CAUSTICS WITH ANOMALOUS PHASE SHIFTS

Yu., I, Orlov UDC 534.87

We study the phase-shift correction to the eikonal of a field on a caustic. & is shown that, in
addition'to the usual phase loss on a caustic of —1/2, it is possible to have an anomalous phase
shift +r/2, We give examples of spatial caustics with the anomalous phase shift which are
found in anisotropic media, and of the analogous space —time caustics which arise in the propa~
gation of a pulse in media with frequency dispersion. We study the uniform Airy asymptotic
behavior, whichis valid for the determination of a wave field in the vicinity of a nonsingular
segment of a caustic with the anomalous phase shift.

1. Introduction

An additional phase shift on a caustic must be taken into account in the calculation of a wave field inmany-

ray conditions when
AO
u(r) = A, e, = Y —= gits, (1)
M \ V]v

Here Ay and ¥, are the amplitude and eikonal of the wave of ray v: j=ndS/n,dS,, divergence of the rays; n=
n(r), refractive index of the medium; dS, transverse cross section of the ray tube; and the index zero refers to
the initial point of the ray ry, i.e., ny=n(ry), dS;=dS(ry), and A.f,E A, (ry). The summation in (1) is carried out
over all rays that arrive at the observation point. The phase-shift correction to the eikonal of a ray which has
touched the caustic must therefore be included for a correct description of the interference picture of the waves.

Although the nature of the phase-shift correction is connected with the diffraction phenomena on the caustic,
it can easily be interpreted in terms of geometrical optics [1]. Indeed, if the divergence j of the rays on the
caustic has a zero of first order and is negative after the caustic (j<0), we have for j<0, independently of the
caustic geometry,

jUR = |j| VR e @)

Usually, further considerations [1-3] are used to select only the argument — /2, and to consider caustics with
the phase "oss" ¢: ¢ =k —n/2. However, it has not been clarified if caustics can occur with an extraordinary
(anomalous) phase shift +n/2. 1t is shown below that these caustics are formed under certain specific conditions.
These caustics will be called caustics with an anomalous phase shift.

It should be emphasized at the beginning that the anomalous phase shift on a caustic is not due to the
geometry of the caustic, but to the specific physical properties of the medium where the wave propagates. &k
is important to note that in the majority of cases, one encounters caustics with the oridnary phase shift —v/2.
We shall formulate more accurate conditions forthe formation of caustics with the anomalous or ordinary phase
shifts.

2., Formation of Caustics with Anomalous Phase

Shifts in Anisotropic Media

We consider the caustics of a plane amplitude —phase screen in a one-dimensional anisotropic medium
which correspond, e.g., to the propagation of a plane-wave beam. For each of the two independent normal waves,
the wave field of the two~dimensional beam can be written in the form the plane-wave expansion

E(x,2)= [ E,(x) exp {i [k, () 2 — xx]} dx, 3a)
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where

Ey) = 5-1; S E, () ¢ dt = 55: 5 A, () exp [19 (&) + Ix8] 8, @b)

Ayx) and @y (x) are the initial for z =0) amplitude and phase of the field E)x)=E&, = =0), and Eo(n) is the
spatial spectrum of the initial beam (@.e., the directionality diagram of the beam). The dependence of k, (1)

in (3a) is determined by the properties of the medium. In an isotropic medium, ky (1) = V&2 “%5, and in aniso~
tropic media, the function k;, i) has been studied in many works (e.g., in [4, 5] with the application to the mag-
netoactive plasma), and has, in general, a nonmonotonic character with bending points [4].

According to (3a) and (3b), we have

=l

E(x,2) == [ [A® explio (x, 2. & ) did, @

L
21
where

?(xv 2, Eo u) == ?O(E) + kz (x)z + ¥(E - x)'

The points of stationary phase of this integral {g and ng are given by the conditions

x=e+2é'k—zy ﬂ=—?;(E)E%_',
dx

which can be written in the form of the family of rays

®)

x=E+2—‘£—k,(xs)Ex(2,E), (6)
dz

where ng =—¢} ), and ¢ is the coordinate of the exit point of the ray from the initial plane z =0. The angle
of tilt of the linear rays (6) is given by the functions cp'o(E ) and dk,/dn.

The caustic formed by rays (68) can be found from the condition @/ 8£)x(z, £) =0 and is described by
the equations
B
" a2
= g0 k) =20,

- @)
d ey @2 .
x=t+ Tk, (u){ CRe (ns)} = £, .

According to (7), the caustic occurs in the region z > 0 under the condition ¢," (5)(d2/dn2)k2(ns) > 0. This condi-~
tion imposes restrictions on the spatial modulation of the beam ¢, (), as well as on the properties of the medium
k; (). We note that in the singular direction where d%k, /dn? =0, the caustic (7) asymptotically goes to infinity
(zk —00, xk—.oo)_*

The calculation of the integral in @) by the two-dimenéional method of stationary phase leads, as usual,
to the equations of geometrical optics which describe the change of field along the ray ():

E(x,2) = 4,6 |1 —=2=| 7" exp [Le (x, 2, &, %) + i (w/4)A], @
zk (Es)
where
2 "
A= {1 — sgn [1 ~5 (ES)]} sgn ¢; (%), ©)

and ¢g =£5 &, z) is the root of Eq. (6), which defines the ray coordinate of the observation point &, y). If there
are several stationary points £ we take, asin (1), a sum of expressions (8) which correspond to different &, =
&y &, z).

The quantity A in (8) gives a correction to the phase shift of the field on caustic (7). For ¢"(£) (d"’kZ /
dx? < 0 whenonly imaginary causticis realized (zi<0), the quantity A is equal to zero, which corrgsponds to
the absence of caustic phase shift. Analogously, A =0 if z > 0 but z<zy, i.e., on the segment of the ray prior
to its contact with caustic (7). The correction to the phase shift (A#0) occurs only for z > z; > 0. Then, ac-
cording to 9),

*Tn this singular direction, one observes a slower spreading of the beam by diffraction than in the isotropic
medium [5].
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A ==2sgn cpo(E)mzsgnj ky, (%),

and the corresponding phase factor in (8) is equal to
w = dgk
A =
exp (l 2 ) exp( du’

The usual caustic phase shift e 1{7/2) thereforearises when the caustic (7) is formed for (@%k,/dn?) <), here,
according to (7), ¢} ¢)<0.% For example, in an isotropic medium k, (W) = VE =%, d?h,lds® = — b3k, < 0,
and consequently, here only caustlcs with the usual phase shift are possmle. it follows from (10) that caustics
with the anomalous phasge shift e 1(n/2) gre formed in an anisotropic medium under the condition d%,/ dn?> 0,

i.e., in media with convex dependence ky (») (Fig. 1b). This condition is realized, e.g., in a magnetoactive
plasma under certain conditions {5] (see also [4]). We note that for the occurrence of the "anomalous" caustic,
the beam must be modulated in a special way, viz., so that the inequality ¢{ ¢) > 0 is satisfied (Fig. 1a).

o (.__ i.‘f.) | (dhyjd) < 0,
) - 2 10)
exp (+ i-‘z‘-) \ (@h,jd¥) > 0.

3. Space —Time Caustics with an Anomalous Phase Shift

. We shall consider now the space —time analogue of the previous problem, i.e., the propagation of a plane
frequency~modulated pulse in a homogeneous medium with an arbitrary frequency dispersion n=n(w). Suppose
that the field of the pulse for z=0 is equal to

E(0, t) = Ao(t)exp[i o (£)] == Eo(t). (11)
Then, analogously to 4), we have for z> 0 [6, 7]

E(z t) = 2-1—1‘_"5A0(E)exp li¢ (=, ¢, 0] dEdo, (12)

where
22,5 0) =9+ k(w2 o1,

and k (w) = (w/c)n (w) is the wave number in the medium nw).

The method of stationary phase applied to the double integral (12) leads to the approximation of space —
time geometrical optics {4, 7-9] supplemented by the equation of the caustic phase shift

{ —

Ez t) = Aot TP expliv (2, £ &, 0,) + i (x/4) Al, (13)

2y (Es)

where

o ) : (14)

5

o= 1] (G

Here £g=£4(z, t) is determined from the equation of the family of space —time rays

(&)
2w [
do

and corresponds to the initial moment of exit of the ray from the plane z =0; vgr(w) = (dk/dw)™t is the local
group velocity of the wave in the medium; wg= —dg,¢)/d¢ =wg ) is a function which describes the initial
frequency modulation of the pulse (11); and zy =2y () is the coordinate of the space —time caustic formed by
the family of rays (15).

¢ —8) =g ()t — D =208 (15)

=

The equations of the caustic of rays (15) can be found from (15) under the condition ©/0¢)z ¢, £) =0 and
have the form

2= tho) [ oge) T =50,
-1 16)
t=3% '}‘ vgr(ws){ gr( s) } = tk (E) .

*The corresponding law of spatial modulation of the beam wo(g) is the same as for the convergent initial (for
z =0) wave front.
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Fig. 1. Formation of an "anomalous?® caustic in an aniso~
tropic medium.
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Fig. 2. Formation of the Manomalous® space —time caustic.

dvgd
Hence it follows that a real caustic (zx > 0) is formed only under the condition- E—E -‘—i%‘ > 0. In the opposite

[
case, the caustic (16) is imaginary (zx<0).

The quantity A,which determines the phase shift correction on the caustic (16), is, according to (14), equal
to zero for z; <0, and for z< zk, if 2> 0. For z > zx > 0 we have

do dv
A=—2 5 — _ 9sgn VB,
sgn T sgn T

and hence we find
dv
exp(—-i—;—'), E>o0

do

5 8) = exp(— i Zogn 208
QXP( — = gXp 5 sgn o =5 o ii) fiﬁng_!<0 . (17)
PUT) e

E follows from (17) that the space ~time caustic with an anomalous phase shift exp (i7/2) is formed in a dis-
persive medium with a decreasing dispersion characteristic vyp(e) (Fig, 2a).* Thispropertyis possessedby,e.g., the
magnetoactive plasma in certain frequency intervals (Fig. 2%) [4, 9]. Tn a cold isotropic plasma vgriw) =

eV 1=u? wi, where Wp is the plasma frequency, we have dvgr/do.» 0 and according to (17) one observes the
usual caustic phase shift exp ~in/2).

*The necessary condition for the formation of caustic (16) in the region z > 0is, accordingto (16), thatthe
initial pulse has a decreasing frequency modulation wg = wg(£), dugy/dE < 0 (for more detail, see [7]).



Fig. 3. Rays near a nonsingular caustic.

4. Wave Field in the Vicinity of a Nonsingular

Causiic Segment with an Anomalous Phase Shift

In the presence of a nonsingular caustic, the geometrical optics formula (1) has the form
u (r) = A, exp (k) + A, exp (ik §,), (18)

where the index 1 in the illuminated region refers to the ray which arrives at the observation point g after the
contact with the caustic. The index 2, on the other hand, refers to the ray which arrives at ¥ before the con-
tact with the caustic (Fig. 3). The special feature of this caustic is that in the illuminated region, Ay =

Al exp {i%/2) and P <9, (or the nsual caustic, A; = |A;]exp(in/2) and ¥y > ,).

The uniform Airy asymptotic expression for the field in the vicinity of a nonsingular caustic has the
form {10, 11]

4 (r) = &Y exp (zko . ;~) (Ao (B2PC,) + k1P Bo' (B9PL,)) , (19)
where the functions ¢, 6, A, and B can be algebraically expressed in terms of amplitudes Ay and eikonals
iy, of the two rays (18). The expressions for the functions &), 6, A,and B take on a different form in the case

of a caustic with the anomalous phase shift, This form can easily be found by "sowing together" asymptotically
the caustic asymptotic expression (19) with the ray formula (18).*

Substituting into (19) the WKB asymptotic expression for the Airy function v(¢ ) for |£]>1, we obtain
from (19), far from the caustic

u(r) = A~ elty™ | At et (20)
where
=0T 2gym,
. ' 1)
Av = e[ =4 205 D] 1A (-0 F B
Putting also =g, $7=9,, A"=A,, and AT =A,, we find from (21)
A= (_ CO)‘/‘;(iAZ + Al)r B = (—' CO)_=/4(’:A 2“"‘Al),

1 . 3 23
0= Leie) b= [2e—n]" e2)
Taking into account (22), we write wne principal term of the uniform asymptotic expression (19} in the
following final form:

#(r) = exp (ik §—1i ﬂ {{(—OMGEA; + A) v Q) + i(— )1 ({4, — A) o' (U}, @3)
where

t = [g"f' (‘!’2 - ‘Pi)]%

The obtained caustic asymptotic behavior 23) differs from the usual one {10, 11] only by the replacements
A.2 by Ai’ A1 by Az, ¢1 by ¢2, and sz follow

*The "sowing™ procedure can be justified using the equations of the method of reference functions [10, 11]
which follow from the substitution of (19) into the wave equation.
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Expressions (23} are confirmed by the asymptotic behavior of the exact solutions @) and (12), if the inte-
grals there are calcvlated using a modification of the stationary-phase method valid in the case of two ar-
bitrarily positioned stationary points [12].

In conclusion, we note that caustics with an anomalous phase shift of a more general type than exp {in/2)
ean also oceur, These caustics correspond to different degrees of degeneracy of the divergence of the ray
tube j on the caustic, where j =0,
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RADIATION OF A CHARGED PARTICLE
ACCELERATED ALONG A FINITE PATH SEGMENT

B. M. Bolotovskii and V. A. Davydov UDC 537.291

We examine the spectrum of radiation from a charged particle which moves with an initial speed
vy, a final speed v,, and a smooth change in speed from vy to v, along a limited segment of the
path.

The speed of a charged particle changes when it interacts with external fields or scattering centers.
This change in speed often occurs in some limited region of space in which the particle is subject to external
forces. Before entering this region, the particle speed has some initial value vy, and after leaving the region
in which the forces act it has the final v,, The change in particle speed is accompanied by electromagnetic
radiation. In this paper, we determine the radiation spectrum for a certain law of particle motion. Let a
charged point particle move along the z axis, with the time dependence of its speed described by the expression

0 P i T T T R O @
2 2
Obviously, for this law of motion, the particle speed at t =—w is v;, and at t= + = itis v,. The transition from
vy to v, takes place near t=0. When t=0 the speed is the arithmetic mean of v; and v,. The duration of the
transition T from the initial speed v, to the final speed v, is of the order 1/a. We will henceforth assume for
simplicity that

T = 1a. 2)
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