is 

I r I=1 r I I  I r I ,=  m. (2.5) 
p 

An additive character  on A + is 

X(xy) = X ~ ( x ~ y ~ )  H X,(Xpyp) = exp(-27rix~y~)  H exp 27ri{x,yv} p 
p p 

(2.6) 

where x, y E .4 + and  {Xpyp}p i s  the fractional part  of Xpyp. A multiplicative character  on .4* can be defined 
a s  

re(b) = 7r~(b~)Tr2(b2)...rc,(bp) . . . .  I b~ l~ 17I I bP I; =] b ]~, (2.7) 
p 

where b is an idele and s E C (the field of complex numbers).  It is evident that  only finetely many  factors 
in (2.6) and (2.7) are different from unity. One can easily see that  x(r) = 1 when r is a principal  adele, and 
~r(r) = 1 if r is a principal idele. 

An elementary function on the group of adeles `4+ is 

v(x)  = l-I ho,(xp), (2.s) 
p 

where z E A +, ho~(x~) E S(R), hop(xv) E S(Qp). Note that  q0(x) is a complex-valued function and must  
satisfy the following conditions: (i) cp~(x~)  is an analytic function on R and for any n E N the expression 
I x ~  ]~ qpoo(x~) --+ 0 as [ x ~  Ioo--+ ee; (ii) hop(Xp) is a finite and locally constant  function, i.e., q0p has a 
compact  support  and hop(Xp + yp) = ho,(zp) i f [yp  ]p_< p - n  n = n(qp,) e N; (iii) for all but  a finite number  
of p, hop(Xv) = a([  x v[p), where 

f t ( a ) = { 1  if 0 < a < l ,  

0 if a > l .  

All finite linear combinations of e lementary functions ho(x) make a set of the Schwar tz -Bruhat  functions 
s(`4). 
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The Fourier transform of qo(x) e S(A) is 

~5(y) =/.,,t+ r f+hcp~(x~)e-2'~ix=Y~ dx~l-flp/Qp ~2p(xp)e 2"i{~"y'}" dxp, (2.9) 

where dx = dxoodx2...dxp.., is the Haar measure on the additive group ,4 +. The Mellin transform of 
q0(x) E S(.A) is defined with respect to the multiplicative character 7r(x) =[ x I s, i.e., 

.4 ; 0 0  Is-1 r  = , ~(x)  Ix I s d*x = ~ ( x ~ )  I z ~  d ~  

• Cpp(Xp) lxP I~P-1 1 - p - l '  R e s >  1, 
P 

(2.10) 

where d*x = d*xood*x2...d*xp.., is the Haar measure on the multiplicative group .A*. 
The function O(s) can be continued analytically on the whole field of complex numbers, except s = 0 

and s = 1, where it has simple poles with residues -~ (0)  and c~(0), respectively, if(s) satisfies the Tare 
formula 

O(s) = ~(1 - s), (2.11) 

where ~ is the Mellin transform of q~. 
Let us also note that any other necessary information on p-adic numbers, adeles, and their analysis can 

be found in [18, 19, 14]. 

3. R E A L  A N D  p - A D I C  H A R M O N I C  OSCILLATOR 

The harmonic oscillator is a very attractive theoretical model because of its exact solvability and many 
applications. The corresponding Hamiltonian is 

rnw2 2 H = k 2 + ---~--q , (3.1) 

where q and k are position and momentum, respectively. The evolution of classical state can be presented 
in the form ) (:) (cos   

(q(t)  = Tt = Ttz, Tt = , (3.2) 
\ k(t) - mwsinwt coswt ] 

where q = q(0), k = k(0). In the real case 0 # rn,w,q,k,t E R and in the p-adic one 0 7 ~ m,w,q,k , t  E Qp 
with conditions [ wt Ip< p-1 for p # 2 and [ wt 12< 2 -2, which represent convergence domains for the p-adic 
expansions of coswt and sinwt (we shall denote these domains by Gp). In standard (over real numbers) 
quantum mechanics the harmonic oscillator is given by the Schrhdinger equation 

dx---- 2 + -~- E 2 x2 r = 0 (3.3a) 

or 

where 

?-~ + _r r  (3.3b) 

1 

r = x v / ~  (3.4) 
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is a dimensionless position coordinate, (From now on we shall use m = a~ = h = 1.) As is well known, the 
physical solutions to (3.3b) are orthonormal eigenfunctions 

2�88 
r - (2~n!) �89 e-~Hn(xv '~) ,  (3.5) 

where H,(xv/~) (n = 0, 1, 2, ...) are the Hermite polynomials. One can easily show that r E S(R). 
In p-adic quantum mechanics, which we shall adopt here, canonical variables are p-adic numbers and 

wave functions are complex valued (for quantum mechanics ofp-adic valued functions, see [5, 15, 20]). Since 
Xp E Qp and r E C the Hamiltonian quantization procedure does not work. 

According to the Vladimirov-Volovich approach [5, 7, 8] p-adic quantum mechanics is given by a triple 
(L2(Qp), Wp(z), Up(t)), where Qp is the field of p-adic numbers, z = (~) is a point of p-adic classical phase 
space, and t is a p-adic time. L2(Qp) is the Hilbert space of complex-valued square integrable functions 
with respect to the Haar measure on Qp, Wp(z) is a unitary representation of the Heisenberg-Weyl group 
on L2(Qp), and Up(t) (the evolution operator) is a unitary representation on L2(Qp) of a subgroup Gp of 
the additive group Qp. 

The operator Wp(z) realizes the Weyl representation of commutation relations and has the form 

Wp(z)~b(P)(x) =/Q Wp(z;x,y)r , g,p E L2(Qp), (3.6) 
P 

with the kernel 

and gives 
Wp(z)r = xp(2k~ + kq)r + q). 

The evolution operator in p-adic quantum mechanics is given by 

(3.7) 

(3.8) 

(3.9) 

where the kernel for the harmonic oscillator is 

1 xy x +y2 
~c}P)(x'Y) = Xp(sS~t 2rant )' ~ ~ C~\{0), (3.10a) 

~(s y ) = S p ( x - y ) ,  

where @(x - y) is a p-adic analogue of the Dirac &function. 
If t E Qp has the canonical expansion 

(3.10b) 

t=S(to+tlp+t2p2+...), vEZ, tor  (3.11) 

then the number-theoretic function Ap(t) is 

1, 

~p(t) = ( ~ ) '  

i ( ~ ) ,  

rJ = 2k, 

z/= 2 k + l ,  

v - - 2 k + l ,  

p-- l(mod4), 

p -- 3(mod 4); 

(3.12a) 
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1 
~[i + ( -1) t l i ] ,  u = 2 <  

A 2 ( t ) =  V~l. -t ' t  (3.12b) 
~ ( - 1 )  1~- 211 + ( -1 )~ i ] ,  ~ = 2k + 1, 

where ( ~ ) i s  the  Legendre  symbol  and k E Z. The  analogous kernel in the  real case [21] is 

1 

= exp 2~rz i , (3.13a) 
o o  

~ ) ( z ,  y) = ~ ( x  - y), (3.13b) 
where I Icr denotes  the  usual  absolute  value and {iv ~ ( 1  - i), t > 0, 

1 (3.14) 
~ ( 1 + / ) ,  t < 0 .  

The  opera tor  Up(t) satisfies the  relat ion 

Up(t)Wp(z)Ufa(t) = Wp(Ttz). (3.15) 

A character  Xp(at) can be an eigenvalue of the  opera tor  Up(t) for the harmonic  oscillator if and  only if 
a C Ip C Qp takes the  following forms: 

c~ : 0, (3.16a) 

5 v--2~ OL = P--t '  ( 5 0 - ~ - 5 1 p - ~  . - - ' ~  t,--2P ), ao#O,O<_ai<_p--1, (3.16b) 

where (i) u > 2 for p - l ( m o d 4 ) ,  (ii) u = 2n (n 6 N) for p - 3 (mod4) ,  and  (iii) u >_ 4, a0 = a l  = 1 
for p = 2. It means  t ha t  a has discrete values and may  be considered as a p-adic energy of the harmonic  
oscillator. 

The  cor responding  eigenfunct ions satisfy the equat ion 

up(t)r  : xp(st)r163 (3.17) 

The  value 5 = 0 corresponds  to a vacuum state  which is invariant under  Up(t), i.e., 

vp(t)r : r (3.18) 

The  Hilbert  space L2(Qp) can be presented  as a direct sum of mutua l ly  or thogonal  subspaces,  i.e., 

L2(Qp) = | H (p). (3.19) 
~EIp 

The  dimensions  of H (p) are as follows: (i) when p - 1(rood 4), d im H (p) = oc for every possible a; (ii) 
when p - 3(rood 4), d im H (p) = 1 and H (p) = p + 1 for I 5 [p_> p2n (n E N); and  (iii) when p = 2, 

d im H (2) = d im H (2) = 2 for 15  12 = 23 and d im H (2) : 4 for 15 12_> 24. Any dimension determines  the 
n u m b e r  of l inearly i ndependen t  eigenfunct ions which correspond to the  degenerate  eigenvalue Xp(c~t). So 

far e igenfunct ions r  are ob ta ined  [11, 12] in an explicit form for the  vacuum state r and  for some 
higher states (c~ r 0). These  eigenfunct ions belong to S(Qp). From here we mainly  restr ict  considerat ion 
to vacuum states.  

The  o r t h o n o r m a l  vacuum eigenfunet ions of the  Up(t) for the harmonic  oscillator are: (i) ~o(P)(x) = 

a(I  x Ip), !p~)(x) = p - 7 ( 1 -  p-1)-�89 I x [p), u 6 N,  T 2 = - 1 ,  for p _= l (mod '4 ) ;  (ii) 
qo(0P)(x) = f~(} x Iv) for p = 3 (mod  4); and  (iii) qc~2)(x) = f/(] x 12), cP?)(x) = 2f~(2 Ix  1 2 ) -  f~(I x 12) for 
p = 2. Here, 5(p ~ -  I x  Ip) is an e lementary  funct ion  defined [21] as 

1, I x l p = p " ,  
~( / - Ix  I,) : o, Ix I p # / .  (3.20) 
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4. A D E L I C  H A R M O N I C  O S C I L L A T O R  

We shall consider adelic quantum mechanics as a triple (L2(,A), W(z), U(t)), where A is a ring of adeles, 
z = (~) is an adelic point of a classical phase space, and t is an adelic time. L2 (A) is the Hilbert space 
of complex-vMued square integrable functions with respect to the Haar measure on A, W(z) is a unitary 
representation of the Heisenberg-Weyl group on L2(.A), and U(t) (the evolution operator) is a unitary 
representation on L2 (,4) of a subgroup G of the additive group ~4 +. 

An orthonormal basis of the adelic Hilbert space for the harmonic oscillator is 

P 

where r _=_ Cn(xo~) and ~/,(v) ~vG(xp) are orthonormal eigenfunctions in real and p-adic cases, re- 

spectively. By a = (n, a2, ..., ap, ...) and/3 = (0,/32, ..., tip, ...) we denote adelic indices, which characterize 
energy levels and their degeneration. According to [11] and the preceding section, for p _ 3 and [ xp tp_< 1 
all p-adic eigenfunctions are 

r = p(oP)(xp) = f~([ xp [p). (4.2) 

Thus for any value of the adelic variable x one has 

r (x ~ , ~ ,  ~) r a(I x,  !,) (4.3) 

only for a finite number of primes p. In other words, in (4.1) all but a finite number of ~/,(P) ~ p Z ,  (xp) are 

vacuum states ~(J)(x,) = a(i ~ Iv), i.e., all except a finite number of p-dale indices satisfy ap =/3p = 0. 
Any ~(x) �9 L2(.A) may be presented as 

~(~) = ~ G,r  (4.4) 

where C~fl = (~b~, ~). It is worth noting that all finite superpositions in (4.4) belong to the set of the 
Schwartz-Bruhat functions S(M). 

According to (3.8) the adelic unitary operator W(z) acts in the following way: 

W(z)r = x(2kz + ~q)r + q), (4.5) 

where x(2kx + kq) is the additive character on adeles (2.6) and r �9 L2(A). Since x, q, k G ~4, there exists 
prime p ,  such that ] 2kpxp + kpq v]p_< 1 for all p > pn, and an infinite product of real and p-adic characters 
reduces to 

Pn 

x(2k~ + ~q) = x ~ ( 2 k ~  + k~q~) H x,(2kvxp + k~q~) (4.6) 
p = 2  

When x, q, k are principal adeles (rational points) one has X(2kx + kq) = 1 and 

W(z)r = r + q). (4.7) 

The adelic evolution operator U(t) can be defined by 

u(t)r = f~ tc,(x, ~)r (4.8) 

where U(t) = U~(to~) lip up(tp), t �9 G c .4 and ~b(x) �9 L2(A}. The kernel Kt(x,y) for the harmonic 
oscillator is 

YI/C(P)~z )Ut(x,y) = Y~(~176 , oo,yoo) I I  tp , p,Y,), (4.9) 
P 
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where r(P) and E (~176 ,,% t~ are given by (3.10) and (3.13). 
By virtue of (3.15) and an analogous relation in the real case, it follows that 

U(t)W(z)U-~(t) =WiT,  z ). (4.10) 

Note that r in (4.1) are the adelic orthonormal eigenfunctions of the evolution operator U(t). Since 

ElV)(x, y) depend on t through sint and taut ,  the adetic time in U(t) cannot be a principal idele. 
Let b be an operator which acts in the Hilbert space L2(.A). It is natural to define an expectation 

(average) value of the corresponding observable D in a state ~(x) E L2(A) as 

(D> = (r b e )  = (~b(~ bor162 H( r  b y e  (v)) = (Doo> H<Dp)" (4.11) 
P P 

When/9  is not a unitary operator: one has to take care of the convergence of the infinite product in (4.11). 
Let us note that one can consider operators /9 composed only of a finite number of p-adic components 
different from the identify operators~ i.e., 

Pn 
/9 = / ) ~  H / g v  = D ~  H Dr, (4.12) 

P V=2 

where after some prime p~ all Dv = 1. For any Schwartz-Bruhat function one can find a large enough Pn 
for which the unitary operators U(t) and W(z) may be effectively presented in the form (4.12). 

Now one can introduce an operator 

Pn 

Ix I(vo)=l 18 H ~ I xv Iv, (4.13) 
p-----2 

where s E C and p ,  is an arbitrary prime. An expectation value which corresponds to the operator (4.13) 
in the simplest vacuum state 

Coo(X) = 2�88 - ' ~  H ~ ( I  xp Iv) (4.14) 
P 

is 
vo 1 _ p _ 1  

(I x l~v,)) = (r ! x I~v.) r = x/2F (27r)-~'~-~ H 1 7p---~-1, 
p=2 

When pn -~ c~, we have 

<lx lS>= 

Res > -1 .  (4.15) 

sH-1 ~__+.~ ((~ + I)  
lim (I x I(p,)> = ~ r - o, (4.16) 

pn  ---),OO 

where ~(s) is the Riemann zeta function. 
In particular, from (4.16) we get 

(I x I> = 0. (4.17) 

Of interest is also a knowledge of the mean square deviation AD, which is a measure of the dispersion 
around (D), 

AD = [((D - (D))2)]+ = ((D ~) _ (D>~)�89 (4.18) 

Us ing  (4.18) we obtain 

1 ( 1 1 - I  1--p--1)�89 2 1-I (1--p--i)(1--P--3)1�89 (4.19) 
A Ix I(rn) = ~ 1 p-3 1 - 7 ~ - -  ~--~i  j 

p = 2  p = 2  
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By virtue of (4.16) one has 
A l x  l= lira A [ x I ( p . ) = 0 .  (4.20) 

p n - - + ~  

The expectation value of the momentum in the simplest vacuum state can be found in the following way: 

(I k I(%o))= I k I(%) (4.21) 

where ~oo(k) is the Fourier transform of Coo(X) (4.14). Using (2.9) we get 

~oo(k) = 2�88 - ' k ~  H f~(I k, ]p), (4.22) 
P 

i.e., ~00 = ~b00. It is clear that the above obtained results for coordinate x are also valid for the momentum k. 
In particular, one obtains 

<lkl) = < l x l ) = 0 ,  A I k I = A  Ix j=0.  (4.23) 

An uncertainty relation between the adelic position and momentum coordinates reads 

1 
z)XX(Pn)/Xk(Pn) = ~ 1 p-3 1 -  --Tr ~l~p---ff) ~ J 

p = 2  p----2 

(4.24) 

where the factor 1/(47r) corresponds to the ordinary case. 
One gets also interesting features applying the Mellin transformation (2.10) to the vacuum state ~00(x) 

(4.14), which can be considered as the simplest elementary function defined on adeles. It gives 

= (4.25) 

Since the Fourier transform ~00 = ~b00, one obtains (~(s) = q~(s). Replacing ~ and ~ in the Tare formula 
(2.11) by (4.25), we have the well-known functional relation for the Riemann zeta-function: 

,_1 
(4.26) 

5. C O N C L U D I N G  R E M A R K S  

The adelic harmonic oscillator exhibits some remarkable mathematical properties. It is a simple, exact, 
and instructive adelic model. The simplest vacuum state is also the simplest elementary function, and its 
form is invariant under the Fourier transformation. Consequently, the Mellin transform of this vacuum 
state in the x- and k-representation is the same function which satisfies the Tate formula. 

Some physical aspects of the adelic harmonic oscillator are very interesting. According to (3.4) the 
dimensionless position coordinate { may be presented in the Plan& scale in the form 

= r E @ 0 ,  

2rr __ 27rc2(2,rc~-1 i ( hc ~�89 and Wo = - -  -- In fact, our where lo = ( ~ ) '  is the Planck length, rn0 = , 2 ,aJ  , to -h-O-)~" 
calculations are performed for l0 = 1, and it seems most natural to take I0 as the Planck length. Thus, the 
results obtained for the adelic harmonic oscillator may be relevant to Planck scale physics. According to 
(4.23) one can measure distances which are smaller than the length 10. Formula (4.24) contains a softening 
of the uncertainty relation. This is a consequence of the p-adic effects. 
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On the basis of the above considerations, one can suppose that at distances close to I0 there exist not 
only standard virtual particles but also p-adic ones. The adelic particles can interact by means of any of 
these virtual objects. In the above case of the adelic harmonic oscillator, just virtual particles of the p-adic 
vacuums lead to the unusual results. So p-adic effects appear through an interaction of some real particles 
with a p-adic virtual matter. 

Standard quantum mechanics can be considered as an approximation of the adelic one when' experi- 
mentally available distances are very large with respect to I0 (the Planck length). Namely, at very large 
distances (I x ~  I~>> 1, I Xp Ip> 1), for some reasons p-adic states are not occupied and adelic operators 
] x I(p,),l k I(p,) have to be taken wi thpn  = 0, i.e., I x I(0)=1 x ~  I~ and I k I(0)=1 k~  I~. For these 
operators (t x ~  Ioo and I k ~  I~) calculations in standard and adelic quantum mechanics give the same 
results. 
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