MANY-PARTICLE PROBLEM WITH LOGARITHMIC POTENTIALS
AND ITS APPLICATION TO QUARK BOUND STATES
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The nonrelativistic many-body problem with logarithmic two-body potentials is solved
in the hyperspherical formalism. In the diagonal approximation, an analytic expression
is obtained for the eigenvalues of the hyperradial equation, and a mass formula is
constructed. Meson—baryon mass relations are derived,

1. Introduction

In this paper, we investigate the spectrum of bound states in a relativistic system of many particles
interacting through logarithmic two-body potentials. It is well known that the experimentally observed heavy
quark—antiquark bound states can be fairly well described by a Schridinger equation with potentials that
increase at infinity [1~5]. The logarithmic potential introduced for the first time in [6] to explain the approxi-
mate. equidistance of the spectra of the radial excitations of charmonium and bottomium is, though it does
not have a fundamental theoretical derivation, a good approximation for a class of potentials that are
singular at the origin and increase at infinity [7]. The characteristic scaling properties of the eigenvalues
and eigenfunctions of the two-particle problem make it possible to obtain a number of exact rules for the
ratios of the mass intervals and widths of leptonic decays of quarkonium, despite the fact that a Schridinger
equation with logarithmic potential cannot be solved exactly [8].

Recently, baryons have been successfully studied in a harmonic-oscillator model [9], though it is
widely accepted that confinement potentials do not increase quadratically at large distances. Despite the
reasonable agreement with the experimental data, the connection between the properties of the baryons and
the underlying quark dynamics is here completely obscure. Therefore, the 'investigation of systems of
three or more particles with the confinement potentials established in the meson spectrum is of undoubted
interest. We should mention the promising results of [10,11], which used a nonsingular power~law potential
with a small exponent [3]: V==A+Br*!. These studies also warrant attention from the technical point of
view, since they demonstrate the fairly good convergence of hyperspherical expansions [12-15] for potentials
that increase at infinity (see also [16]).

The study of power-law potentials in a hyperspherical basis is comparatively advantageous, since
the hyperspherical images of such potentials are themselves similar power-law functions of the hyperradial
length. For this reason, the many-particle problem can be related in reasonable approximations to the two-
particle problem. The logarithmic potential belongs to the class of power-law potentials with zero exponent
and, as will be shown below, leads to perspicuous relations without knowledge of certain technical details.

The paper is arranged as follows: First, for reference and completeness of the exposition we give
the basic equations of the hyperspherical formalism; we then consider the logarithmic potential and in a
reasonable approximation solve the hyperradial equations; we construct a mass formula for a system con-~
sisting of an arbitrary number of particles and, finally, derive meson—baryon mass relations on the
basis of the obtained formula,

2. Hyperspherical Formalism in the Case

of Unequal Masses

In this section, we shall follow [15] closely.* Suppose there is a system of A particles of masses m,
with radius vectors r, (i=1,2,...,A). By Rj we denote the radius vector of the center of mass of a

* Hyperspherical basis formulas for unequal masses were given earlier in [17].
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complex of j particles:

1
Rj = F MYy, MJ‘—_— Z my.

(&
= Z mXy, M=Z| My,
M k=1 k==t
and also the remaining N = A — 1 relative radius vectors:
E=VYmi M/MM. (r—R), j=1,2,... N=4~1. @.1)
In the new coordinates, the kinetic energy operator of the system can be written in the form
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From the definitions (2.1) we obtain the helpful relations
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This means that the ¢ vectors on the right-hand side of the equation are encountered with numbers from
j—1toi~1, For j =1, the final (negative) term is absent,

A set of 3N — 1 angles (Q) is introduced as usual [15]: 2N polar angles §] for each vector ¢;
N — 1 hyperspherical angles 8., which are determined by means of the lengths of the £,: &=Esin0y... sm 0i4
cos 8; (0,=0, 0<6,<n/2). Here, the hyperradial coordinate ¢ is the length in the 3N-dimensional space:

gz_—:z £ In the hyperspherical coordinates introduced above, the kinetic energy operator of the relative

Fe=1

motion takes the form [15]
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where L2(Q) is the operator of the angular momentum in 3N-dimensional space. A general prescription for
constructing the eigenfunctions of this operator was given in [14]. The eigenfunctions of the operator L(g)
are hyperspherical harmonics:

Y s Q) =1 (s >H@m<g,> WP (g, @.4)

F=2
which satisfy the equation
{L2(9)+L(L+3N*2)}%m (2)=0. @.5)

ERIENY

In the expression (2.4), the functions . (0;) are related to Jacobi polynomials, L= Z (2n,+L),

fa=q
n,=0, and @,jf(éj) are ordinary spherical harmonics. For the indicated choice of the angular variables (Q),
we denote by [L1] the set of the following 3N ~ 1 quantum numbers: the 2N orbital and magnetic quantum
numbers [, and m for each g (j=1,...,N) andthe N — 1 hyperspherical quantum numbers n, (j =2,
N) associated with the hyperspherical angles 0.
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The number L is the principal orbital angular momentum, related to the numbers [, and n, by

L= Z 2nrtlL), n=0.

i=1

After elimination of the center of mass and substitution of the expansion

Y (r,)=" (Ey Q) =2 E—(m—“ﬂ%m (E)W[L] ()

[z

using (2.3) and (2.5), we arrive at the system of hyperradial equations

1 dz
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where V(g Q)= EV,-j(r,-,-) and A=L+*/,(N—1).
i>§

The main characteristic features in the case of unequal masses appear in the calculation of a matrix
element of the potential. The two-body potentials depend on the relative radius vectors r; =r, - r_,
which in accordance with (2.2) can be expressed in terms of a linear combination of the vectors £,. The
coefficients of this combination depend in a complicated manner on the masses of the particles. In the hyper-
spherical approach, each of the two-body potentials can be expanded in a hyperspherical series. To this end,
we introduce the kinematic rotation vector [15]

N

Y(p)= Z singy...singucosg,-§;, ;=0
k=1
N
By means of it, we can express any linear combination of the vectors A(§) = Zakék =c¥ (¢), where
Tk=1
N N
—1
c2=2 o;?, and the angular parameters are determined in accordance with cos® q>j=mj2( Z ahz) . Thus, for
h=1 E=1t
the relative radius vectors we have
N
v, — b= a,% (97 ) =uay; Z sing¥? ... sin ol cos of - & 2.6)
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If we recall 2.2), it becomes obvious that the summation here extends in practice from j — 1 to
i — 1. The angles are chosen in such a way as to make the remaining terms in this sum vanish. It is clear
from Eq.(2.2) and our definitions that q,=VM (m:+m;)/m:m;.

It is also obvious that the angles ¢™? in (2.6) depend on the masses of the particles. It is only in
the case of equal masses that they take definite numerical values independent of the mass.

We can now make the necessary expansions of a plane wave and the potentials, as is done in [15].
The only difference arises because of the presence of the factor a; in the expansion 2.6), We therefore
give the final result for central potentials:

T'(K+%/,) V ~ % o
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where

Y 2y () =% ™ (q)H Y (q) "’P’L’— {(9)

Jmal

and 2 denotes summation over all quantum numbers for which Z (@n+1)=2K (n=0).

f2r] i=1
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3. Logarithmic Potential

We consider the logarithmic potentials (6]

Vi (ru) =gy;In

Ty (U)
ai
Ty (U)

of the first term is proportional to 8x. and therefore the matrix element of the potential has the structure

In the expression (2.7), the integral contains the quantities Vi(astu) =gln +giinu.  The integral
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and, in turn,
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Then the hyperradial equation takes the form
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It can be seen that except for the nondiagonal terms, which make the system of equations infinite
dimensional, the functional form of (3.2) is identical to the two-particle radial equation. It is interesting
that the coefficients of Iln £ are diagonal, and the entire nondiagonality is contained in the constant (£ -indepen-
dent) coefficients. In this property, the logarithmic potential is distinguished from all power-law potentials.

In the present paper, as an initial approximation, we limit ourselves to diagonal terms [16]. The
validity of such an approximation depends on the convergence of the hyperspherical expansions, which in
each concrete case must be investigated numerically. Here, we wish to draw attention to the unexpected
appearance of a possibility of analytic solution. Indeed, introducing the dimensionless variable

p~§V2M( gii >, we can reduce the diagonal part of the system (3.2) to the simple equation

i>j

&0 '

{ - ( )+s lnp}%m(p) =0, 3.3)
dp

where € = 831\, the dimensionless eigenvalues of this equation, are related to the energy E in a simple

manner, and as a result we obtain for the mass of the system the formula

A
M, A) =M= 3 mitCros ~i22, gﬁln%;ﬁ’—v ! Zg,]]n{ 2r (i) (Z gk,)ﬂ +a¢(2 g(,'>.

i=1 i>j >

We discuss some general features of this mass formula. For fixed number of particleg, the eigen-
values 531\ of Eq. (3.3) depend only on the principal orbital angular momentum L and the radial quantum
number n (n =1, 2, ...). Therefore, the contribution of this number to the orbital and radial excitations
does not depend on the masses of the components, as in the two-particle problem. There is however a
difference from this last {as was shown above), namely, the angles ¢? and, therefore, the coefficients
Cryzy (see (8.1)) depend on the masses in the case of unequal masses. As a result, the orbital but not the
radial) excitations will also depend on the masses in this case. Inthe case of equal masses, this dependence

93



disappears, and the situation becomes completely similar to the gquarkonium problem.

4. Application: Three-Quark Bound States

and Meson—Baryon Mass Relations

As an application, we consider colorless three-guark bound systems in the ground (L. = 0) state
(baryons). In order not to lose the connection with mesons, we shall assume, as follows from the one-gluon
exchange model [7], that the interaction potential between two quarks is half the potential between a quark
and an antiquark: Vg o,=".Vea, i.e., gi; = %Gij, where G, is the quark—antiquark coupling constant. With
allowance for this, we write the mass formula for the baryons in the form

_ 1 1 1 11t
M(4,2,3)=M, 0=m1+mz+m3+—2—(-z—ln 2+s,.°/z)(2 G,.j) - —42(;.-,-111[ ) (2 Gu)], @.1)
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where we have used the fact that Ci0="2("/:—1n2) (Z Gi; ) i.e., for the states with L = 0 this coefficient

i>j
does not depend on the masses.

We now compare this with the corresponding mass formula for mesons {18]:

2
mﬂ:: r’ (1, Z)Gm) +e,°Gyo. 4.2)
2

L= 1
M(11 2) =M'nl D=mg+mz - “2— ze ln(
1
In various potential models [3], including the logarithmic potential [18], it has been established that
the vector particles in the systems of b, ¢, and s quarks can be described fairly well by parameters
independent of the quark species. Being guided by this fact, we make below some assumptions about G,
and obtain some mass relations. For example, if we assume that G, = G then it follows from (4.1) and
(4.2) that

M (ce) —M (s5)=2(M (ccs) ~M (css)) ="/ [ M (cec) —M (ss5)]. ' 4.3)
If to this we add G, = G_, we then obtain the new relations
M(c5)—~M(s5) =M (css)~M(sss), M(ct)—M(c5)=M (ccc)—M (ccs). 4.4)

To include the b-quark systems, it is necessary to assume G,,=G.~=Gi. Then the corresponding
expressions have the form (4.3) and (4.4), in which the substitution ¢ —> b or s - b is made.

For light (q = u, d) quarks, the nonrelativistic models do not work well. However, one can con-
sider systems of the type of atoms, in which light quarks are bound to heavy ones. We make the minimal
assumption that the light quarks interact with the b, ¢, and s quarks with the same strength: G,=G,~G,.
We then obtain relations in which the light quarks participate. For example, M(c§)—M (sg) =M (cqq)—M (sqq),
M (ceq)—M (ssq) =M (cg)—M (sg)+/.[M (cc) ~M (s5)], 2[M(csq) ~M(ssq)] =M (c3)+M (cg) —M (s5) —M (sg). Replacing
here a ¢ or s quark by a b quark, we obtain mass relations containing the latter.

We note that these mass relations are fairly general. They are obtained solely on the basis of the
above assumptions about the coupling constants G,., with no regard paid to their numerical values nor
any restrictions imposed on the parameters ro( ij). Mass relations of this kind can hold in the naive quark
model when it is assumed that the hadron mass is the sum of the masses of the constituent quarks [19].
But here they have arisen for a fairly nontrivial potential.

Verification of our relations and also the prediction by means of them of states not yet discovered
experimentally will become possible only after allowance has been made for the spins of the quarks. At the
present time, there exist different models for including a spin—spin interaction [2, 5, 20]. This is an
independent problem unrelated to the problem considered above, and it will therefore be treated separately.

We are most grateful to Professor N, S. Amaglobeli and A, N. Tavkhelidze for constant interest,
and alsc S. B. Gerasimov, V. A. Matveev, and R, M. Mir-Kasimov for numerous discussions.
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POLYNOMIAL CONSERVATION LAWS AND EXACT SOLUTIONS
ASSOCIATED WITH ISOMETRIC AND HOMOTHETIC SYMMETRIES
IN THE NONLINEAR SIGMA MODEL

G.G. Ivanov

In the nonlinear ¢ model, conserved tensor currents associated with the presence of
isometric, homothetic, and affine motions in the space of values of the chiral field VN
are constructed. New classes of exact solutions in the SO(3)~ and SO(5)~invariant

o models are obtained using the connection between the groups of isometric and
homothetic motions of space—~time and the isometric motions in V¥, Some methods
for obtaining exact solutions in the four-dimensional ¢ model with nontrivial
topological charge are considered,

1. Introduction

In {1], a study was made of chiral models of general form, in which the scalar muliiplet gaA(x}
takes its values in some real Riemannian manifold V¥, A connection was established between the isometric
motions of the space—time V72 with the isometries in V¥, on the basis of which exact solutions in the self-
gravitating ¢ model were obtained.

It is known [2] that nonlinear o models considered on the background of flat space do not when n > 2
admit solutions with bounded action, i.e., solutions of instanton type. This prompted a number of authors to
go over fo the study of o models that interact with the gravitational field [3-5]. As is shown in [3-5], solu~
tions of instanton and meron types exist in such ¢ models. Nevertheless, the problem of investigating the
solution ‘space for four-dimensional ¢ models on the background of flat Minkowski space for Euclidean
space remains open. Below, using the group-invariant approach, we investigate some classes of exact
solutions in four-dimensional ¢ models on the background of flat space and their topological characteristics.

The material is arranged as follows. In Sec.2, we construct conserved polynomial tensor currents
associated with the isometric, homothetic, and affine motions in V¥, We show that the SO(N)-invariant
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