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The nonre la t iv is t ic  many-body  p rob lem with logar i thmic  two-body potent ials  is solved 
in the hype r sphe r i ca l  f o r m a l i s m .  In the diagonal approximat ion,  an analytic express ion  
is obtained for  the e igenvalues  of the hyper rad ia l  equation, and a m a s s  fo rmula  is 
cons t ruc ted .  M e s o n - b a r y o n  m a s s  re la t ions  a r e  der ived .  

1 .  I n t r o d u c t i o n  

In this paper ,  we invest igate  the s p e c t r u m  of bound s ta tes  in a re la t iv i s t ic  s y s t e m  of many pa r t i c l e s  
in terac t ing  through logar i thmic  two-body potent ia ls .  I t  is well known that the exper imenta l ly  observed  heavy 
q u a r k - a n t i q u a r k  bound s ta tes  can be fa i r ly  well  descr ibed  by a SchrSdinger  equation with potent ia ls  that  
i nc rea se  at infinity [1-5]. The logar i thmic  potential  introduced for  the f i r s t  t ime in [6] to explain the approx i -  
m a t e  equidistance of the s p e c t r a  of the radia l  exci tat ions of cha rmonium and bot tomium is,  though it does 
not have a fundamental  t heo re t i ca l  der ivat ion,  a good approximat ion  for  a c l a s s  of potent ials  that  a re  
s ingular  at the or igin and i nc r ea s e  at infinity [7]. The cha rac t e r i s t i c  scal ing p rope r t i e s  of the eigenvalues 
and eigenfunctions of the two-pa r t i c l e  p rob l em make it poss ib le  to obtain a number  of exact  ru les  for  the 
ra t ios  of the m a s s  in te rva ls  and widths of leptonic decays  of quarkonium, despite  the fact  that a Schr6dinger 
equation with logar i thmic  potential  cannot be solved exact ly  [8]. 

Recent ly ,  ba ryons  have been success fu l ly  studied in a h a r m o n i c - o s c i l l a t o r  model [9], though it is 
widely accepted that confinement  potent ia ls  do not i nc r ea se  quadra t ica l ly  at l a rge  d is tances .  Despite  the 
reasonable  ag reemen t  with the exper imenta l  data,  the connection between the p rope r t i e s  of the baryons  and 
the underlying quark  dynamics  is he re  comple te ly  obscure .  The re fo re ,  the inves t iga t ion  of s y s t e m s  of 
th ree  o r  more  pa r t i c l e s  with the confinement  potent ia ls  es tabl i shed in the meson  spec t rum is of undoubted 
in te res t .  We should mention the p romis ing  resu l t s  of [10, 11], which used a nonsingular  power - law potential  
with a smal l  exponent [3]: V ~ - A + B r  ~ These  studies also wa r r an t  attention f rom the technical  point of 
view, s ince they demons t r a t e  the fa i r ly  good convergence  of hyperspher i ca l  expansions [12-15] for  potentials  
that i nc rease  at infinity (see a lso  [16]). 

The study of power - law potent ia ls  in a hype r sphe r i ca l  bas i s  is compara t ive ly  advantageous,  s ince 
the hyperspher i ca I  images  of such potent ia ls  a r e  t hemse lves  s i m i l a r  power - law functions of the hyper rad ia l  
length. F o r  this reason ,  the m a n y - p a r t i c l e  p rob l em can be re la ted  in reasonable  approximat ions  to the two-  
par t ic le  p rob l em.  The logar i thmic  potential  belongs to the c l a s s  of power- law potent ia ls  with ze ro  exponent 
and, as will be shown below, leads  to persp icuous  re la t ions  without knowledge of ce r ta in  technical  deta i ls .  

The pape r  is a r r anged  as follows: F i r s t ,  for  r e f e r ence  and comple teness  of the exposit ion we give 
the basic  equations of the hype r sphe r i ca l  f o r m a l i s m ;  we then cons ider  the logar i thmic  potential  and in a 
reasonab le  approximat ion  solve the hype r rad ia l  equations; we cons t ruc t  a m a s s  fo rmula  for  a s y s t e m  con-  
s is t ing of an a r b i t r a r y  number  of pa r t i c l e s  and, finally, der ive  m e s o n - b a r y o n  m a s s  re la t ions  on the 
bas i s  of the obtained fo rmula .  

2 .  H y p e r s p h e r i c a l  F o r m a l i s m  in  t h e  C a s e  

o f  U n e q u a l  M a s s e s  

In this sect ion,  we shall  follow [15] c lose ly .  * Suppose there  is a s y s t e m  of A pa r t i c l e s  of m a s s e s  m~ 
with radius  vec to r s  r i (i = 1 , 2 ,  . . . , A ) .  By Rj  we denote the radius  vec to r  of the cen te r  of m a s s  of a 

�9 Hype r sphe r i ca l  bas i s  f~rmulas  for  unequal m a s s e s  were  given e a r l i e r  in [17]. 
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complex  of j p a r t i c l e s :  

We in t roduce  the rad ius  v e c t o r  of  the c e n t e r  of  m a s s  of  the comple te  s y s t e m ,  

' A 

and a l so  the r ema in ing  N = A - 1 re la t ive  rad ius  v e c t o r s :  

~=u (r~+~-R~), ]---t, 2 . . . . .  N=A-I.  (2.1) 

In the new c o o r d i n a t e s ,  the kinet ic  e n e r g y  o p e r a t o r  of  the s y s t e m  can  be wr i t t en  in the f o r m  

F r o m  the defini t ions (2.1) we obtain the helpful r e l a t ions  

R~-R~_~=Frn.fll/M~M~_,~_~, 2<]<N, r~+~-r~=FMM~+~/M~m~+tg~-FMM~_~/ra~M~_,, 2~]<N. 

The l a s t  f o r m u l a  can a l so  be g e n e r a l i z e d  fo r  j = 1 if it is a s s u m e d  that  $0 = 0 and M 0 = 0. 
Applying it r epea ted ly ,  we a r r i v e  at  the fol lowing gene ra l  f o r m u l a  (i > j ) :  

:~/ MM~ + "1/ Mrai_~ ]1[ Mm,_~ 

.t_W Mm,-(~-~-l) Mi-(i-j-t)Mi-(i-j) ~i-(i-i)-- V," MMt-(i-~+jI ~r (2.2) 
Mi-o-i) m~-(i-~) 

This  means  that the ~ v e c t o r s  on the r igh t -hand  s ide of  the equation a r e  encoun te red  with number s  f r o m  
j - 1 to i - 1 .  F o r  j = 1, the final (negative) t e r m  is absen t .  

A se t  of  3N - 1 angles  (~) is in t roduced  as  usual  [15]: 2N p o l a r  ang les  ~j fo r  each  v e c t o r  ~ ;  
N - 1 h y p e r s p h e r i c a l  angles  0i ,  which a r e  de t e rmined  by means  of  the lengths  of  the ~j: ~-----~ sin 0~ . . .  sin0~+~ 
cos 0j (0~-------0, 0<0j<~/2) .  Here ,  the h y p e r r a d i a l  coo rd ina t e  ~ is the length in the 3N-d imens iona l  space :  

N 

~ = L  ~2. In the h y p e r s p h e r i e a l  c oo rd i na t e s  in t roduced  above,  the kinet ic  e n e r g y  o p e r a t o r  of  the r e l a t ive  
j ~ l  

mot ion  takes  the f o r m  [15] 

N 

w h e r e  L2(fl) is the o p e r a t o r  of  the angu la r  m o m e n t u m  in 3N-d imens iona l  s p a c e .  A gene ra l  p r e s c r i p t i o n  fo r  
c o n s t r u c t i n g  the e igenfunct ions  of  this o p e r a t o r  was  g iven in [14]. The e igenfunct ions  of  the o p e r a t o r  L ~ (fD 
a r e  h y p e r s p h e r i e a l  h a r m o n i e s :  

/g 

%~ (a)=%,~,(~,) I I  %7,(~,)"'P~,~' ' (05), (2.4) 

which  sa t i s fy  the equat ion 

(L ~ (~) +L  (LT3N-2)  } ~ (~) =0. (2.5) 
J 

�9 Ij L j ~  l V ,  In the e x p r e s s i o n  (2.4), the funct ions (")PL' (0j) a r e  re la ted  to Jacobi  po lynomia l s ,  L~= ~ (2n~+l~), 

n,~0, and ~'~2J(~j) a r e  o r d i n a r y  sphe r i ca l  h a r m o n i c s .  F o r  the indicated cho ice  of  the angu la r  v.ariables (~),  
we denote by [ L ]  the se t  of  the following 3N - 1 quan tum n u m b e r s :  the 2N orbi ta l  and magne t i c  quan tum 
n u m b e r s  l.  and m.  f o r  each ~ i f= l ,  ,N) and the N - 1 h y p e r s p h e r i c a l  quan tum n u m b e r s  nj (j = 2, 

J J " ' '  . . . ~  
N) a s s o c i a t e d  with the h y p e r s p h e r i c a l  angles  0j. 
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The number L is the principal orbital angular momentum, related to the numbers 
N 

L= Z (2n~+/~), n~--=0. 

After elimination of the center of mass and substitution of the expansion 

[~.l 

u s i n g  (2.3) and (2.5) ,  we a r r i v e  at  the  s y s t e m  of h y p e r r a d i a l  equa t ions  

2 M r  d~ ~ ~7 "j t,o', (O) l 1)) >oZ/<~, i (~) 

[i and n i by 

w h e r e  V(~,~2)= ~,.aV,s(r,~) and ~.--L4-V2(N-I). 

The  m a i n  c h a r a c t e r i s t i c  f e a t u r e s  in the  c a s e  of  unequa l  m a s s e s  a p p e a r  in the  c a l c u l a t i o n  of  a m a t r i x  
e l e m e n t  of  the  p o t e n t i a l .  The  t w o - b o d y  p o t e n t i a l s  depend  on the r e l a t i v e  r a d i u s  v e c t o r s  r i j  = r i - r ) ,  
w h i c h  in a c c o r d a n c e  wi th  (2.2) can  be  e x p r e s s e d  in t e r m s  of  a l i n e a r  c o m b i n a t i o n  of  the  v e c t o r s  }k" The  
c o e f f i c i e n t s  of  t h i s  c o m b i n a t i o n  depend  in a c o m p l i c a t e d  m a n n e r  on the  m a s s e s  of  the  p a r t i c l e s .  In the  h y p e r -  
s p h e r i c a l  a p p r o a c h ,  e ach  of  the  t w o - b o d y  p o t e n t i a l s  can  be  expanded  in a h y p e r s p h e r i c a l  s e r i e s .  To th i s  end,  
we i n t r o d u c e  the k i n e m a t i c  r o t a t i o n  v e c t o r  [15] 

N 
(qg) ~--- ~ sin ~prr �9 �9 sin %.+a cos q~- ~s., r ~ 0. 

k=l 

N 

By m e a n s  of  i t ,  we  c a n  e x p r e s s  any l i n e a r  c o m b i n a t i o n  of the  v e c t o r s  

Z - 1  tn ~ 13r ( 0~h2 c z= cck 2, and the a n g u l a r  p a r a m e t e r s  a r e  d e t e r m i n e d  in a c c o r d a n c e  wi th  cos ~,~ , , . 

the  r e l a t i v e  r a d i u s  v e c t o r s  we have  
N 

( i ,J)  ~OS.^ ( i , J )  ~: ri __ rs = ao ~ (q~(i, j ) = aij Z sin f~'  j) . . .  sin -W~+x. u q~k �9 ~ -  

w h e r e  

Thus ,  fo r  

(2.6) 

i 
f r o m  Eq.  (2.2) and o u r  de f in i t i ons  tha t  a,~=YM(m~+ms)/m~mj. 

I t  i s  a l s o  obv ious  tha t  the  a n g l e s  tp t~,~> in (2.6) depend  on the m a s s e s  of the  p a r t i c l e s .  I t  i s  only  in 
the  c a s e  of  equal  m a s s e s  tha t  they  t ake  de f in i t e  n u m e r i c a l  v a l u e s  i ndependen t  of  the  m a s s .  

We can  now m a k e  the  n e c e s s a r y  e x p a n s i o n s  of a p l a n e  wave  and the p o t e n t i a l s ,  a s  i s  done in [15]. 
The  only  d i f f e r e n c e  a r i s e s  b e c a u s e  of  the  p r e s e n c e  of  the  f a c t o r  a/) in the  e x p a n s i o n  (2.6) .  We t h e r e f o r e  

g ive  the  f ina l  r e s u l t  f o r  c e n t r a l  p o t e n t i a l s :  

r 
F(K+3/2) - I  K ~-~ ~ A , dqa~/t2,,:l V'Ar'D=2~:<'<-"/: = ( ) 'r(%)F(K+3NIS_~I~j~,~ ~<:K,( ) ~ (~""~)•  

1 

S du u~( t -~  ') r (aUiu) ~ (--K, K+3NI2-1, V~; a'), 

w h e r e  

If  w e  r e c a l l  (2.2),  i t  b e c o m e s  obv ious  tha t  the  s u m m a t i o n  h e r e  e x t e nds  in p r a c t i c e  f r o m  j - 1 to 
- 1. The  a n g l e s  a r e  c h o s e n  in  such  a way  as  to m a k e  the r e m a i n i n g  t e r m s  in th i s  s u m  v a n i s h .  I t  i s  c l e a r  

%7"(q1 <"PIj ' ( + )  
,- ,  

and E d e n o t e s  s u m m a t i o n  o v e r  a l l  quan tum n u m b e r s  fo r  which  ~ ,  (2n~+l~)=2K (n i=0) .  

(2,7) 
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3.  L o g a r i t h m i c  P o t e n t i a l  

We consider  the logari thmic potentials [6] 

V~ (r,j) =g,~ In r~ 
r0(q) " 

a,j~ + u 
In the expression (2.7), the integral contains the quantities V ~ ( a , ~ a ) = g ~ l n ~  g,~ln . The integral 

of the f irst  t e rm is proportional to 6~0, and therefore  the matrix element of the potential has the s t ruc ture  

( ~ ,  (~) I V(L ~2) I oy~ ,, (f~) >= ~ 1 ~ ' ~ Z  a.~ +C 

where 

and, in turn, 

r (a+v,) j" (r i) x C,.,(~)=2#'c~-")""g,., ( - t ) ' ~ . '  , , - Z ' ~ w , j  (gJ) 
~=o  F(I , )F(K+3NI2-V,)  ~,,~1 

t}  

(3.1) 

Then the hyperradial  equation takes the form 

t > !  [ L '  ] 

(3.2) 

It can be seen that except for the nondiagonal t e rms ,  which make the sys tem of equations infinite 
dimensional,  the functional form of (3.2) is identical to the two-part ic le  radial equation. It is interest ing 
that the coefficients of In ~ are  diagonal, and the entire noadiagonality is contained in the constant  (~-indepert- 
dent) coefficients.  In this proper ty ,  the logari thmic potential is distinguished f rom all power- taw potentials.  

In the present  paper,  as an initial approximation, we limit ourselves  to diagonal t e rms  [16]. The 
validity of such an approximation depends on the convergence of the hyperspher ical  expansions, which in 
each concrete  case must be investigated numerical ly .  Here, we wish to draw attention to the unexpected 
appearance of a possibil i ty of analytic solution. Indeed, introducing the dimensionless var iab le  

1/ p = ~  ,._.. g,~ , we can reduce the diagonal part  of the sys tem (3.2) to the simple equation 
i > j  

d 2 L (~+1) 
+ e - l n  0/~ a (p) =0, (3.3) 

{ d9~ pZ 

where e = enk, the dimensionless  eigenvalues of this equation, are  related to the energy E in a simple 
manner ,  and as a result  we obtain for the mass  of the sys tem the formula 

/k 

V V 

We discuss  some general  features of this mass  formula.  Fo r  fixed number of par t ic les ,  the eigen-  
values enh of Eq. (3.3) depend only on the principal orbital angular  momentum L and the radial quantum 
number a (n = 1, 2 . . . .  ). Therefore ,  the contribution of this number to the orbital and radial excitations 
does not depend on the masses  of the components,  as in the two-part ic le  problem.  There is however a 
difference f rom this last  (as was shown above), namely, the angles (p("~> and, therefore ,  the coefficients 
CEL~tL1 (see (3.1)) depend on the masses  in the case of unequal mas se s .  As a result ,  the orbital  (but not the 
radial) excitations will also depend on the masses  in this case .  In the case of equal masses ,  this dependence 
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disappears ,  and the situation becomes  completely s imi la r  to the quarkonium problem. 

4 .  A p p l i c a t i o n :  T h r e e - Q u a r k  B o u n d  S t a t e s  

a n d  M e s o n - B a r y o n  M a s s  R e l a t i o n s  

As an application, we consider  co lor less  th ree -quark  bound sys tems  in the ground (L = 0) state 
(baryons). In o rde r  not to lose the connection with mesons,  we shall assume,  as follows f rom the one-gluon 
exchange model [71, that the interaction potential between two quarks is half the potential between a quark 

l Y _ 1 and an antiquark: V~jq~=/2 q,vj, i . e . ,  g i )  - ~.Gij, w he r e  Gij is the quark-ant iquark  coupling constant.  With 
allowance for this, we write the mass  formula for the baryons in the form 

i t I ~ G,i In f rn~rn~ M(t, 2,3)=M:=~rn,+rn2+rn3+._~(__~_ln2+eo/,)(2G,j)_~ - -  [~rQ(~I)(ZG,,)I,2 .. (4.1) 
~:~j i > J  h ~ l  

where we have used the fact that Cto~o~='/2(l/~-ln 2 ) ( 2  G,~), i . e . ,  for  the states with L = 0  this coefficient 

does not depend on the masses .  

We now compare  this with the corresponding mass  formula  for  mesons  [18]: 

M(i,2)=M~=O=rn~+m2_ l_l_g,~ln ( 2m,m~ r0~(t, 2)G,~/+e~~ (4.2) 
2 ~ m~+rn2 ] 

In various potential models [3], including the logari thmic potential [18], it has been established that 
the vec tor  par t ic les  in the sys tems  of b, c, and s quarks can be described fairly well by pa rame te r s  
independent of the quark spec ies .  Being guided by this fact,  we make below some assumptions about G~j 
and obtain some mass  relat ions.  For  example, if we assume that Gcc = Gss then it follows f rom (4.1) and 
(4.2) that 

M (c~) -M (sY) =2 (M (ccs) -11I (css)) =2/~ [M (ccc) - M  (sss) ]. (4.3) 

If to this we add Gcc = Gc~ we then obtain the new relat ions 

M(c~)-M(sy) =M(css)-M(sss), M(c~)-M(cy) =M(ccc)-M(ccs). (4.4) 

To include the b-quark  sys tems ,  it is necessa ry  to assume G~b=G~=Gbo. Then the corresponding 
express ions  have the form (4.3) and (4.4), in which the substitution c ~ b o r  s ~ b is made. 

F o r  light (q - u, d) quarks,  the nonrelativist ic models do not work well. However, one can con-  
s ide r  sys t ems  of the type of a toms,  in which light quarks are  bound to heavy ones.  We make the minimal 
assumption that the light quarks interact  with the b, c, and s quarks with the same strength: Gq.=Gq~=Gqb. 

We then obtain relat ions in which the light quarks part ic ipate .  Fo r  example, M(c~)-M(s~)=M(cqq)-M(sqq), 
M (ccq)-M (ssq) =M (c~) -M (s~) +V~ [M (c~) - / ( s ~ )  ], 2 [ M (csq) -M (ssq) ] =M(c~) + M (c~) -M (s~) -M (s~). Replacing 
here  a c o r  s quark by a b quark, we obtain mass  relat ions containing the la t ter .  

We note that these mass  relat ions are  fair ly general .  They are  obtained solely on the basis  of the 
above assumptions about the coupling constants Gi),  with no regard  paid to their  numerical  values nor 
any res t r ic t ions  imposed on the pa rame te r s  r0(i j ). Mass relat ions of this kind can hold in the naive quark 
model when it is assumed that the hadron mass  is the sum of the masses  of the constituent quarks [19]. 
But here  they have a r i sen  for  a fair ly nontrivial potential. 

Verification of our  relat ions and also the predict ion by means of them of  states not yet discovered 
experimental ly will become possible only af ter  allowance has been made for the spins of the quarks .  At the 
present  t ime, there exist different models for including a sp in - sp in  interaction [2, 5, 20]. This is an 
independent problem unrelated to the problem considered above, and it will therefore  be treated separate ly .  

We are  most  grateful  to P r o f e s s o r  N. S. Amaglobeli and A. N. Tavkhelidze for constant interest ,  
and also S. B. Geras imov,  V. A. Matveev, and R. M. Mir-Kasimov for numerous discussions.  
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P O L Y N O M I A L  C O N S E R V A T I O N  L A W S  A N D  E X A C T  S O L U T I O N S  

A S S O C I A T E D  W I T H  I S O M E T R I C  A N D  H O M O T H E T I C  S Y M M E T R I E S  

I N  T H E  N O N L I N E A R  S I G M A  M O D E L  

G . G .  I v a n o v  

In the nonl inear  a model,  conse rved  t en so r  c u r r e n t s  a s soc ia ted  with the p r e s e n c e  of 
i some t r i c ,  homothet ic ,  and affine motions in the space  of values  of the chira l  field V N 
a re  cons t ruc ted .  New c l a s s e s  of exact  solutions in the SO(3 ) -  and SO(5) - inva r i an t  

models  a r e  obtained using the connection between the groups of i some t r i c  and 
homothet ic  motions of s p a c e - t i m e  and the i some t r i c  motions in V ~. Some methods 
for  obtaining exact  solutions in the four -d imens iona l  a model with nontr ivial  
topological  charge  a re  cons idered .  

1 .  I n t r o d u c t i o n  

In [1], a study was made of chi ra l  models  of genera l  form,  in which the s c a l a r  mult iplet  ~0A(x) 
takes  i ts  values  in some rea l  Riemannian  manifold V N. A connection was es tabl ished between the i s o m e t r i c  
motions of the s p a c e - t i m e  V n with the i s o m e t r i e s  in V y, on the bas is  of which exact  solutions in the s e l f -  
gravi ta t ing  ~ model we re  obtained.  

It is known [2] that nonlinear  ~ models  cons idered  on the background of flat space  do not when n > 2 
admit  solutions with bounded action, i . e . ,  solutions of instanton type.  This  p rompted  a number  of authors  to 
go over  to the study of ~ models  that in te rac t  with the gravi ta t ional  field [3-5]. As is shown in [3-5], so lu -  
t ions of instanton and moron  types  exis t  in such ~ mode l s .  Never the les s ,  the p rob l em of invest igat ing the 
solution s p a c e  for  four -d imens iona l  a models  on the background of fiat  Minkowski space for  Euclidean 
space  r ema ins  open. Below, using the g roup- inva r i aa t  approach,  we invest igate  some c l a s s e s  of exact  
solutions in four -d imens iona l  a models  on the background of fiat  space  and the i r  topological c h a r a c t e r i s t i c s .  

The ma te r i a l  is a r r anged  as follows. In Sec.2 ,  we cons t ruc t  conserved  polynomial  t enso r  cu r r en t s  
assoc ia ted  with the i some t r i c ,  homothet ic ,  and affine motions in V g. We show that the SO (N ) - invar ian t  
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