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The structure of steady-state two-dimensional solutions of the soliton type with 
quadratic and cubic nonlinearities and power-law dispersion is analyzed numeric- 
ally. It is shown that steadily coupled two-dimensional multisolitons can exist 
for positive dispersion in a broad class of equations, which generalize the 
Kadomtsev-Petviashvili equation. 

i. Kadomtsev and Petviashvili [i] have derived an equation that generalizes the well- 
known Korteweg-de Vries equation and describes quasiplanar disturbances in a quadratically 

nonlinear medium with weak dispersion. The basic approximation used in [i] is the assumption 
that the scale of the wave field in the direction of motion is much smaller than the scale 
in the transverse direction. Clearly, the same approximation can also be used to describe 
disturbances in other media having different types of nonlinearity and dispersion (see, e.g., 
[2, 3 ] ) .  

A well-developed mathematical machinery is now available for obtaining exact solutions 
of the Kadomtsev-Petviashvili (KP) equation [4]. Of special interest among those solutions 
are two-dimensional solitons, for which it has been shown, first numerically [5] and later 
analytically [6], that they can exist only in media having positive dispersion. An intrigu- 
ing problem is the existence and structure of two-dimensional solitons described by equations 
that are related to the KP equation, but for which analytical solutions have not yet been ob- 
tained. 

In the present article we give soliton solutions obtained by numerical calculations for 
a generalized KP equation of the form 

0 (O_~t �9 OuP ^ ) 02u 
Ox + -p --Ox + pttq [u] = ~ dye. .  ( 1 )  

Here  ~ ,  ~,  a n d  X a r e  c o n s t a n t  c o e f f i c i e n t s ,  p > 0 i s  an  a r b i t r a r y  n u m b e r ,  H a [ u ]  i s  a l i n e a r  
operator, which in spectral form corresponds to the dispersion law ~ = Bkq;~ is the (angular) 
frequency, k is the wave number, and q > 1 is an arbitrary number. In particular, for p = 2 
and q = 3 (in which case Hq[u] - 33u/Sx a) Eq. (i) goes over to the classical KP equation. 

2. We use the stabilized multiplier technique proposed by Petviashvili [5] to obtain 
soliton solutions of Eq. (i). We shall be concerned below with steady-state solutions of the 
form u(x, y, t) = u(~ = x - Vt, y), and so we rewrite Eq. (I) in the variables ~ and y: 

a ( _ v a U  = dup ^ ~ O -~u ( 2 )  
p 0"-, ' Oy" 

The change of variables 

~=~(V/f3)I/r q=y(V/3)I/~q-l~(V/?)~/', ~' = .  (VI~) ~i.-~, ( 3 ) 

permits us to reduce the basic equation to the dimensionless form 

- -  - ~ +  , ,V, , lv]  - - - -  . 

We t a k e  t h e  F o u r i e r  t r a n s f o r m  o f  Eq.  ( 4 )  w i t h  r e s p e c t  t o  t h e  v a r i a b l e s  r a n d  q:  

(k~ + k 2 + k~+') r (k: k.~ ) = (1 p) ,~ v~' (/~ k,. ), 

(4) 

(5) 
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Fig .  1. a)  T h r e e - d i m e n s i o n a l  r e l i e f  o f  an MKP t w o - d i m e n s i o n a l  
soliton; b) cross sections of the two-dimensional soliton 
along (solid curve) and across (dashed curve) the direction of 
motion. 

where v(kg, kq) and vP(k~, kq) are the Fourier transforms of the functions v(~, q) and vP(~, 
q), and kg and k~ are the parameters of the Fourier transform with respect to the correspond- 
ing variables. Following [5], we multiply Eq. (5) by ~(k~, kq) and integrate the result with 
respect to k~ and k~ between infinite limits: 

Hence it follows that if v(k~, k D) is a solution of Eq. (5), then 

M =p -~ (7) 

- - Q O  

must be equa l  to  u n i t y .  A c c o r d i n g l y ,  we form an i t e r a t i v e  scheme f o r  t he  n u m e r i c a l  s o l u t i o n  
o f  Eq. (5)  [o r  Eq. (4 ) ]  on t h e  b a s i s  o f  Eq~ (5 ) :  

v~(k~, k~) = (I/p) k~ v~_~ (~, k~ ) M ~. (8) 

Here the index n indicates the iteration number, the multiplier M r is introduced to suppress 
the computational instability that can occur without it, and the power exponent is chosen 
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Fig. 2. Maximum value of the field in a two- 
dimensional soliton (solid curve) vs dispersion 
parameter for media with quadratic (p = 2) and 
cubic (p = 3) nonlinearities. The analogous 
graphs for one-dimensional solitons are repre- 
sented by the dot-dash curves. 

empirically so as to maximize the rate of convergence [this condition is usually satisfied 
if the degree of homogeneity of the right-hand side of Eq. (8) with respect to the unknown 
function v is equal to zero]. The uncertainty associated with the condition k~ = kq = 0 is 
easily removed by augmenting the definition of the function Vn(0, 0) with an arbitrary num- 
ber that does not affect the form of the solution. The convergence of the iterative process 
is tested by means of the parameter M. The process is said to be completed when the value 
of M differs from unity at most by 10 -~. In practice, this value is attained by the 30th 
iteration. 

3. We have used the iterative scheme (8) to calculate the structure of two-dimensional 
solitons for various values of p and q. The starting function v0(~ ~9 is specified as an 
arbitrary smooth bell-shaped function. The calculations show that all two-dimensional soli- 
tons in media having quadratic (p = 2) and cubic (p = 3) nonlinearity with q > 2 are quali- 
tatively similar in structure and closely resemble the structure of a KP two-dimensional soli- 
ton. As an example, Fig. 1 shows a two-dimensional soliton representing a solution of the 
modified KP (MKP) equation with cubic nonlinearity. The quantitative differences in the 
structure of the two-dimensional solitons for different values of p and q are attributable 
to the dependence of the maximum value Vma x of the field at the vertex of the soliton and its 
characteristic space scale on the parameters p and q. The solid curves in Fig. 2 represent 
the dependence of Vma x on q for two values of p = 2, 3. It is evident from the figure that 
the soliton amplitudes grow without limit in both cases as q + 2. We have not been able to 
obtain a steady-state solution for the two-dimensional Benhamin-Ono equation [2] (p = 2, 
q = 2) or its modified analog (p = 3, q = 2). Apparently two-dimensional solitons do not 
exist in these cases. To a certain extent, the given situation is similar to what happens 
in dissipative media; according to the results of Pfirsch and Sudan [7], steady planar shock 
waves can exist only in cases when the dispersion law has the form ~ ~ ik 1+e, where i is an 
imaginary unity and e is any indefinitely small positive number. 

Our calculations for the one-dimensional case [see Eq. (I), in which 8/~y = 0] show that 
steady-state solitary waves are also possible here for power-law dispersion ~ ~ k5 +e, 
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Fig. 3. a) Three-dimensional relief of an MKP two-dimensional 
bisoliton; b) cross sections of the bisoliton along (solid 
curve) and across (dashed curve) the direction of motion. 

provided that e > 0. The corresponding graphs of Vma x as a function of q for p = 2, 3 are 
represented by the dot-dash curves in Fig. 2 [note that Eq. (i) is invariant under the sub- 
stitutions ~ + -~, t § u +-u for even-valued p in the one-dimensional case, so that soli- 
tons exist under such conditions both in media having positive dispersion and in media having 
negative dispersion]. The results therefore indicate that solitons exist in the one-dimen- 
sional case if the power exponent of the dispersion law q > I, and in the two-dimensional 
case if q > 2. It seems natural to infer that solitons should exist in the three-dimensional 
case (see [ii]) only for q > 3 (bearing in mind "true" three-dimensional solitons, since it 
is known that planar and axisymmetric solitons can indeed exist in three-dimensional space, 
but they are unstable under small perturbations [I0, ii]). 

We call attention to the nonmonotonic way in which the two-dimensional soliton field de- 
cays in the direction of motion (Fig. ib). The existence of a local minimum in the structure 
of the soliton suggests the possible existence of coupled soliton pairs. Such pairs are 
sought by means of the same iterative scheme (8)~ but with a double-humped Function of more 
or less arbitrary form specified as the starting function. If the distance between the humps 
is not too great, the iterative process converges to a solution of the previously known type 
shown in Fig. I. Beginning with a certain distance, however, the iterative process converges 
to a double-humped bisoliton. As an example, Fig. 3 shows a bisoliton solution of the MKP 
equation. The calculations show that a whole family of bisolitons actually exists for 
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specified values of p and q, and the height of their peaks depends on the distance between 
them. In this respect, the given solutions are perfectly analogous to those described [8] 
for the KP equation proper. The existence of local minima in the structure of the biso!itons 
suggests the possible existence of even more complicated steady-state formations, i.e., mul- 
tisolitons, but their calculation is more formidable both in terms of computer resources 
and in terms of arriving at an accurate guess of the starting function. In addition to 
steadily coupled states, the given class of equations clearly also has transient (time-de- 
pendent) solutions in the form of oscillating coupled solitons (breathers), but the stabil- 
ity problem remains open for both steady-state and transient multisolitons. 
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THEORY OF RELATIVISTIC CRM WITH SYNCHRONOUS ADIABATIC 

ELECTROMAGNETIC WAVE DECELERATION OF ELECTRON BEAM 

N. S. Ginzburg UDC 621.385.6 

An approximation of nonlinear theory of relativistic gyrotrons with variable 
magnetic fields is formulated. It is assumed that, for a single electron being 
decelerated by a high-frequency field, the condition of cyclotron resonance is 
satisfied identically over the entire interaction space. Other electrons cap- 
tured by the wave, which undergo small oscillations, are decelerated with the 
resonant electron. Using the method of adiabatic invariants, a longitudinal 
amplitude distribution is determined for the high-frequency field that prevents 
escape of any electrons. 

i~ One useful method for increasing the efficiency of microwave devices is synchronous 
adiabatic electromagnetic wave deceleration of an electron beam. Under these conditions, a 
large fraction of electrons are captured by the electromagnetic wave as soon as they enter 
the interaction space, and the parameters of the electrodynamic or electrooptical system 
then vary smoothly so that the electrons are decelerated by the wave longer than they are ac- 
celerated, while after a few oscillation periods in the potential trap the electrons transfer 
much of their energy to the wave. 

We will consider adiabatic deceleration in more detail for devices characterized by 
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