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SCATTERING THEORY FOR A THREE-PARTICLE SYSTEM
WITH TWO-BODY INTERACTIONS PERIODIC IN TIME

E.L. Korotyaev

For a three-particle system with two-body interaction potentials periodic in time,
a scattering theory that extends Faddeev’s three-particle scattering theory to the
periodic case is constructed.

Scattering theory for a three-particle system with two-body potentials was constructed in Faddeev's
well-known paper [1]. In the case when the interaction depends explicitly on the time, only two-particle
problems have hitherto been considered. The corresponding questions for a three-particle system are much
more complicated. In this case, one of the most important is the case of interactions that depend on the
time periodically. For example, the problem of the behavior of a system of three particles in an external
homogeneous electric field that is periodic in time, the field averaged over a period being zero, leads to this
case.

As in the case of time-independent potentials [1], subsidiary scattering channels appear together
with the main channel. Each subsidiary channel corresponds to a quasi-energy state (see [2]) of the two-
body problem. A quasi-energy state is a function of the monodromy operator of the time-dependent
Hamiltonian, and is the analog of a bound state in the case of a time-independent Hamiltonian. There thus
arises the need for a preliminary investigation of the two-body problem and, in particular, the properties
of quasi-energy states.

The fundamental problem of scattering theory is the construction of wave operators and the proof
of their completeness. A meaningful definition of completeness in a two-body problem with interaction
periodic in time was proposed for the first time in [3]. It takes the form that the image of the wave operator
must be identical to the absolutely continuous subspace of the monodromy operator of the corresponding
Hamiltonian h(t). Note that if the operator fi(t) does not depend on the time, h(t) = f, completeness for
h(t) is identical to completeness in the usual sense. Namely, the image of the wave operator is identical
to the absolutely continuous subspace of the operator h. The definition of completeness of the wave
operator of [3] can be extended in a natural manner to the case of three particles with periodic interaction,

The device of an additional time [2, 4, 5] and the technique of scattering theory for time-independent
Hamiltonians [6] made it possible to solve with comparative ease the scattering problem for two particles
with interaction periodic in time [5]. The absence of a singular continuous spectrum of the moncdromy
operator of the "two-body" problem was noted in [7-9]. A condition for the number of quasi-energy states,
with allowance for multiplicity, to be finite was obtained in [7].

The present paper is devoted to the scattering in a quantum three-particle system with two~body
potentials periodic in time. We use basically Faddeev's scheme, taking into account the technical improve-
ments of recent years [10,11], The explicit time dependence is eliminated by the device of introducing an
"additional” time. For the Hamiltonians obtained, equations of the type of Faddeev equations are derived
and used. Their analysis makes use of the results of the preliminary investigation of the two-body problem,
and also the decrease of the resolvent of the kinetic-energy operator of the three particles when the spectral
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parameter tends to infinity (see Lemma 3.2 in Sec.3). The final result is also a new one for the time~
independent three-particle problem.

In Sec.1 we formulate the main theorem. In Sec.2 we give necessary information of a general
nature. In Sec.3 we derive the conditions for the wave operator to exist, be isometric, and complete.
Section 4 is devoted to the verification of these conditions, i.e., the investigation of the Faddeev equations.

The results of the investigation were announced in [12].

1 am most grateful to D, R. Yafaev and particularly M. Sh. Birman for helpful advice and discussion.

1. Main Theorem

We introduce the concepts and facts needed to formulate the theorem. Let T bea separable Hilbert
space. For a linear operator A on T we denote by @ (A4), R(4) the domain of definition and range of A.
If D=D(A), then by A MDD we shall denote the restriction of A to &. A two-parameter family of unitary
operators uft,s), t, s € R, on T' that satisfies the conditions 1) u(t, s)u(s, o)=u(t, o), t, s, 66R, 2) u(l, 1)=I,
téR, 3) the family u(t, s) is strongly continuous with respect to the variables t and s is called a propagator.
We also impose an additional condition of periodicity: 4) u(¢+2m, s+2n)=u(t, s), t, seR.

We introduce the space of functions 2w-periodic with respect to t with values in f‘, r= Lz(T, f‘),
where T = R/27Z, 7 being the set of integers. The mapping %, : f(t) >u(t, t—0)f(t—0), 16T, o€R, f€T', forms
in T' a strongly continuous group. By Stone’s theorem, it defines on I' a self-adjoint operator h:

(exp(—ick)f) (£)=u(t, t—c)f(t—c), oER, feI. 1.1

We shall call a self-adjoint operator h for which (1.1) holds an evolution operator. Suppose there is a
“family of operators A(t), t € T, in T'. Then by (A(t)) we denote the operator of multiplication on T' by
A(t). We give the lemma on perturbation of an evolution operator from [9].

LEMMA 1,1, Let hU be an evolution operator on T, (), t67, be a weakly measurable bounded
operator function on I, 7 (t)=7"(t)*, t€T, and let V=<Z*(t)>. Then h = ho + V 1is an evolution operator.

There is a simple but, for us, important example of this operator. Let f, be a self-adjoint

operafor on T, a=—id/ot a self- -adjoint operator on T with the natural domain of definition, and D=2 (9)n
D (<hy>). Then the operator (8+<hy) p D, is essentially self-adjoint; we denote its closure by h,. Since 9
and (ﬁo) commute, h is an evolution operator, and the propagator for it has the form uo(t s) =
exp(-i(t — s )h ). Let the operator function 7(t) satisfy the conditions of Lemma 1.1. We introduce the
family of self—ad]omt operators Rt —ho—rif/(t) teT, on T'. Then the operator h p Do=(0+<h{t)> M D, and
the operator h M@, is essentially self-adjoint. We shall call the propagator u(t, s) for the evolution
operator h in this or analogous situations the propagator for the family of self-adjoint operators ht ), t €T,
or the propagator for the Hamiltonian h(t). By m(t), t € T, we denote the monodromy operator mf(t) =

u(t +2m t).

Remark. In what follows, the conditions of Lemma 1,1 will always be satisfied. Therefore,
without specifying it particularly, we shall always assume that an operator of the type 8 + (h(t)) isan
evolution operator.

We now turn to a quantum system of three particles of dimension m = 3 with finite* masses. Let
3

M be the linear manifold in R°™ determined by the center-of-mass equation Zuhzh=0, where z, and p,
Ra=§
are the coordinate and mass of the particle with number k. The manifold M is isomorphic to B*". We
obtain the simplest form of the correspondence between M and R*™ in terms of the Jacobi coordinates
Tay Yoy 0=1, 2, 3: Ta=2—21, Yu=Za— (s 1) ~* (MsZsme%1); @, B, Y Tange over the set of even permutations of the
8

numbers 1, 2, 3. The three-particle energy operator H(t) in #=L*(M) has the form HA(?) ==Ho+2 7ult, %),

a=1

Hy=—(2m,)~*Ay,—(202)'A,,, t€T, where m  and n, are the reduced masses, M =t e =
(ustpp) . The real-measurable 27r—perlodlc {in time) potential 7% (f, z.), the potential energy between the

* If one of the masses is infinite, some modifications are required. However, the final results are
essentially the same. '
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particles with numbers g and vy, 8 # y # @, satisfies condition A.

CONDITION A,  |Zu(t, 2.) |<C(4+]2.]) %, £>2.

In accordance with [7], this ensures that the number of quasi-engrgy states of the corresponding
two-body problem is finite, i.e., the number of channels is finite. Let K = L%(Rm ") p o and & are the
operators of multiplication by (1+z.*)~**, (1+y.?)~**, respectively. Let Vo=(7,(f, 2a)>, Gua=pa" V and
hay=—10]0t—{(2ma) "'As,> be a self-adjoint operator on K; 1,(z) is the resolvent of h ,. We subject the
function 7°. to one further condition.

CONDITION B. If the equation fo=—@ur«(+i0)p.fc has in K a solution, then pufutP (r.:(0)) and
pa—zrao (0) pafa6K~

We explain Condition B. Faddeev’s theory presupposed the absence at the spectral point zero of
both a genuine eigenvalue and a virtual level. In reality, the case of a zero eigenvalue can be included in
the treatment if it is assumed that the corresponding eigenfunctions decrease sufficiently rapidly at infinity.
Our condition B generalizes this requirement to the case of an interaction periodic in the time,

By ﬁa(t) we denote the Hamiltonian of the two-body problem fza(t) -=-—(2mi)"A,,uj~Ta(t, o), t6T. In
addition, we set Ha(t)=H +7.(t,2.). Let U(t, s), u(t, s) be the propagators for H(t), h (t), respectively,
and m. (t)=u.{t+2n, ¢} be the monodromy operator. We define on # the projection operator B,()=P,(m.(t))
®J* where I% is the identity operator with respect to the variable Y- Note that the rank of the operator
P, (m (t)) is finite [7]. The role of the model space is played by ,%’" and the model operator H%t) in 2

is determined by the formula H"(t)=§:_, ®H,(t), t€I. Note that the model operator depends explicitly on

the time. The "dentification” operator J°(¢) : #*~ is introduced as the row matrix J°(t)=(J, B.(t), PZ(Z‘),

B,(8)), t€T. Let P(1)=I® Z ®Pp,(t), t€T, be a projection operator on H*. We define for H(t) the wave

=1
operator

W () =s-lim U(¢t,0) J*(6) U (5,8) P (),

where Uo(t, s) is the propagator for A%t). The main result of the paper is the following theorem.

THEOREM 1.1, Suppose the potentials 7°. satisfy Conditions A and B. Then the wave operators
Wi(t) exist, are isometric on P(t)l" , and are complete.

2. Preliminaries

Suppose C.={z:+Imz>0}. Let A be a gelf-adjoint or unitary operator on T'. Then by P, J{A) and
P, (A) we denote the projection operator onto the absolutely continuous, I‘ {A), and point, 1‘ (A), subspaces
of A,

The space T' = L2(T, T') can be realized as Z,( ) by means of the discrete Fourier transformation
@ : TL(F), (Of) ,=f.={(2n)"* :{ exp (~—int)f(t)dt, néZ. We shall denote functions of the operator 8, ¢(8), in the

[}
Fourier representation by { ¢(n)}. For the pair of Hilbert spaces r, we denote by B.,=B(T,, I),
S. (s, I} respectively, the classes of bounded and compact operators from r into T.. In the case I, =
L, = T, we shall write B(I), So(I). Let A(t), t € T, be a family of operators that map from I‘ to L.
Then by (A(t)} we denote the operator of multlphcatlon by A(t), mapping from I, to L.

Let a(z), z6E=C, be a family of bounded operators from I to I.. Then by a or a(-) we shall
denote the corresponding operator function a:E—~>B,,. Let o*={z:0<=Im z<<1}. We define X*(B, ) as the
class of operator functions a:0*—+B,, that are Holder with some exponent 7, 0 <7 < 1, In what follows,

when it is clear what B, is meant it will be omitted in the symbol of the class Xi(Bm). We define the
class X" = Xt x X-,

Let A be an operator on F'. By A we shall sometimes denote the operators <47, V94, T, 94
on the spaces T, T I%, respectively, For the self-adjoint operators h b, , H, we shall denote the
resolvents by r D(z) t (z), ..., R(z), respectively. We shall always denote a coordmate variable by

Ry Yo & momentum varlable by Z.

In what follows, we give necessary information about monodromy and evolution operators. Let h be
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some evolution operator and u(t, s) the propagator generating it. Let e.=<{exp(—int)>, nfZ, be an operator
of multiplication on T. Then from (1.1) we find for any o € R, n € Z, that e,* exp(—ioh)e,—exp(—ic(h—n)).
Thus, h and h — n, n € Z, are unitarily equivalent. From this the periodic structure of the spectrum
(with allowance for multiplicity) of the self-adjoint operator h is clear. From the definition of the mono-
dromy operator there follows its periodicity with respect to t, m(t) = m{t + 27r), t ¢ R, and from (1.1)
we obtain the equation exp{-i27h) = (m(t)). We give without proof some results (see, for example,

[7,9D.

1. If zp)‘ is an eigenfunction of the evolution operator h, hy* =A¢", then z}))‘ is equivalent to a
strongly continuous function with respect to t and ¢*(t) =e™u(t, 0)*(0), t€R. In addition, | () == ¥ (0) ]z
teT.

2. Under the conditions of 1), y»"=e.*y* are eigenfunctions for the self-adjoint operator h, hp* =
(A+n)y*"; the functions ¢**, A€(~—1, 0], ntZ, exhaust I‘p(h). The function A (t) is an eigenfunction for the
monodromy operator m(t), m(f)y*(¢) =exp(—i2nd) ' (1), teT; the functions P {£), A6(—1, 01, exhaust [n(m(2)), teT.

3. The following equations hold:
Puc(h)=Pac(<m(t)>)7 P}}(h)ZPP(<m(t)))- (2'1)

We now consider the connection between the wave operator for the pair of evolution operators h® and
h and the wave operator for the pair of corresponding propagators. Let h and h? be evolution operators on
T and T, respectively, and u(t, s) and u’(t, s) be the propagators corresponding to them. Let p(t),
t € T, be a family of orthogonal projectors on f‘ that satisfy Condition C:

CONDITION C, The family of orthogonal projectors p(t), t € T, is strongly continuous with
respect to t. Let p = (p(t)). The operators h’ and p commute and P, (hp) = p.

Let J(t), t € T, bea umformly bounded weakly measurable family of operators that map from I‘
to T, J = (J(t)). We define for h = h p, h, J the wave operator in the usual manner:
W.=s-lim exp (ioh)J exp (—ich,) Poc (Ry). (2.2)

We define for u’(t, s), u(t, s), p(t), J(t) the wave operator
W, () =s-limu(t,0)J (o) u’ (0, 1) p(t). 2.3

G itoo
The completeness of the wave operator is determined by the fulfillment of the equations £(W,)=

Tuolh), ROW . (t))=T..(m(t)), t€R. From the perlodlcxty of the propagator and from (2, 3) there follows

periodicity of the wave operator W, (t)=W.(t+2n), téR. The operators n’ and p commuting, we obtain from

(2. 3) the relation W, (t)=n(t, s)W.(s)u'(s, 1), f, s€R. From this there follows strong continuity of the wave

operator Wi(t) with respect to t. We prove a lemma on the connection of the wave operators W, and

W, (t).

LEMMA 2.1. Suppose Condition C is satisfied. Then the wave operators W, existing, being
isometric, and complete is equivalent, respectively, to the wave operators Wi(t) existing, being isometric
on p(t)I‘O, and being complete.

Proof, From (1.1}, 2.2), and 2.3)
(W.f) (£) = (s-Yim exp (ioh) ] exp (—ioh) Puc (Bs) ) (t) =s-lim u (¢, #+0) J (¢+0) u® (t+0,) p () F(£) =W L (1) £ (2).

O=—>400 GO0
From this follows the equivalence of the existence, and also W, = (VAVi(t)). From this equation
and

25

| WaPoc(h) Tl = 1 W) 501 ()12t .4

]

25

| Poc (h) e = 157 (0) It @.5)

[}

the equivalence of being isometric follows. Going over in (2.4) to the adjoint operators and usmg instead of
(2. 5) the first equation of (2.1), we verify similarly that W} are isometric on P, (h) and W;ﬁ(t) on

P, (m(t)). This proves the equivalence of the completeness
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We now give some lemmas that will be helpful.

LEMMA 2.2: 1. Let p be the operator of multiplication on L*(R™), m=3, by (1+z*)~*% e>2. Then
for every z6C,, c€[0, 1]

1| A4z <C.| Im z|~"2|z|~"%,  z€C.. 2.6)

2. Let I be the operator of multiplication on L.} (Rm) by the bounded function I(z),I(z)—0 as
{x| = «, Then (—A-2z)7'€S.,, Im z70.

Proof: 1. Suppose first 0 = 1. We show that
[ (A+2) ~'plI<C.|Im z|~*|z]-", z€C.. 2.7

Let e, be a spectral projector for v=A. It is shown in [11] that [|d(pe.o)/dM|<C.’. Hence, for
z=a+ib, b0 we obtain 2.7):

1a+2)olr=lol a+2)~ol=|| | ((2=a)+4)* (a(oesp) raiy ab]| <.zl 1411

From (2.7) and the Heinz inequality (see, for example, [13]) (2.6) follows for C, = max(1, w@a).

2. This proposition is well known,

We give results needed in what follows on the "two-body" problem from [7].

LEMMA 2.3. Let Aha(t) =—(2ma) Az P u(t, 2}, t€T, in KR=L’(R™), m=3, and the potential ¥,
satisfy Conditions A and B. Then Pu(he) =I—P;(ha), pa~*Pp (ko) €B(K), puPuc(he) rapaEX".

3. Conditions of Existence and Completeness

of the Wave Operators

We first give a precise definition. We assume that the indices a, 8, v ran§e over the values
1, 2, 8, and the index @ over 0, 1,2, 3. On #* we define the evolution operator =8 + (H'(t)) and
the projection operator P = (P(t Y. We introduce the operator of multiplication J'=J°(¢)) : #*~¥. By
direct calculation we verify that the operators P and i satisfy Condition C, and we let #=HP==PH". We
define the wave operator
W.'=s.lim exp (icH) J° exp (—icd8) P.. (56). 3.1

amrico
In accordance with Lemma 2.1, W.'=<{W.'(¢)> and Theorem 1 is equivalent to the following
theorem.

THEOREM 3.1. Let the potentials 7°, satisfy Conditions A and B. Then Wi exist, are isometric,
and are complete,

We give auxiliary propositions needed in what follows.

LEMMA 3.2. For the operators pa, 8, £>2, Ro(z) on F=L*(M), m>3,

PaPsRo(2), PaRo(2)pe€Sw, 7P, Imz+0, {3.2)
0u018:7'€B,  a¥y, 3.3)
“pﬂﬁo(nq]-i) Pr““’ov n>01 n—-o0, {Z#"{. (3'4‘)

Remark. Proposition (3.4) is also obtained in [14].

Proof. Equations (3.2) and (3. 3) are proved in [11]. We prove (3.4). We have paRo(2)01={paRo(z)]
(2ra) Ay, 2“1 | (21a) A 2]~ 041, z=n+i. It follows from (2.6) that the first term on the right-hand side is
uniformly bounded. We consider the second term in the momentum variables o, Gr dual to Ya, Y. The kernel
of this operator has the form (see [11) |(27.) 7'C®—2]~"py(Ca—Ca’) 6 (§+—Cy), where P, is the Fourier transform
of the function p In accordance with (2.6), the norm of the operator with kerneiy [ (2na) =t ~2| "B 1 (Ta—Ea’)
on L*(R™) has for ¢ = 3 the estimate C|n+i|~“#. It can be seen from this that [J](2n.) 1Aya+n+l,“’l‘p1r“'7{\
Clitn|~"w

LEMMA 3.3. Suppose the potentials 7, satisfy the conditions A and B. Then
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0a"*P.SB, (3.5)

P.8,~'8,'ps*€B, a+}, {3.6)
0:8.R(2), puR(2)p:€S., a7y, Imz70, 3.7)
P,PR(3)€S., Imz#0, avy. (3.8)

Proof. Equation (3.5) follows from Lemma 2.3; (8.6) follows from (8.5) and (3.3). To prove
(8.7), it is sufficient to prove compactness of the operators pud.R.(z), paRos(z)pr, @7y, Imz¥0. In the
Fourier representation, the operator R 0(z) has the form

DR, (2) @*={Ro(2—n)}. 3.9

Hence and from (3.2), (3.4), and (2. 6) we obtain (3.7).

In the case of (3.8), it is sufficient to prove compactness of the operator P,P.R,(z), a%Yy, Im z#0. We
have

PoPiRy(2)=(Papa") pallr(2) pr(pr*Py).

Hence and from (3.5) and (3.7) we obtain (3.8).

We introduce the auxiliary identification operator J:X#*—~J . It has the row form
J=J°—( E P.,0, 0,0).

We have the relation

s-lim (J—J°) exp (_iG%)P;c (58) =0, (3.10)

LR -
the proof of which is comparatively simple (see [10]) and is here omitted. Besides (3.1), we consider the
wave operator
W o=s-lim exp(icH)J exp(—icsb) P,.(36), 3.11)

O=pzoo

W .=s-lim exp (i058) J* exp(—icH) P,. (H). (3.12)

DA -
By virtue of (3.10), WO = W,. We assume that the wave operators W, W exist. It is shown
in [10] that isometry of the wave operators W, and W follows from (3.8) and (3 10)

We now discuss the conditions of existence of the limits (3.11) and (3.12). Below, the continuity
of the various operator functions with respect to the spectral parameter z is always understood in the
uniform operator topology of the corresponding spaces. By T we denote the complex plane with cut along
the real axis. We shall say (cf. [15]) that the bounded operator G is smooth with respect to the self-adjoint
operator A if for some closed set @ of measure zero, @ C R, the operator function G (4—2z)~'G* is
continuous with respect to z€II\Q.

We assume that F=(HJ-J#)= ENk*Gh, where the operators G, and N, are smooth with respect

to the self-adjoint operators 6 and H, respectively. Then in accordance with the sufficient condition of [15],
the limits (8.11) and (3.12) exist.

We introduce operators that act on J: Ve=V—V,, Pot=I—Pa, No,c=paPu’, No, =08"'PV*, the last
being bounded by virtue of (3.3) and (3.5). We define operators that map from K to K2 Ga, of =Qufs, Ga, f=8afo,
Gof=04Pufe, t6#. We calculate the operator F. Suppose 1€2(36); then

Ff= Z (H1.—1.56) f~ E(Pa*Va— VaP,) fot VP,
Finally, we obtain

F= Z N:oGa,o""N:jiGa.i'l'N:,xGu.

To prove Theorem 3.1, it remains to prove smoothness of the operators N(G) with respect to the
self-adjoint operator H(7). This is the subject of the following section.
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4, Faddeev Equations

Let N denote any of the operators Ny, ., A=0, 1. We introduce the operators L. .{z) =N., R.(z)N¥,
&0 ,=08."'P.N* and assume that

Loy LoibX. 4.1)

We introduce the operators Z.(z)=puR(2)N*, Lo, o(2)=Na, R(z)N*, L, .(z) =Pabs~" (I-VR(z))N*
Fo(2) =poPuR2{2)8, Imz#40. As in [10], we obtain an equation relating L., Lo, o, Lo, 1: Lo=L0, o+FoPo .
Hence and from the equation R = R, — R _VOR, as in [10], we deduce the Faddeev equations

ga,o;—Na,oRa( N*—Z 9 (Lo F 1)y, Zos=Paba™ ( N*— ZQT (Z10HF 2 ).

T Y7o

We write these equations in the matrix form
Z(z2)=L°(2)—H#(2) Z (), (4.2)

where L=(La o, Lo, 1), L°=(Luo Ls1) are column vectors, and the components of the operator matrix
#(z) : H*—>H* have the form

Stan (2) =puPi Ra(2) gy, SELs (2) =i (2)Fy(z), a7,
S =0, Pagy, o (2)=Sbei Fi(z), oy, ster=0, ks=0,1.

Before we investigate the Faddeev equations, we give necessary lemmas and prove # smoothness
of the operators G.

LEMMA 4.1. For the operators pa, 8, Be(2z) for ¢ > 2, m = 3 the following relations hold:
1) meopx, ‘SaRD(Sano, 2) ”(Su exp (l.UAya)(SaHSC(i',"O'I)_T, =1,

The proof of 1) is in [11], of 2) in [16].
LEMMA 4.2, For the operators pa, 8z, £>2, on &

PeRopr, 8aR 0.6X°, 4.3)
8eRub.EX°. 4.4)
Suppose the potentials 7°. satisfy Conditions A and B. Then
PaPaRap 6X°, {4.5)
PriuP.0.6X", 7ty (4.6)

Proof. Equations @.3) follows from (3.9) and from 1) of Lemma 4.1, Equation (4.4) is obtained
from the commutativity of the operators & o and h_ , from 2) of Lemma 4.1, and from the representation

£

R.(2) =ii§ exp(Fio (Hu—2)}do, 2Im2>0. From (4.3) and the formula R.=R,—R,V.R, it follows that it is
sufficient to prove (4.5) for @ = y. In the mixed coordinates t, X, ¢, the operator R _(z) has the form of
the operator of multiplication by the operator-valued function r.(z—(2n)~'¢.2), which depends on ¢ o 2S5 on

a parameter. Hence and from Lemma 2.3 the relation (4,5) follows for @ = y, We prove (4.6). From (3.3),
(3.5), and (4.4) we obtain p;R,Pu8.= (p:ped.") (pa'P,) 8.R.5,E€X".

LEMMA 4.3. Suppose & > 2. Then the operators Ga, o, Ge,1, G, are smooth with respect to the
self-adjoint operator .

The proof for G, G . follows from {4,3), For example, G, FG, =¢.RiqEX’. From (4.4), we
obtain smoothness of the operator G, with respect to the self-adjoint operator #, G.HG.*=P,5.R.5.6X".

We investigate the properties of the matrix S component by component.

A. o235, a7y It follows from (3.5) and (3.7) that the operator 39 (z), Im z#0, is compact, and
from (4.5) we find that s£Y%9 €X°,

B. 2%, a#y. The compactness of this component for Im z # 0 follows from the compactness of
Syt (z). To investigate the smoothness of the operator function S£Y% , we represent it in the more convenieat
form
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S 1=Noo(Ra—Ry+R.V R Pi, @. 7

where we have used the relation R,—R=—R.(V.—V,)R;. We prove the smoothness of all the terms on the
right~hand side in (4.7). We represent the first term in the form pePu'Ra.p:(py 'P;)8;, and hence and from
(4.5) and (3.5) it follows that it belongs to X°. From (3.5) and (4.6) and the fact that the second term on the
right can be represented in the form (poPo'pe"")pR1Pid:, we find that it belongs to X°. The third term also
lies in XD, which follows from the fact that it can be represented in the form poPo*Regup<R:P:6; and from
(4.5) and (4.6).

C. % . o#Y. This operator does not depend on z, and the fact that it is bounded follows from
(3.3) and (3.5).

D. %!, a®y. From (4.4) and (3. 6) we find that % =(8."'"PoaVib;*)8;RP,5,€X". Further, P (7)==
(8a=*PuV) Ry(2) psB+(01~'P;) €S, Tmz#0, by virtue of (3.5), (3.6), and (3.7).

Thus, #€X° and #£(z)’€S.. The operator I+s£(z) is invertible for Im z # 0; this follows from
the self-adjointness of the operator H as well (the proof completely repeats the corresponding argument in
[1] and is here omitted).

We give the inversion lemma from [17].

LEMMA 4.4. Suppose the operator function «€X°(B(T)), I—a(2)€8., (z)~*€B(T), Imz+~0, and the
operator function @ is analytic with respect to z € w*, Then there exists a closed set @, @ C R, of
Lebesgue measure zero such that a(A+i0)~'€B(T), AER\Q.

Applying this lemma for a=I/—%* and using the representation (I+sf)'=(I—o¢) (I—£*)~", we find
that for some closed set @, @ C R, of Lebesgue measure zero

(I+s¢(A=i0))—*€B, AER\Q. .8)
Note that the set Q contains the singular spectrum of the self-adjoint operator H if if exists.

We now conclude the proof of Theorem 3.1, For this, we must verify the smoothness of the
operators Na,», k=0, 1, with respect to the self-adjoint operator H. From the smoothness of the operator
function s, we find from (4.8), (4.2), and (4.1) that the operator function &=(I/+#)~'2* is continuous with
respect to z€II\Q. This last result gives us somewhat more than we need; with allowance for the definition
of the operators £ , this means that the operator function N, .R(2)N}, is continuous with respect to z€II\Q.

We now prove (4.1). We first prove that the operator £, is bounded. Suppose first N=~N; . Then
the boundedness of the operator £9, , follows from (3.8) and (3.5) for y # @ and £}, =0 for y = a. We
obtain the boundedness of the operator £, for N=N;, from (3.6) and (3.5). Now consider the operator
function £Y, . Suppose N=N;, Then from (4.5) and (3.5) we find that £, ;=paPa*Rap:(0r~'Prtpr) €X". Suppose

N=N; , Then Za,= Z,paPaJ-Rupg(.,@;j: y*€X°,  which follows from (4.5) and the boundedness of s£}}. Theorem

[

3.1 is completely proved.
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CONTINUOUS MODELS OF PERCOLATION THEORY. 1
S.A. Zuev and A.F, Sidorenko

Percolation models in which the centers of defects are distributed randomly in space
in accordance with Poisson’s law and the shape of each defect is also random are
considered. Methods of obtaining rigorous estimates of the critical densities are
described. It is shown that the number of infinite clusters can take only three values:
0, 1, or », Models in which the defects have an elongated shape and a random
orientation are investigated in detail. In the two-dimensional case, it is shown that
the critical volume concentration of the defects is proportional to a/l, where [ and
a are, respectively, the major and minor axes of the defect; the mean number of
{direct) bonds per defect when percolation occurs is bounded.

Introduction

The present paper continues our [1], which gave a rigorous formulation of continucus percolation
problems. For convenience of reference, we continue the numbering of the sections begun in {1].

4, Methods of Estimating Critical Quantities

4.1. The Method of Generations. In R? we consider the continuous problem of percolation in which
the shape of the defect is fixed and only the orientation can be random. Let n be the direction vector of a
defect (see Sec.2 in [1]}). For a fixed center, the orientation of a defect is determined by the probability
measure p on the sphere §°-'. We restrict ourselves for the time being to measures such that for two
independent random variables n, and n, subject to the distribution on S%* the difference n, — n, does not
depend on n. We shall say that such measures are symmetric. In particular, the uniform distribution is
symmetric. It is readily seen that besides this the only symmetric distributions are those concentrated at
k points that form the vertices of the regular (platonic) solids inscribed in %!, so that the measure of each
point is 1/k. For example, for d =2 the class of symmetric distributions consists of the uniform distribu-
tion on the circle and the uniform distribution over the vertices of the regular k-gon (k =1, 2, ...).

We shall say that defects are neighbors if they intersect. Lef K(r, n, nz) be the p probability that

a defect with center at 0 and direction n, intersects a defect with center at r and direction n,. We denote

B(ny) = S S K (r,n3, n5) dr p (dng). We use the symmetry of the measure p. Let u’ be the probability measure
gd-1 R4

corresponding to the distribution of the difference n, — n. We distinguish in space a certain fixed direction

e and denote by A, the rotation about the origin that carries the direction n, fo e. Then

B ()= S SK(r,nl. 1) drp (dng) = S SK(Amr, e, 0y — ny) drp (dng) =
ga-1 R4 gd-1 R4

S K (', e,n’)dry’ (dn') = B = const.
gd-1[Ra

Thus, if the distribution of the orientation is symmetric, then for any defect (irrespective of its orientation)
the mathematical expectation of the number of its neighbors is the same and equal to AB, where A is the
intensity of the Poisson field of the defect centers.

We distinguish some defect and call it the defect of generation 0. If we have already determined the
defects of the generations 0, 1, ..., k — 1, then the defects of generation k are those that are neighbors of
the defects of generation k — 1 and are not defects of the generation k — 2. Consider the random variable
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