MANY-LOOP CALCULATIONS: THE UNIQUENESS METHOD
AND FUNCTIONAL EQUATIONS

D.I. Kazakov

In the framework of the calculation of many-loop Feynman integrals — the uniqueness
method — functional equations are obtained for the coefficient functions of the
diagrams. Solution of a functional equation leads to calculation of an N-shaped
diagram, the last of the 5-loop diagrams of the o theory. The obtained result
makes it possible to extend by an order the tables constructed previously for the
calculation of many-loop integrals.

1. Introduction

In our earlier paper [1], we developed and applied the uniqueness method, which is directed to the
calculation of many-loop Feynman integrals. It was shown that despite the great possibilities of the method
there are limitations associated with the nonfulfillment of the uniqueness conditions simultanecusly at all
stages of the calculation in the case when the number of loops in the diagram is large (=5).

In the present paper we show that functional equations can be obtained for the coefficient functions of
the diagrams in which we are interested. Solving these equations, we can thus calculate integrals that
cannot be found any other way. Augmenting the uniqueness method, the proposed method makes it possible
to extend the class of exactly calculable diagrams. The use of the functional equations is illustrated by
calculation of an N-shaped diagram in the <p4 theory.

2. Derivation of Functional Equations

We recall first of all the notation and some necessary formulas of the uniqueness method. All
calculations are made in a coordinate space of dimension D = 4 ~ 2e. Integration is performed with respect
to internal vertices. To the lines of the diagrams there correspond simple power factors of the form
1/(x*)e; a is called the line index and is written above the line:
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We shall need the following formulas [2,1]:
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We now consider the characteristic two-loop diagram
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to which much attention has be paid in the literature [3,2,1]. The dependence of the integral on the unique
dimensional argument can be separated explicitly. Suppose a,=a,=o;=0,=0, wy=a. Then we have
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where F.(1+a) is the coefficient function in which we are interested. We perform on the diagram the trans-

formations (see [2])
7 7 7 Ll 1__ I, 7
==l
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Thus, we obtain a first equation for F,(1+a):

F.(1+g)=F.(1—3e—a). {5)

We now apply to the upper vertex the integration formula (3), We obtain
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Applying the same formula but with a different distinguished line, we obtain
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Combining (6) and (7), we obtain the required second equation:
7 7
7- I1-2&-a
a+& afb' a*f
7 7 :
or, analytically,
—_— —_— —_— TR{4_.
F.(1+a)=" 1— 2&: a,F( )+ 2(2a—1+3e)T'(—~a—e)T'(a—1+2e) T*(1—e) ®)

(a+e)T (a+1)'(2—3e—a) )
where we have used Egs. (1) and (2).
Equations (5) and (8) are the required functional equations for the function F.{i+a}, and they must

be solved simultaneously.

3. Solution of the Functional Equatioas

To simplify the inhomogeneous part of (8), we make the substitution

_ 2I*(1—e)P(—a—e) T (at+2¢)
E e = T iFa T (1—3e—a) - (1Ta)- ©

Then the function G satisfies the system of equations
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G.(1+a)=G.(1—3e—a), {10)

a 1 i i
G.(1+a)=— G, ( +————). 11
o)==y OO imey \are | asiioe

To find the solution, we use the analytic properties of the unknown function. On the basis of the a represen-
tation it is known, for example, that [4]

F 1+ +2 D id2eta 1
F,(1+a)=~(m—’jm—)f‘ij dais. .. daﬁa( ) a,-) asa(b-) TR (12)

where F.(1+a) is a meromorphic function regular at the point a=0 and having simple poles at the points
a=+n—2¢ and a=zxn—e. The form of the inhomogeneous part of Eq. (11) suggests the same thing., Additional
poles of the function G.(1+a) arise because of the separation of the I' functions in the denominator of Eq. (9).
We shall therefore seek the solution of Egs. (10) and (11) in the form of an infinite series of poles:

o0

FRTRI M7 G N )+ Lo ) 13)

ntate n—a—2c n—a—3e

n=1
This automatically satisfies Eq. (10).

Substituting (13) in (11) and equating the residues at the poles, we obtain equations for f, and @.:

_ n+e _ n
e T T
Their solution has the form
L Dint1—2e) . T(nt1-3e)
f’n_'( ) I‘(n+e) 01(8), Q= (_) '_"'I:(—'L)"__’Cz(s)v

the inhomogeneous term in Eq. (11) determining the value of ¢,(e)=T(e)/T(2—2¢). We note that the first
series in (13) is a particular solution of the inhomogeneous equation, whereas the second is a solution of the
homogeneous equation. To find the coefficient cz( €), we compare the obtained solution with a known solution
for a particular value of a. For this, we consider the function F.(1+a). By virtue of the uniqueness
relations, this function is known exactly, i.e., in all orders in €, for a=0, —e, —2e, —3s. Comparing (9), (13),
and the value of F, (1), we obtain

T(e)T'(1—e) T (1+¢)
T'(2—2¢)T(1—2e)T (1+2¢)

ca(e)=—

As a result, we have

I?(1—e)l(—a—e)T(a+2e)T (&)

Fa ('1+CL) =2 Fz(i) p(1+a)1‘(1—a—38)r(2—28)

{i( Do 41 ) IG-ollte
~ ) Tlate) ntate - n—a—2e/ T(1-2¢)T(1+2e)

Sioptipin 2t

To settle finally the question of the uniqueness of the solution (14), we must show that it is not possible to
add to it an arbitrary solution of the homogeneous equation. Indeed, such a solution A(e) has the following
properties:

a) A(0) = 0 by virtue of the normalization on F (1);
b) A(#n) =0, n =1,2, ... by virtue of Eq. (8);

e) |A(zt+iy)|<|A(z)|, where x lies in an interval between poles. This follows from the boundedness
of the integral (12) and the particular solution (14),

d) A(z) does not have singularities, since they are all concentrated in the solution {14). It then
follows from Carlson’s theorem [5] that A(z) = 0. Thus, (14) gives us the necessary solution. of Egs. (5)
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and (8).

The last sum in (14} is equal to —1'(1+a)I'(1—a—3e), by virtue of which the function F.{i+a) can be
represented in the form

' rP{1—e)l'e) [ I'(~a—e)(a+2e) P(nt1-2e) { 1 1
I.(1+a)=2 :
(I+a) r#(1)r—2e) {F(H-a)l‘(i-a 38)2'( - ['(nt+e) \ ntate n——a—25)Jr
I'(—a—e)T(at+2e)'(1—e)(1+e) } 1s)
F{1—2e)T(1+2e)
Unfortunately, we cannot obtain a closed expression for the first sum. For e = 0, we obtain from (14)
= (— — 16
Fu(t+a) Z,( "l ) sZ = L (e (10, (16

where B(1+z)='"1[¥ (1+z/2) ¥ (*/:-+2/2)] (see [6]).

4. Calculation of an N-Shaped Diagram

in the (p4 Theory

In the five-loop approximation of the qo4 theory, one diagram has not yet been calculated analytically:

For its calculation, it is necessary to know the N-shaped diagram

to accuracy O(1}. It was calculated numerically in {7], and in [1] the result 441/8¢ (7) was guessed.
Formula (16) makes possible an exact calculation.

We choose the indices of the lines in the N~-shaped diagram in the following manner and apply
formula (4) to the lower triple vertex:

7 7 7 7
7 7 I 7 7 7 7 7 [P
7 N “ze Z 1,8 7 1€ . 7 & 7 28
71 7 zo 1 it z v
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& 1~ ' 7

7-%
7
7 <
I(-g)r(7-g)r(r+s) &
rez)r(r)r(rze)
7 1/6 .

Here, we have used {1)-{4). Thus, to calculate the N-shaped diagram to O(1) it is necessary to know the
V-shaped diagram to accuracy 0(&?) or the two-loop diagram (4, oz.-ows) to accuracy O(e*). At the same
time, the tables constructed in [1] contain expansions to O(¢) and O(e®), respectively.

To extend the tables, we use the solution (16). To this end, we expand in a series with respect to &
the function F.(1-+ae), taking info account the symmetry property (5):

F.(1+ae)=estciet{e,d+c;Ble*+ [eiA+eBle+Hcsd+e: B+ dBet+0 (%),
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where we have introduced the notation 4= (at+1)(a+2), B=a(a+3). Knowing the value of the function F.(i+ae)

for a=0, —1, —2, —3, we find the coefficients Cps -vs Cpn We obtain

. 15
F.(4+ae)= T—'ié?{ 6L(3)+9C(4)+(214—6B) L (5) 32+,( 454 — —2-B ) 5(6)e°—(234—8B) 52 (3) e+

(147A—9B)I;(7)s‘—( %5—-,4 —4—253 )C(3)§(4)s“+caABs“+0(85) }. (a7

The coefficient ¢ cannot be determined from the known special values. It is readily seen that it is

1 d'Fo(1+
cs=z'——-°—l(1;;-ﬂ . To find it, we expand the function F,({+a) (16) with respect to a®. We obtain
i a=90

1
F,(1+a)=8 Za"" (nt+1) (1 —-2_2"?) t(2n+3). (18)
n==0
Hence, for c, we find
Cs =~1-883 t(. (19)

This number makes it possible to complete formula (17), and also to construct a series expansion in & for
an arbitrary 2-loop diagram up to O(e'), and for an arbitrary V-shaped diagram up to O(¢®), i.e., to
extend by an order the tables constructed in {1]. They have the form

a8 Ve
o R op{ofres 2]
1+aze = - {AL(3)+A,5(4)et
PN 4 1—2¢

Qs 1703
AL (5) e+ A4,5(6) e~ AL (3) T AL (T) s“—As;(3) L(4)e*+0(e%)}, A,=6, A4,=9,
Az=42+30d+45a5+ 10a*+15as*+15asa+ 10 (@i, T as0,F0,0.1 0,05) +5 (@sastaaas),  As="/,(4.—6),
A, =46+42a+45a;+ 1402+ 15a5"+33asa+50 (@10, +as0.) +
M{aastaza,) 14 (@10t 0,0,) HBasa>+6as’at24a5 (a:a.1a:a0) + 12a: (2105t a,0,) +12 (a@:05+a 0,0, 8.0, a20.0,) +

12 (ala,talatata+a%a:) +6 (afastaslta, +atataa.),

223 31
A;=294+402a + 2 as+260a” + 83

575
ast+516as0+ 386 (a.a,tasa,+aa,ta.a;) + -y (a,as+a.a)+

5
84a® + ——2—7 a’+168(a,’a, tata, talta, talastala, talatalastasta;) +

441 45 693
p (a2a;tasta+aatalay) + 7 asa*+252asfa+ s as (@, e tasa,a,a,) + (aya5taza,) ast
189 189 525 357
210(alazas+a1azak+a1a3a4+aza3a4) +14a* + as*+ 42a50° + % -as'a + 3 as’a? + % ag’ (aia2+a3ak+ala&+aza3) +

10 189
25 a5 (aasta,a.) +84as (aa, a2 a ¢ ata, alatala el atastasta,) + + as(a, asta, 0 +as’a,aa,)

as (aa,0,Fa,a.0, 00,0+ a,0,a,) +28(ala, Tata,+

ala.talastale e lataltatasla,) Hha(aleytastetatatala,)

189

42 (a,’tzz’+a,2a‘2+a,za52+azzasz) -+ (aiza32+azza42) +42 (ai2“2‘13+aizaza«'l"axza'sa(*'azzaialf*‘azza1as+azzasa4+aszaiak+

5
a0 a0, a ka0, a2 a0 taas) 01020584, Ae=3(4.—1), 20)

where for brevity we have denoted a*=a,"+a,"tas"+w”;
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{200 (5) +e1508 (6) + (2046 (0t tacta 2@ 1+

380
g’ [ g ~7( - + 20(a,+a:) +32a,4+17 (e, Fa;) + 33 (ag+a,) +6 (ai+a?) +8a2+4 (a2 +a5) +8(al+al) +

8(ai+a:) @ 1t2 (a0t aza,) +6 (a1a,Fa:0.) + 10(a,ai+a.a,) +6 (a0 +Fa500) Fha,as+4 (actas)
12(astay) 0, +2a.a, 4 (@05t asa;) +6 (2 asas) +10aea,+Y, (e, +as+aetar) s (aitastasta)®) +

E(3)E(4) -3(20+6 (a+a,+a,+a,) )] +0{(c?) } 21)

Formula 21) makes it possible to complete readily the calculation of the N-shaped diagram. The result

has the form
' 1 444
-@ _Z—ZTC(’?),

in agreement with the prediction made earlier [1]. The constructed expansions (20) and {21) can be used
subsequently as tables for finding the values of integrals.

5. Conclusions

We note finally that the functional equations obtained in this paper can also be obtained in the same
manner for more complicated diagrams. It is possible that in this way a general form of expression for a
diagram may be perceived. Hitherto, all exactly calculated integrals have been represented in the form of
a preduct of I" functions and their derivatives, and thus could be expanded in a series in ¢ functions. It is
not clear whether this is true in the general case or whether a general formula for the result can be obtained.
But, solving functional equations for the coefficient functions of diagrams, we can at least represent the
result in the form of a single series of the type (14),

From the practical point of view, the tables (20) and (21) are sufficient for calculating the singular
(with respect to &) parts of diagrams up to the five~loop approximation inclusively. The problem consists
solely of reducing the considered diagram to a tabulated diagram, as was done in Sec.4. It is evident that
the achieved accuracy will for a long time be sufficient in actual calculations of renormalization~group
anomalous dimensions of operators and other quantities determined by the singular contributions of Feynman
diagrams.

I am grateful to D, V. Shirkov, P, P. Kulish, and A. V, Radyushkin for helpful discussions and

advice.
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