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The Newton method is so important in mathematics in general and in nonlinear 
analysis and optimization in particular, that it seems worthwhile to revisit it from a 
new point of view. We observe that the openness theorem of Lyusternik-Graves for 
differentiable mappings, the openness theorem of Ursescu and Robinson [40, 43] 
for convex multifunctions and the openness results of  Ptak, Khanh, Borwein and 
Zhuang, Penot [34-39, 21,22, 6, 29] are instances of an assertion whose conclusion 
can be phrased in purely topological terms: the mapping (or the multifunction) is 
open in this sense that it transforms a neighborhood of a point into a neighborhood 
of some image point. Therefore, it is tempting to try to encompass these separate 
results into a general framework which would be entirely topological. 

Here we tackle this aim by introducing the use of infinite products of relations 
(in terms of composition of multifunctions). This tool might appear to be useful 
elsewhere. An important special case consists in studying set-valued series. The 
use of series of sets is not new; it probably goes back to S. Banach. But in general 
it is used in a nonsystematic way (see, however, [14, 25, 42]). 

For series whose general terms are bounded closed convex subsets of a Banach 
space (or of a locally convex topological vector space), the question can be reduced 
to ordinary series of vectors of a topological vector space through the use of the 
Hrrmander or R/ldstr6m embeddings. In the general case, the question is more 
intricate, and some care must be given, for instance, in defining the Cauchy criterion 
(this is due to the absence of a simplification rule). We use this special case (treated 
in Section 1 with some preliminary material for the sake of self-containedness) to 
justify the definition we adopt for convergent products of relations. 
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1. Series of Sets and Convergent Sequences of Relations 

It is natural to define a series of nonempty subsets ~ Xn of a topological vector 
space (t.v.s.) X to be Kuratowski (resp. Mosco) convergent if the sequence (Sn) 
of partial sums, Sn = X0 + ... + X~, converges in the sense of Kuratowski- 
Painlev6 (resp. Mosco). Let us note that it would suffice to dispose of a structure 
of topological group or semigroup on X. 

However, the uniform structure of X inclines us to rather use hemiconvergence, 
also called Hausdorff convergence. Thus, ~ Xn is said to be hemiconvergent with 
sum S if the sequence (Sn) hemi-converges to S: 

V U E N ' x ( 0 )  3nu E N : Vn > nu , S,~ C S + U , S C Sn + U.  

Here N'x (0) denotes the family of neighborhoods of 0. Then obviously, the series 
Xn with general term the closure Xn of Xn converges to S and it also converges 

in this sense that the partial sums Sn can be replaced by their closures SN. Since 
the hyperspace 2 x of (nonempty) subsets of X can be given many topologies and 
convergences, the preceding definitions admit numerous variants. We rather adopt 
a different viewpoint. 

Let us call ~ Xn to be selectionwise convergent (in short convergent) if for 
any selection (xn) of (Xn) (i.e. any sequence (xn) with xn E Xn for each n) the 
series ~ x~ is convergent. We will see (Proposition 1.3 below) that any convergent 
series is hemiconvergent. The converse is not true. 

EXAMPLE. The following series of subsets of I~ is hemiconvergent but not con- 
vergent: Xn = [2 - n - l ,  c~) (and its sum is S = [1, oc)). 

Let us say that a series ~ X~ is a Cauchy series if 

VV C Hx(O) 3nv 6 N : p > n > nv ~ Xn +... + Xp c V .  

Then the sequence (S,~) of partial sums is a Cauchy sequence for the Hausdorff 
uniform structure on 2 x (but the converse is false, as shown by the preceding 
example). However, when each Xr~ is bounded and convex and X is locally con- 
vex the Radstrom simplification rule shows that the series ~ Xn is a Cauchy series 
iff (S,~) is a Cauchy sequence. 

1. I. PROPOSITION. Any convergent series is a Cauchy series. I f  the space X 
is sequentially complete the converse holds. 

Proof. Suppose ~ Xn is convergent but not Cauchy; there exists U C .?v)f (0) 
such that for any n C N one can find q > p _> n with Xp + ... + Xq ~ U. Thus, 
there exist sequences (Pi), (qi), (xi) with Pi+l > qi > Pi, xi C Xi for each i C N 
such that for each i E N one has q~ ~k=p~ xk ¢ U: the series ~ xn is not Cauchy, 
hence is not convergent, a contradiction. 

If X is sequentially complete and if ~ Xn is Cauchy then any selection (x~) 
of ~ X,~ is Cauchy, hence is convergent. [] 
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1.2. Remarks.  (a) If ~ Xn is convergent (hence, is Cauchy) one has the following 
collective property for its selections: for each U E N'x (0) there exists n u  E N 

such that for any selection ~ z~ of ~ X~ one has 

s - s n  E U ,  f o r n > _ n u ,  

where 

s n =  ~ xk ,  s = l i m s n .  
0 < k < n  

In fact, we can find V E N'x (0) with V + V C U and if n v  is as in the Cauchy 
condition for ~ X~, for any selection ~ x~ of ~ X~ we have for n >_ n v ,  p >_ n 

with p so large that s - sp E V 

8 --  8 n : 8 - -  S p - [ - S p  - - S n  E V q - Y  C U .  

(b) A series ~ X n  of subsets of a normed vector space X is said to be absolutely 

convergent if the series ~ I I x~[] is convergent, where for a subset Z of X one sets 
[IZl[ = sup {[[z[] : z E Z}. Thus, in a Banach space any absolutely convergent 
series of subsets is convergent. Moreover, for any bijection qo of N, the series 

X~(n) is convergent and has the same sum as ~ Xn. This concept can be 
extended to locally convex t.v.s, by using the family of semi-norms instead of the 
n o r m s .  

(c) Convex series of sets play a key role in openness results [18, 19, 26-31]. 
The connection relies on the following notion: a convex subset C of a t.v.s, is said 
to be CS-compact if for any series ~,~>0 tn of nonnegative numbers with sum 1 
the series ~n_>0 tnC is convergent and-~ts sum is contained in C. 

1.3. PROPOSITION. Any convergent series is hemiconvergent. 

Proof. Let S be the set of sums 8 = ~ Xn of series which are selections of (Xn). 
Remark 1.2(a) shows that for any symmetric U E N'x (0) there exists n u  E N such 
that S C Sn + U for n > n u  , where Sn = Xo  + ... + Xn .  NOW let us observe that 
the inclusion S n C S --}- U holds for n > n u  since for any sn = Xo +. . .  + xn E Sn 

we can complete the sequence (xk) by taking xk E Xk arbitrarily for k > n; by 
definition this yields a convergent series whose sum s satisfies sn - s E U. [] 

Now let us turn to infinite products of relations. 

In the sequel we identify a multifunction F: X ~ Y with its graph F C X x Y 

and we denote by F -1 the multifunction given by F -1 = {(y, x) E Y x X : 

(x, y) E F}. If F:  X _+---+ Y, G: Y __~--+ Z are multifunctions, their product G o F is 

given by 

c o F = {(x, z) E X × Z :  3y E F (x )  n G - l ( z ) } .  

If (Z, d) is a metric space and r E I? := (0, oc) we set 
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U~ = {(x ,y )  E Z2 : d(x ,y)  < r } ,  B~ = {(x,y) E Z2 : d(x ,y)  < r} . 

For subsets C, D of Z and w E Z, we set 

d(w,D)  = in f{d(w,z )"  z E D ) ,  e (C,D)  : sup{d(w,D)"  w E C } .  

For Rk C X 2, k = 1, ..., n, we will write I-[~=1 Rk for Rn o Rn-1 o ... o R1. 
A number of results valid for metric spaces can be extended to the framework 

of uniform spaces which is adapted to uniform notions which also appear when one 
deals with topological vector spaces (t.v.s.) or, more generally, with topological 
groups. The following concept retains most of these notions and has a wider range 
of applications, as shown by Proposition t.5 below. 

1.4. DEFINITION [4]. A quasi-uniform space is a pair (X, H) where H is a filter 
of reflexive relations on X such that for each U E H there exists V E H with 
V o V C U .  

In other words, the family H is nonempty, hereditary (U E H, U C V imply 
V E H), stable by finite intersections, such that for each U E U there exists V E b/ 
with V o V C U and each U E H contains the diagonal A x  = {(x, x) : x E X}. 
If for each U E H, one has that U -1 = {(y,x) : (x ,y)  E U} belongs to b/, 
then (X, H) is a uniform space. Hemimetrics (i.e. metrics for which the symmetry 
property d(x, y) = d(y, x) is lacking) give rise to quasi uniform structures, setting 
b~ = {(x, y) E X 2 : d(x, y) < r}. Quasi uniform structm'es appear naturally on 
hyperspaces (see [2], for instance). More importantly, one disposes of the following 
result in which the topology induced by a quasi uniform structure L/is the topology 
~- such that for each x E X the family/g(x)  = {U(x) : U E H} is a base of 
neighborhoods of x, where U(x) = {y E X : (x, y) E U}. 

1.5. PROPOSITION (W.J. Pervin [32]). Any topological space (X, ~-) is quasi 
uniformizable in this sense that ~- is the topology induced by some quasi uniformity 
H o n X .  

1.6. DEFINITION. Given a sequence (/~)n>_0 of relations of a topological space X 
we say that the product ]-L~_>0 R,~ is pointwise convergent if any sequence (x~),~>0 
of X such that xn+l E l ~ ( x n )  for each n > 0 is convergent. Then, the product 
relation R = l~n>0 Rn is given by: for x E X the image R(x)  = t-L>_o R~(x)  is 
the set of  limits of  such sequences with xo = x. 

When X is a quasi uniform space, the product l~,~>_0 Rn is said to be convergent 
if it is pointwise convergent and if for any entourage U of X there exists nu E N 
such that 1-I~>~ Rk C U for any n >_ nu. 

Our terminology stems from the following example. 
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1.7. PROPOSITION. Suppose X is a topological vector space (or topologi- 
cal additive group) and (Xn) is a sequence of nonempty subsets of  X .  Let 
/ ~  = {(x, x + u) " x E X ,  u E X~}.  Then the product I-[ Rn is convergent 
iff the series ~ X~ is convergent. 

Proof Let us first observe that a sequence (y,~) of X is such that y,~+1 E R~ (y~) 
iff there exists a selection (xn) of (Xn) such that xn = Yn+1 - Yn for each 
n E N. In such a case we have Y~+1 = Y0 + ~ = 0  xk and (y,~) converges iff 
(s~) := ( ~ = 0  xk) converges. Then Remark 1.2 shows that for each V E N'x(0) 
there exists n v  E N such that for any selection (xn) of (Am) one has s - s~ E V 
for n > nv .  If y = lim Yn, where (y~) is given inductively by Yn+l = Y~ + Xn, 
we have y = Y0 + s = Y~+l - s~ + s, hence (y, Y~+I) E t) ", where t7 = {(x, y) E 
X 2 " z - y E V} is a basic entourage of X.  [] 

Another fundamental example of a convergent product of relations is given by 
R~ = {(x, y) E X 2 : d(x, y) <_ rn}, where (X, d) is a complete metric space 
and ~ rr~ is a convergent series. Again the second requirement of Definition 1.6 
is easy to check. Note that in this case Rn is reflexive, i.e. contains the diagonal 
2Xx = {(x, x) : x E X}; but a product of relations can be convergent even if none 
of the R,~'s is reflexive (take R~ = R ,~ \A x ,  where Rn is as above with rn > 0). 

2. Uniform Openness Criteria 

The following concept will be convenient. It is an extension of a notion given in 
[30] for metric spaces (see also [10-12, 17, 23, 24]). 

2.1. DEFINITION. Let (X, b/x), (]I,/g]/) be quasi uniform spaces. A multifunction 

F: X _.~-* Y is said to be uniformly open over C C F if for each U E Ux there 

exists V E b/y such that for any c = (a, b) E C one has V(b) C F(g(a) ) .  For 
C = F ,  F is said to be uniformly open. 

For C = {(a, b)} this definition reduces to the openness of F at (a, b). As 
is well known, a surjective continuous linear map between two Banach spaces is 
uniformly open in the preceding sense. An example of a uniformly open nonlinear 
map is provided by the case x ~-+ x 2 from X = [1, ee) into itself. An example of 
an open map which is not uniformly open is the square root map from X = [1, oo) 
into itself. 

The following result contains the essence of our treatment. 

2.2. THEOREM. Let ( X ,  /4x ), (Y,/4!/) be quasi uniform spaces and let F: X -~ Y 

be a sequentially dosed multifunction. Let ( Rn ), ( Sn ) be sequences of  relations on 
X and Y respectively such that 

(a) for any (x, y) E F, n E N, 
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(b) the product I-In Rn is convergent and each Rn is reflexive; 
(c) the family of relations (S~ 1 ) converges pointwise to the identity mapping of 

Y: for  each y E Y and each sequence (Yn) such that Yn E Sn I (y) for each n 
one has (Yn) --+ Y; 

(d) the set of i E N such that Si E Lty is infinite. 

Then F is uniformly open. 
Proof. Let U E Llx. Let h E N be such that I~j~=~ R 5 C U for i > h. Let 

i E N, i > h be such that Si E/.4y. We will show that Si(b) C F(U(a)) for each 
(a, b) E F ,  what will prove the result. 

Let (a, b) E F and let y E Si(b). Let us set (xi, Yi) = (a, b) so that 

i - I  

(xi, yi) E [?, Xi E IX Rj(a) ,  Yi e s / - t ( y )  . 
j=0 

Let us suppose that for k = l, ..., n we have constructed (xk, Yk) E F such that 

k-1  

xk E Rk-l(zk-1)  C r I  Rj(a) , yk E S~-l(y) 
j=o 

and let us define (xn+l, Y,~+1 ) satisfying similar requirements. Taking (xn, yu) E F 
instead of (x, y) in assumption (a), we can find some 

such that y E Sn+l (y~+l). Thus, the sequence (xn, Yn) is well-defined. Since (Xn) 
is a selection of (Rn-1 (Xn-1)), it converges by assumption (b). Assumption (c) 
guarantees that (Yn) converges to y. Since F is sequentially closed, for x = lira xn 
we have (x, y) E F.  Our choice of i ensures that x E U(a) so that y E F(U(a)).~ 

Let us note the following consequences in which, for a metric space (Z, d) and 
r E ]~+ we set 

ur = {(w, z) e z 2 :  d(w, < Br = e z 2 :  z) < 

The second case of the following corollary contains results of Ptak [28], Khanh 
[21], Penot [30]. 

2.3. COROLLARY. Let F: X _+~ Y- be a multifunction between two metric spaces. 

Suppose either (the graph oJ) F is complete or (the graph of) F is closed and X is 
complete. 

Suppose that for two sequences (rn)~>_o, (tn)n>_o of positive numbers with 
e := ~n>O rn < ~ ,  (tn) -+ 0 one has: 
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for each n E N and each (x, y) E F 

Then F is uniformly open and for each x E X one has, with t = to, 

Proof  Replacing X by its completion X and setting/~(2) = (~ for 2 E ) ( \ X  

we reduce the first case to the second one, observing that/~ = F is complete in 
× Y, hence is closed. 
S e t t i n g  R n = Ur~ in X 2, Sn = Ut~ in y2,  the assumption on F amounts to 

assumption (a) of Theorem 2.2. The other assumptions are immediately satisfied. 
Taking U := 1-I~=0 Rj --= Us, i = 0, in the proof of Theorem 2.2 we get that 
So(b) C F(U(a))  for each (a, b) E F ,  the new conclusion. [] 

We observe that this corollary has a quantitative content which is of interest 
(see [3, 16, 29] for instance for what concerns the notion of rate of openness). 
Moreover, for each k E N, replacing (r,~)n>_0, (t~)n>__0 by (rn+k)~_>o, (t~+k)~_>0 
we get that for qk = ~ > k  r~ 

what proves again uniform openness, since qk is arbitrarily small. 
The following refinement takes into account the important notion of almost open 

mapping [3, 6, 36]. Here cl Z denotes the closures of a subset Z of a topological 
space. 

2.4. COROLLARY. Let X ,  Y be metric spaces and let F:  X _~ Y be a multi- 

function. Suppose either (the graph of) F is complete or (the graph of) F is closed 
and X is complete. Suppose that for  a sequence ( c~n ) o f  N+ and for sequences ( rn ), 
(tn) o f  the set ~ o f  positive numbers satisfying s :=  ~n>0 rn < oo, (tn) --~ O, 
C~n < tn+l for  each n, one has for each n E N and each (x, y) E F 

Then F is uniformly open and for each x E X and each k E N one has, with 
qk = ~n>k rn, 

Proof  It suffices to observe that for each n E N since an < tn+ I, we have with 

cl B~, (On) C Vt,~+, (On) 
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so that the assumptions o f  the preceding corollary are satisfied. [] 

2.5. COROLLARY. Suppose X ,  Y ,  F are as in the preceding two corollaries 
and that for each r E I? there exists some t(r) E lP such that for each (x, y) E F, 

c . 

Then F is uniformly open and for any r, s in ~ with s > r one has 

c 

Proof. Given r ,  s in 17 with r < s we set a n  = 0 for each n E N, r0 = r ,  
and take rn in t?, n _> I (for instance, r~ = 2- '~(s - r ) )  in such a way that 
~ > 1  rn = s - r.  Then, given any sequence (c~)  with limit 0 in I? we set 

to = t(r), tn = min(an ,  t(r~)) so that (tn) --+ 0 and for each n E N, and each 

E F 

Ut,~(y) C Ut (~) (y )Cc lF(Ur ,~(x ) )  = c l B a ~ ( F ( U ~ , ~ ( z ) ) ) .  [] 

2.6. COROLLARY [3], Let X ,  Y ,  F be as in the preceding corollaries. Let 0 > 0 
be such that for each s E (0, O) there exist oz( s ) and 8 ( s ) in I? with lims--,o 8(s) = 0, 
and a sequence (rn(s)) in (0, O) with s = ~ > o  rn(s), o~(rr~(S)) < (5(rn+l (s)) 
for each n E N and 

for any (x, y) E F, s E (0, 0). Then F is uniformly open and 

c F ( v s ( x ) )  

for each (z, y) E F and each s E (0, 0). 
Proof. Given s E (0,0)  we take (rn) ---- (rn(s)) and we set tn = 5(r~) ,  

o~ = a ( r ~ )  so that an  < t~+l and 

for each n E N and each (x, y) E F .  The result follows. [] 

2.7. Remark. If  instead of  our assumptions on (vn) we suppose as in [3] that 
to(t) = t, so(t) :=  ~2 rn(t) < oo, and again ( , )  and c~(r~(t)) < 8 ( r~+ l ( t ) )  for 

E (0, 0) we get 

U6(t)(y ) C F(Us(t)(x))  
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for each (z, y) E F and each t E (0, 0), making similar choices for qr~, r~, t~. 

These conditions are satisfied when (rn) is defined inductively by rn = p(n) = 
r~-I  o p, with ro = I, ri = p, where p: (0, O) ~ 1~ is a Ptak-small function in 
this sense that ~ rn pointwise converges. Then the condition c~ o rn < (5 o rn+l 
amounts to c~ < (5 o r. This particularly simple case occurs frequently. In particular, 
after obvious changes, it is present in the following proof, what shows the power  
of  Ptak's approach. 

2.8. C O R O L L A R Y  [6]. Let X ,  Y ,  F be as in the preceding corollaries. Suppose 
there exist 0 > 0 and mappings c~, (5: (0, O) --+ 17 with ~ increasing, 

lim (5(t) = 0  l i m s u p t - 1 6 - t ( a ( t ) )  < 1  
t-+0+ ' t-+0+ 

and 

for any (z, y) E F, s E (0, 0). Then F is uniformly open and for some ct > 0 and 
some b > O, one has for any t E (0, a), (z, y) E F 

The following proof  yields an estimate of  b which is of  interest for the compu- 

tation of  the modulus of  openness: for any b > (1 - lim suPt_,0 + t -I~5 -1 (o~(t)) 

one can find a > 0 for which the last inclusion holds. 

P r o o f L e t c  E (0, 1) and le t0 '  > 0 b e s u c h t h a t t - 1 6 - 1 ( a ( t ) )  < c fo r t  E (0 ,0 ' ) ,  
so that, as (5 is increasing, a(t)  < (5(ct) for t E (0, 0'). Taking rn(s) = crY(1 - c)s, 
b = (1 - c)-1 we can apply the preceding results. [] 
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