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S C A T T E R I N G  T H E O R Y  F O R  A T H R E E - P A R T I C L E  S Y S T E M  

W I T H  T W O - B O D Y  I N T E R A C T I O N S  P E R I O D I C  I N  T I M E  

E.L. Korotyaev 

F o r  a t h r e e - p a r t i c l e  s y s t em  with two-body in teract ion potent ia ls  per iodic  in t ime,  
a sca t t e r ing  theory  that extends Faddeev ' s  t h r e e - p a r t i c l e  sca t t e r ing  theory  to the 
per iodic  case  is cons t ruc ted .  

Scat ter ing theory  for  a t h r e e - p a r t i c l e  s y s t e m  with two-body potent ia ls  was cons t ruc ted  in Faddeev ' s  
wel l -known p a p e r  [1]. In the case  when the in te rac t ion  depends explici t ly on the t ime,  only two-pa r t i c l e  
p r o b l e m s  have hi therto been cons idered .  The cor responding  quest ions for  a t h r e e - p a r t i c l e  s y s t e m  a re  much 
m o r e  compl ica ted .  In this case ,  one of the mos t  impor tan t  is the case  of in teract ions  that depend on the 
t ime per iodica l ly .  F o r  example ,  the p rob l em of the behavior  of a s y s t e m  of th ree  pa r t i c l e s  in an externa l  
homogeneous e lec t r i c  field that is per iodic  in t ime,  the field averaged  o v e r  a per iod  being zero ,  leads  to this 
case .  

As in the case  of t ime- independent  potent ia ls  [1], subs id ia ry  sca t t e r ing  channels  appea r  toge ther  
with the main channel.  Each subs id ia ry  channel co r r e sponds  to a quas i - ene rgy  s ta te  (see [2]) of the two-  
body p rob l em.  A quas i - ene rgy  s ta te  is a function of the monodromy o p e r a t o r  of the t ime-dependent  
Hamil toaian,  and is the analog of a bound s ta te  in the case  of a t ime- independent  Hamil tonian.  The re  thus 
a r i s e s  the need for  a p r e l i m i n a r y  invest igat ion of the two-body p rob l em and, in pa r t i cu l a r ,  the p r o p e r t i e s  
of quas i - ene rgy  s t a t e s .  

The fundamental  p rob lem of sca t t e r ing  theory  is the cons t ruc t ion  of wave o p e r a t o r s  and the proof  
of t h e i r  comple t eness .  A meaningful definition of comple teness  in a two-body p r o b l e m  with in terac t ion  
per iodic  in t ime  was proposed  for  the f i r s t  t ime  in [3]. It takes  the fo rm that the image of the wave o p e r a t o r  
mus t  be identical  to the absolute ly  continuous subspace  of the monodromy o p e r a t o r  of the cor responding  
Hamil tonian h ( t ) .  Note that if the o p e r a t o r  h ( t )  does not depend on the t ime,  ~(t) = ~, comple t eness  for  
h ( t )  is identical  to comple teness  in the usual sense .  Namely,  the image of the wave ope ra to r  is identical  
to the absolute ly  continuous subspace  of the o pe ra to r  h. The definition of comple teness  of the wave 
o p e r a t o r  of [3] can be extended in a natural  manne r  to the case  of three  pa r t i c l e s  with per iodic  in te rac t ion .  

The device of an additional t ime  [2, 4, 5] and the technique of sca t t e r ing  theory for  t ime- independent  
Hamil tonians  [6] made it poss ib le  to solve with compara t i ve  ease  the sca t t e r ing  p rob l em for  two pa r t i c l e s  
with in terac t ion  per iodic  in t ime  [5]. The absence  of a s ingular  continuous s p e c t r u m  of the monodromy 
o p e r a t o r  of the "two-body, '  p rob lem was noted in [7-9]. A condition for  the number  of q u a s i - e n e r g y  s ta tes ,  
with al lowance for  mult ipl ic i ty ,  to be finite was obtained in [7]. 

The p resen t  pape r  is devoted to the sca t t e r ing  in a quantum t h r e e - p a r t i c l e  s y s t e m  with two-body 
potent ia ls  per iodic  in t ime .  We use bas ica l ly  Faddeev ' s  scheme ,  taking into account  the technical  i m p r o v e -  
ments  of recen t  y e a r s  [10, 11]. The explici t  t ime  dependence is e l iminated by the device of introducing an 
"additional" t ime .  Fo r  the Hamil tonians  obtained, equations of the type of Faddeev equations a r e  der ived 
and used. The i r  ana lys is  makes  use of the r e su l t s  of the p r e l i m i n a r y  invest igat ion of the two-body p rob l em,  
and also the dec r ea s e  of  the reso lven t  of the k ine t i c -ene rgy  o p e r a t o r  of the th ree  pa r t i c l e s  when the spec t r a l  
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p a r a m e t e r  tends to infinity (see L e m m a  3.2 in Sec. 3). The final resu l t  is also a new one for  the t i m e -  
independent t h r e e - p a r t i c l e  p rob lem.  

In Sec. 1 we formula te  the main t heo rem,  in Sec. 2 we give n e c e s s a r y  information of a genera l  
nature .  In Sec. 3 we der ive  the conditions for  the wave ope ra to r  to exist ,  be i some t r i c ,  and comple te .  
Section 4 is devoted to the ver i f ica t ion of these conditions, i . e . ,  the invest igat ion of the Faddeev equations.  

The r e su l t s  of the invest igat ion were  announced in [12]. 

I am mos t  gra teful  to D. R. Yafaev and pa r t i cu la r ly  M. Sh. B i rman  for  helpful advice and discuss ion.  

i. M a i n  T h e o r e m  

We introduce the concepts  and facts  needed to formula te  the theo rem.  Let  F be a sepa rab le  Hi lber t  
space .  Fo r  a l inea r  ope ra t o r  A on F we denote by ~ ( A ) ,  R(A) the domain of definition and range of A. 
If ~ = ~ ( A ) ,  then by A ~ we shall  denote the r e s t r i c t ion  of A to ~). A t w o - p a r a m e t e r  family of uni tary 
o p e r a t o r s  u( t ,  s ) ,  t, s ~ R, on F that sa t i s f ies  the conditions l) a(t, s)a(s, o)=a(t, (J), t, s, a~R, 2) a(t, t)=I, 
t~R, 3) the family u( t ,  s )  is s t rongly  continuous with r e spec t  to the va r i ab l e s  t and s is cal led a p ropaga to r .  
We also impose  an additional condition of per iodici ty :  4) a( t+2~,  s+2n)=a( t ,  s), t, sER. 

We introduce the space of functions 27r-periodic with r e spec t  to t with values  in F, F = L2(T, F) ,  
where  T = R/2~rZ, Z being the se t  of in t ege r s .  The mapping allo:l(t)-+t~(t, t - c ) l ( t -o ) ,  t~T, c~R, ]~r, fo rms  
in F a s t rongly  continuous group.  By Stone 's  t heo rem,  it defines on F a se l f -adjoint  ope ra to r  h: 

(exp(-ich)/)  ( t )=a( t ,  t-(~)f(t-(j), (~R, ]~F. (1.1) 

We shall  call  a se l f -ad jo in t  ope ra t o r  h for  which (1.1) holds an evolution o p e r a t o r .  Suppose there  is a 
f a m i l y  of o p e r a t o r s  A( t ) ,  t ~ T, in F. Then by ( A ( t ) }  we denote the ope ra to r  of mult ipl icat ion on F by 
A ( t ) .  We give the l e m m a  on per tu rba t ion  of an evolution ope ra to r  f r o m  [9]. 

LEMMA 1.1 .  Let  h 0 be an evolution o p e r a t o r  on F, ~ ( t ) ,  t~T, be a weakly m e a s u r a b l e  bounded 
o p e r a t o r  function on r,  ~(t)=7/'(t)*, tOT, and le t  V~<~(t)>. Then h = h 0 + V is an evolution ope ra to r .  

The re  is a s imple  but, for  us, impor tan t  example  of this ope ra to r .  Let  h0 be a se l f -adjoint  
o p e r a t o r  on ~, O=--iO/Ot a Self-adjoiut  o p e r a t o r  on F with the natural  domain of definition, and ~0------~(0)N 
~((h0>).  Then the ope ra t o r  (O+<h0>) ~ 0  is essen t ia l ly  se l f -adjoint ;  we denote i ts  c losure  by h 0. Since 8 
and (h0 } commute ,  h 0 is an evolution opera to r ,  and the p ropaga to r  for  it has the fo rm u0(t, s )  = 
e x p ( - i ( t  - s)f30). Let  the ope ra t o r  function F( t )  sa t i s fy  the conditions of L e m m a  1.1.  We introduce the 
family  of se l f -ad jo in t  o p e r a t o r s  f~(t)=h~+Yz(t), toT, on F .  Then the ope ra to r  h i" ~)o=(O+<h(t)> ~ 0 ,  and 
the o p e r a t o r  h ~ ~0 is essen t ia l ly  se l f -adjoint .  We shall  call  the p ropaga to r  u(t ,  s )  for  the evolution 
o p e r a t o r  h in this o r  analogous si tuat ions the p ropaga to r  for  the family  of se l f -adjoint  o p e r a t o r s  h ( t ) ,  t ~ T, 
o r  the p ropaga to r  for  the Hamil tonian h ( t ) .  By m ( t ) ,  t ~ T, we denote the monodromy ope ra to r  m ( t )  = 
u( t  + 2~, t ) .  

R e m a r k .  In what follows, the conditions of L e m m a  1.1 will always be sa t is f ied .  The re fo re ,  
without specifying it pa r t i cu la r ly ,  we shall  a lways a s s u m e  that an ope ra to r  of the type ~ + ( h ( t )  ) is an 
evolution o p e r a t o r .  

We now turn to a quantum s y s t e m  of th ree  pa r t i c l e s  of dimension m 

M be the l i nea r  manifold in R ~" de te rmined  by the c e n t e r - o f - m a s s  equation 

>- 3 with finite* m a s s e s .  Let  
3 

~xkz~=O, where  z k and gk 

a r e  the coordinate  and m a s s  of the par t i c le  with number  k. The manifold M is i somorphic  to R ~.  We 
obtain the s imples t  f o rm of the cor respondence  between M and R ~m in t e r m s  of the Jacobi  coordinates  
x~, y~, r 2, 3: x~=z~-zT, y~=z~'(~t~+~T) -l(~zB+~zT); cr ~, ~ range ove r  the se t  of even p e r m u t a t i o n s  of the 

numbers  1, 2, 3. The t h r e e - p a r t i c l e  energy  ope ra to r  I~(t) in ~f=L~(M) has the f o r m / / ( t )  = /~0+/~  ~ ~.( t ,x~),  

Ho=-(2m=)-~A~=-(2n=)-~A~u , teT, where  m and n a a r e  the reduced m a s s e s ,  m=-~=~-~+pC~, = =~= 
(~+~) -~ .  The r e a l - m e a s u r a b l e  2v-per iodic  (in t ime) potential  ~=(t, x=), the potential  energy  between the 

* If one of the m a s s e s  is infinite, some modif icat ions a r e  requi red .  However ,  the final r e su l t s  a re  
essen t ia l ly  the s a m e .  
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par t i c l e s  with numbers  /9 and T, fi r Y r a ,  sa t i s f i e s  condition A. 

CONDITION A. I ~ ( t ,  z~)I<C(l+Ix~l) -~, e>2. 

In accordance  with [7], this ensu re s  that the number  of quas i - ene rgy  s t a t e s  of the cor responding  
two-body p rob lem is finite, i . e . ,  the number  of channels  is f inite.  Let  I~ = L2(Rm); Pa and 6 a are  the 
o p e r a t o r s  of mult ipl icat ion by (i+x~2) -~/~, (t+g~) -~/~, r e spec t ive ly .  Let  V~=(F~(t, x~)), q~p~-~V~ , and 
hr be a se l f -ad jo in t  o p e r a t o r  on K; ra0(z) is the reso tven t  of ha0. We subject  the 
function YP~ to one fu r the r  condition. 

CONDITION B. If the equation ]~-q~r~o(+iO)p~f~ has in K a solution, then p j ~ ( r ~ 0 ( 0 ) )  and 
p~-2r~0 (0) p~f~K. 

We explain Condition B. F a d d e e v ' s  theory  p resupposed  the absence  at the spec t r a l  point ze ro  of 
both a genuine e igeavalue and a vi r tual  l eve l .  In rea l i ty ,  the case  of a ze ro  eigenvalue can be included in 
the t r e a t m e n t  if  it is a s s um ed  that the cor responding  eigenfunctions dec rea se  sufficiently rapidly  at infinity. 
Our condition B gene ra l i ze s  this r equ i r emen t  to the case  of an in terac t ion  per iodic  in the t ime .  

By ha(t)  we denote the Hamil tonian of the two-body p rob l em h~(t)=-(2m~)- 'A~,+YP,(t ,  x~), t~T. In 
addition, we set  [I~(t)=l~o+~(t, x~). Let U(t,  s ) ,  u~(t, s )  be the p ropaga to r s  for  I~( t ) ,  h ( t ) ,  r e spec t ive ly ,  
and m~(t)=u~(t+2n, t) be the monodromy o p e r a t o r .  We define on ~ the pro jec t ion  o p e r a t o r  P~(t)=P,(m~(t)) 
| where  I a is the identity ope ra t o r  with r e spec t  to the var iab le  ..Ya" Note that  the rank of the o p e r a t o r  
I~p(ma(t))  is finite [7]. The role  of the model space  is played by ~ ' ,  and the model o p e r a t o r  I~~ tn 3~' 

is de te rmined  by the fo rmula  I:l ~ = E ~Ho (t), t6T. Note that the model o p e r a t o r  depends expl ici t ly  on 
o 

the t ime .  The r'identification,, ope r a t o r  ]~ : ~ ' - ~ 5 ~  is introduced as the row ma t r ix  ]~ P,(t), P2(t), 
3 

Ps(t)), t~T. Let P( t )=Ie  ~ ep~(t),  t~T, be a projec t ion  o p e r a t o r  on ~ .  We define for  IJ( t )  the wave 

o p e r a t o r  

W• ~ (t) ~- s-lim U(t, a) jo (~) U o (a, t) P (t), 

where  U~ s )  is the p ropaga to r  for  I~~ The main resu l t  of the p a p e r  is the following t h e o r e m .  

THEOREM 1.1.  Suppose the potent ia ls  ~ sa t i s fy  Conditions A and B. Then the wave o p e r a t o r s  
VC~ exist ,  a r e  i s o m e t r i c  on P ( t ) ~  ~ , and a r e  comple te .  

2 .  P r e l i m i n a r i e s  

Suppose C• : +-Ira z>0}. Let  A be a se l f -ad jo in t  o r  uni tary  o p e r a t o r  on F. T h e n b y  Pac(A ) and 
Pp(A ) we denote the projec t ion  o p e r a t o r  onto the absolutely  continuous, Fac(A ), and point,  Fp(A ), subspaces  
of A. 

The space  F = L2(T, F) can be rea l ized  as 12(F) by means  of the d i sc re t e  F o u r i e r  t r ans fo rma t ion  
21:  

r : F-~/~(F), (Of)n~/n~(2=) -'1" S exp (--int)f(t)dt, n~Z. We shall  denote functions of the o p e r a t o r  8, ~(a) ,  in the 
0 

Four i e r  r ep resen ta t ion  by { ~ ( n ) ~ .  F o r  the pa i r  of Hi lber t  spaces  F1, F2, we denote by B~-~B(F,, F~), 
S~ (F~, F~) r e spec t ive ly ,  the c l a s s e s  of bounded and compac t  o p e r a t o r s  f r o m  F 1 into F 2. In the case  F~ = 
F 2 = F, we shall  wr i te  B(F) ,  S~o(F). L e t A ( t ) ,  t ~ T, be a family  of o p e r a t o r s  that map f r o m  F~ to 
Then by ( A ( t ) )  we denote the o p e r a t o r  of mul t ip l icat ion by A( t ) ,  mapping f rom F 1 to F 2. 

Let  a(z), z~E~C, be a family  of bounded o p e r a t o r s  f rom F~ to F~. Then by a o r  a ( ' )  we shall  
denote the co r respond ing  o p e r a t o r  function a : E-~B~. Let  ~0• : 0 ~ I m ~ i } .  We define X:L(BI~ ) as  the 
c l a s s  of o p e r a t o r  functions a : r177 that a r e  Hhlder  with some  exponent T, 0 < T < 1. In what follows, 
when it is c l e a r  what B12 is meant  it will be omit ted  in the symbol  of the class X• ). We define the 
c l a s s  X ~ = X + •  X- .  

Let  A bF~,n ~ e r a t o r  on F. By A we shall  s o m e t i m e s  denote the o p e r a t o r s  (A~, E~eA,  E ~ ( A )  
on the spaces  F, ~ ,  r e spec t ive ly .  F o r  the se l f -ad jo in t  o p e r a t o r s  h ~ ha~ . . . ,  H, we shall  denote the 
reso lven ts  by r~ ) ra(z ) . . . . .  R (z) ,  r e spec t ive ly .  We shall  a lways denote a coordinate  va r i ab le  by 
xa, Ya, a momen tum var iabIe  by  ~. 

In what follows, we give n e c e s s a r y  informat ion  about moaodromy  and evolution o p e r a t o r s .  Let  h be 
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some evolution ope ra to r  and u(t ,  s )  the propagator  generat ing it. Let e,=<exp(-int)>, n~Z, be an opera to r  
of multiplication on F. Then f rom (1.1) we find for  any a ~ R, n ~ Z, that e** exp(- izh)e~=exp(- io(h-n)) .  
Thus,  h and h - n, n ~ Z, a re  uni tar i ly  equivalent.  F r o m  this the per iodic  s t ruc tu re  of the spec t rum 
(with allowance for  multiplicity) of the self-adjoint  ope ra to r  h is c l ea r .  F ro m  the definition of the mono- 
dromy ope ra to r  there  follows its per iodic i ty  with respec t  to t, r e ( t )  = m ( t  + 2~r), t 6 R, and f rom (1.1) 
we obtain the equation exp(-i2~rh) = ( m ( t ) ) .  We give without proof some resu l t s  (see, for  exampte,  
[7, 9]). 

1. If $~t is an eigenfunetion of the evolution ope ra to r  h, hr ~ =~r then SX is equivalent to a 
s trongly continuous function with r e spec t  to t and ~px(t) =e~'u (t, 0)~2~(0), teR. In addition, II ~ (t) ]1~---- [I ~ (0)]l~, 
tET. 

2. Under the conditions of 1), r162 ~ a re  eigenfunctions for  the self-adjoint  opera to r  h, h~p ~,~= 
(~+n)~ps,'; the functions r ~E(- t ,  0], n~Z, exhaust Fp(h). The function CX(t) is an eigenfunction for  the 
monodromy ope ra to r  re(t), m(t)$~(t)=exp(-i2a~)~(t) ,  t~T; the functions ~px(t), )~E(-I, 0], exhaust I'p(m(t)), t~T. 

3. The following equations hold: 

P~(h)~Po~(<rn(t)>), P~(h)=P~(<m(t)>). (2.1) 

We now cons ider  the connection between the wave opera to r  for  the pa i r  of evolution opera tors  h ~ and 
h and the wave ope ra to r  for  the pa i r  of corresponding propagators .  Let  h and h ~ be evolution opera to rs  on 
F and F0, respect ive ly ,  and u( t ,  s )  and u~ s)  be the propagators  corresponding to them. Let  ~( t ) ,  
t ~ T, be a family of orthogonal p ro jec to r s  on Fo that sat isfy Condition C: 

CONDITION C. The family of orthogonal p ro jec to r s  p ( t ) ,  t ~ T, is s trongly continuous with 
respec t  to t .  Let  p = ( p ( t ) ) .  The opera to rs  h ~ and p commute and Pac(h~ = p. 

Let  J ( t ) ,  t ~ T, be a uniformly bounded weakly measurable  family of opera to rs  that map f rom I'0 
to F, J = ( J ( t ) > .  We define for  h~ = hop, h, J the wave opera to r  in the usual manner:  

W• exp (i(~h) J exp (-i~h~)P,o (hO. (2.2) 

We define for  u~ s ) ,  u( t ,  s ) ,  ~( t ) ,  J ( t )  the wave ope ra to r  

IX~• (t) =s-lim u (t, o) J (~) u ~ (~, t) ~0 (t). (2.3) 

The completeness  of the wave opera to r  is de termined by the fulfil lment of the equations ~ (W~)= 
~., (h), R (I$'~ (t)) =Foo (m (t)), t6R. F r o m  the per iodici ty  of the propagator  and f rom (2.3) there  follows 
per iodici ty  of the wave ope ra to r  ~ • 1 7 7  t~R. The opera to rs  h ~149 and p commuting, we obtain_ f rom 
(2.3) the re la t ion W~.(t)=tt(t, s)t~_(s)a~ t), t, s~R. F r o m  this there  follows strong continuity of the wave 

^ t ope ra to r  W+( ) with respec t  to t .  We prove a l emma on the connection of the wave opera to rs  W~= and 
qc+(t) .  

LEMMA 2.1 .  Suppose Condition C is sat isf ied.  Then the wave opera to rs  W~: existing, being 
i somet r i c ,  and complete  is equivalent,  respec t ive ly ,  to the wave opera to rs  W~:(t) existing, being i somet r ic  
on p( t )F0,  and being complete .  

P roof .  F r o m  (1.1), (2.2), and (2.3) 

(W• (t) ~- (s-lim exp (ioh) l exp (-ioh~) P,0 (h0 ]) (t) = s-lim u (t, t+o) J (t+o) u ~ (t+o, t) p (t) f (t) -~1~ ~ (t) f (t). 

F r o m  this follows the equivalence of the exis tence,  and also W+ = (W• F r o m  this equation 
and 

I] W+Pa~(hx) f lit ~ ~-~ I H l~_+ (t) 1 ~ (t) f (t)1[~ 2 dt, 
0 

I] Pac (hi) f ]lr ~ = I l] P (t) f (t) II~ ~ dt 
0 

the equivalence of being i somet r ic  follows. Going ove r  in (2.4) to the adjoint opera tors  and using instead of 
(2.5) the f i r s t  equation of (2.1), we ver i fy  s imi la r ly  that W~: a re  i somet r ic  on Pac(h)  and Vq:~(t) on 
Pac (m( t ) ) .  This proves  the equivalence of the comple teness .  

( 2 . 4 )  

(2.5) 
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We now give some lemmas  that will be helpful. 

LEMMA 2.2: 1. Let  D be the ope ra to r  of multiplication on Lz(R"), rn~>3, 
for  every z~C• ~[0 ,  t] 

[11A+zI-~plI~<C,I Im zl-~/2j zJ-~/', z~C~. 

2. Let  l be the ope ra to r  of multiplication on L2(R m) by the bounded function /(x), l(x)-+0 as 
[xl -e ~o. Then (--A--z)-~l~S~, Imz~0.  

Proof:  1. Suppose f i rs t  cr = 1. We show that 

II (a+z)-'Pll<C~ Im zl-"~lzl-", z~C~. (2.7) 

Let  e X be a spect ra l  p ro jec to r  for  ~ .  It is shown in [11] that [Id(pe~p)/dL[l<~r ~. Hence, for  
z-----a+ib, b~=O we obtain (2.7): 

[I (A+z)-'p[J~=Hp I h+zl-~pll= lJ i (()~-a)2+b2)-'(d(pe~p)/d)~)d)~ N ~r 
O 

F rom (2.7) and the Heinz inequality (see, for  example,  [13]) (2.6) follows for  C~ = m a x ( l ,  7rC s) .  

2. This proposi t ion is well known. 

We give resu l t s  needed in what follows on the "two-body" problem f rom [7]. 

LEMMA 2.3 .  Let  ~h~( t )=- (2rn~)- 'A~+~( t ,  x~), t6T, in R=L~(R~), rn~>3, and the potential 7z~~ 
sat isfy Conditions A and ]3. Then P~o(h=)=I-Pr(h~), p~-ZP~(h~)EB(K), p~poo(h~)r~pfiX ~ 

3.  C o n d i t i o n s  o f  E x i s t e n c e  a n d  C o m p l e t e n e s s  

o f  t h e  W a v e  O p e r a t o r s  

We f i r s t  give a p rec i se  definition. We assume that the indices a ,  /3, 3/ range ove r  the values 
1, 2, 3, and the index a over  0, 1, 2, 3. On 3~' we define the evolution ope ra to r  H = ~ + (H~ and 
the project ion opera to r  P = ( P  (t)  >. We introduce the ope ra to r  of multiplication 1~ ~ > : JC~'-+gF'. By 
d i rec t  calculat ion we ver i fy  that the ope ra to r s  P and H ~ sa t is fy  Condition C, and we let  ~=H~ ~ We 
define the wave ope ra to r  

W• exp (ioH) 1o exp (-iai~) P,o (~ ) .  (3.1) 

In accordance  with Lemma  2.1,  W~~177176 and Th eo rem  1 is equivalent to the following 
theorem.  

THEOREM 3.1.  Let the potentials  ~ sat isfy Conditions A and t3. 
and a re  complete .  

We give auxi l iary proposi t ions needed in what follows. 

LEMMA 3.2.  F o r  the opera tors  p~, 6~, e>2, /}0(z) on f~=LZ(M), rn>~3,~ 

p~p~/~0(z), p~flo(z)pfiS~, ~r Imz~0, (3.2) 

P~PT6~-~B, av~,  (3.3) 

il~Ro(~+i)o~ll-+o, n~>0, n - ~ ,  ~ .  (3.4) 

Remark .  Proposi t ion (3.4) is also obtained in [14]. 

Proof .  Equations (3.2) and (3.3) a re  proved in [11]. We prove  (3.4).  We have p~[{o(z)pr=[pc,~o(Z) I 
(2n~)-*A,~+zJ'/'] [ J (2n=)-'h~+z]-'/'pr], z=n+i.. It follows f rom (2.6) that the f i r s t  t e r m  on the r ight-hand side is 
uniformly bounded. We cons ider  the second t e r m  in the momentum var iables  ~,  ~r, dual to y=, b'~. The kernel  
of this ope ra to r  has the form (see [1]) J ( 2 n ~ ) - ~ 2 - z l - ' / ' ~ r ( ~ - ~ J ) 6 ( ~ - ~ ( ) ,  where ~r is the F o u r i e r  t r an s fo rm  
of the function 03,. In accordance  with (2.6), the norm of the ope ra to r  with kerne~ J (2n~,)- '~-zl-/ '~(~,-~= ') 
on L2(R m) has for  ~r = �88 ~he es t imate  CJn+ii -/,'. It can be seen f rom thi s that Ill (2n~)-~A~+n+il-'/'pr[]~<~ 
Cli+nl-'/,,. 

LEMMA 3.3.  Suppose the potentials  ~ sat isfy the conditions A and B. Then 

by (i+x2) -~/*, ~>2. Then 

(2.6) 

Then W~ exis t ,  a re  i somet r i c ,  
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9~8~R(z), 9~R(z)o~r ~r Imzr  

P~P~R(z)~S=, Imz=~0, a=#~. 

Proof .  Equation (3.5) follows f rom L e m m a  2.3;  (3.6) follows f rom (3.5) and (3.3). 
(3.7), it is sufficient to p rove  compac tness  of the o p e r a t o r s  p~6~Ro(z), 9~0(z)p~, ~4=~, Imz#0.  
F o u r i e r  r epresen ta t ion ,  the o p e r a t o r  R0(z) has  the fo rm 

cn0C~)e*={t~o(z-~) ]. 
Hence and f rom (3.2), (3.4), and (2.6) we obtain (3.7). 

(3.5) 

(3.6) 

(3.7> 

(3.8) 

To prove 

In the 

(3.9) 

have 
In the ease  of (3.8), it is sufficient  to prove  compac tness  of the ope ra to r  P=P+R~(z), ar Imzv~0. We 

P~,PTR~ (z) = (P+,p~, -l) p+,R, (z) PT (P,-~P,) �9 

Hence and f rom (3.5) and (3.7) we obtain (3.8). 

We introduce the auxi l ia ry  identification ope ra to r  ] : Jcg'~9~. 

~z 

, We have the re la t ion  

s-lim (]-]~ exp (-i~gg) Po0 (9~) =0, 

the proof  of which is compara t ive ly  s imple  (see [10]) and is he re  omit ted.  
wave o p e r a t o r  

It has the row fo rm 

W~-----s-lira exp (ioH); exp (--ion~) P~o (9~), 

W• exp ( i ~ )  ]* exp (-iaH)P~o (H). 

(3.10) 

Besides  (3.1), we cons ider  the 

(3. ii) 

(3.12) 

By vi r tue  of (3.10), W ~ = W~:. We a s s u m e  that the wave o p e r a t o r s  W+, ~r~= exis t .  It  is  shown 
in [10] that i s o m e t r y  of the wave o p e r a t o r s  W+ and W+ follows f rom (3.8) and (3.10). 

We now discuss  the conditions of ex is tence  of the l imi t s  (3.11) and (3.12). Below, the continuity 
of the var ious  o p e r a t o r  functions with r e s pec t  to the spec t ra l  p a r a m e t e r  z is a lways understood in the 
uni form ope ra to r  topology of the cor responding  spaces .  By II we denote the complex plane with cut along 
the rea l  axis .  We shall  say (cf. [15]) that the bounded ope ra to r  G is smooth with r e spec t  to the se l f -adjoint  
o p e r a t o r  A if for  some closed set  ~ of m e a s u r e  zero ,  ~ C R, the ope ra to r  function C,(A--z)-'G * is 
continuous with r e spec t  to z~H\f~. 

We a s s u m e  that F = ( H ] - I ~ ) =  ZNk*G~, where  the o p e r a t o r s  G k and N k a re  smooth with r e sp ec t  

to the se l f -adjo in t  o p e r a t o r s  O~ and H, r e spec t ive ly .  Then in accordance  with the sufficient condition of [15], 
the l imi t s  (3.11) and (3.12) exis t .  

We introduce o p e r a t o r s  that  act  on 9~ : V~----V-V~, PJ-=I-P~, N~. 0=p~P~f, N~. ~=6~-'P~V% the las t  
being bounded by vi r tue  of (3.3) and (3.5). We define o p e r a t o r s  that map f rom ~ '  to ~f : G~.of=qJ~ G~, ~]=SJo, 
G=]=6~P~I,, t6a~f. We calculate  the o p e r a t o r  F. Suppose t ~ ( ~ )  ; then 

F/= ~ (H&-.t~,','~)lo= ~(Po~V~-WP~)to+V=PoL. 
c 

Final ly ,  we obtain 

v=E : +N* N~ oG~,o--N= iG~,l = iG~. 
c k  

To prove  T h e o r e m  3.1, it r ema ins  to prove  smoothness  of the o p e r a t o r s  N(G) with r e spec t  to the 
se l f -adjoint  o p e r a t o r  H(9~). This  is the subject  of the following sect ion.  

168 



4.  F a d d e e v  E q u a t i o n s  

Let N denote any of the opera tors  N~,~, k=O, t. We introduce the opera tors  .CZ~ o(z)-~N~,, oR~(z)N*, 
Se~ and assume that 

~:., ~ 0 .~a~,0~X. 

We introduce the opera tors  .~:(z)=p=R(z)N*, ~e:. 0(z)=N=, oR(z)N*, ~a~ ~(z) -----P:5=-~ ~J-V:R(z) )N*, 
F:(z)=p~,P:R:(z)iS:, Imz#=0. As in [10], we obtain an equation relating -~ ,  .~ .... ~+,~ :~==.~q~:.0+F:~ ~a ..... 
Hence and f rom the equation R = R a - RczVaR , as in [10t, we deduce the Faddeev equations 

~,,o=N~,oR~,( N*-~,~ q,(~,o+F,.~,~), ~=P~,~ , - ' (  N*-- ~-~,q,(~',,o+F,~q~r,~). 

( 4 . 1 )  

We write  these equations in the matr ix form 

.~ (z) = ~ ~  (z), 

where s  ( ~ ,  0, . ~ ,  ,), ~ 0 =  (~,0, ~,~)  are  column vec tors ,  and the components of the opera to r  matr ix  
~r (z) ::~~ ~ have the form 

5r ~ (z)=p~P='R~(z)qT, ~t~"o (z)=~;:~ (z)F~(z), av~:, 

Before we investigate the Faddeev equations, we give necessa ry  lemmas  and prove ~ smoothness  
of the opera tors  G. 

LEMMA 4.1.  For  the opera tors  p~, ~ ,  /~0(z) for  e > 2, m >- 3 the following relat ions hold: 

The proof of 1) is in [11], of 2) in [16]. 

LEMMA 4.2.  Fo r  the opera tors  p+, ~ ,  e>2, o n / ~  

(4.2) 

p~R0p~, 8~RoS~,SX ~ (4.3) 

&,R=8~,~X ~ (4.4) 

Suppose the potentials ~ sat isfy Conditions A and B. Then 

P~P=• ~ (4.5) 

P~R~P~6~X ~ r162 (4.6) 

Proof .  Equations (4.3) follows f rom (3.9) and f rom 1) of Lemma 4 .1 .  Equation (4.4) is obtained 
from the commutat ivi ty of the opera tors  6 and ha, f rom 2) of Lemma 4.1,  and f rom the representa t ion 

R~(z)=• exp(~ia(H~--z))do, •  F r o m  (4.3) and the formula R~=Ro-R~V~Ro it follows that it is 
0 

sufficient to prove (4.5) for cr = 3+. In the mixed coordinates t, xa, ~a, the opera tor  R a ( z )  has the fo rm of 
the opera to r  of multiplication by the opera tor -va lued  function r=(z-(2n~)-~z), which depends on ~a as on 
a pa r ame te r .  Hence and f rom Lemma 2.3  the relation (4.5) follows for  a = V. We prove (4,6). F r o m  (3.3), 
(3.5), and (4.4) we obtain p~R~P~6, = (prp~6~ -~) (p~-~p~) 6~R~6~fiX 0. 

LEMMA 4.3.  Suppose e > 2. Then the opera tors  G~,0, G~.,, G~ are  smooth with respect  to the 
self-adjoint  opera to r  ~ .  

The proof for  G~ 0, G= ~ follows f rom (4.3). F o r  example, G~, o~IG~ o =q~'Roq ~,~X~ F r o m  (4.4), we 
obtain smoothness  of the opera tor  G a with respec t  to the self-adjoint  opera to r  /~, G~,~G~*=P,~6~,R~,6~X ~ 

We investigate the proper t ies  of the matr ix  ~ component by component.  

A..sgv,o ~#y. It follows f rom (3 5) and (3.7) that the opera to r  ~r (z) Imzr  is compact ,  and 
from (4.5) we find that ~ . ~  E r .  

B. Lcgvr a#=~. The compactness  of this component for  Im z g 0 follows f rom the compactness  of 
~r ~ (z). To investigate the smoothness of the opera to r  function ~r , we represen t  it in the more  convenient 
form 
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sr (tl:-tlr+R~,V~Rr) PT~T, (4.7) 

where  we have used the re la t ion  R,~-RT=-R,,(V~-VT)Rr. We prove  the smoothness  of all  the t e r m s  on the 
r ight-hand side in (4.7). We r e p r e s e n t  the f i r s t  t e r m  in the fo rm o,~P:J-R:pT(pr-'P~)5~, and hence and f r o m  
(4.5) and (3.5) it follows that it belongs to X ~ F r o m  (3.5) and (4.6) and the fact  that the second t e r m  on the 
r ight  can be r ep re sen t ed  in the fo rm (p:P:Zp:-')pr we find that it belongs to X ~ The third t e r m  also 
l ies  in X ~ which follows f rom the fact  that it can be r ep re sen t ed  in the fo rm p~,P:J-Rc, q:p~,RTPT6T and f rom 
(4.5) and (4.6). 

C My,0  cr This o p e r a t o r  does not depend on z, and the fact  that  it is bounded follows f rom �9 ~tl T 

(3.3) and (3.5). 

D ~r c ~ .  F r o m  (4.4) and (3.6) we find that ,sg~ ~, ~(~r VT6C~)5~RTP~)~X ~ Fur the r ,  ~v,~ (z)~  
* C ~ , l  ' , <~,i 

(6~-~P~V~)B~(z)p~ST(p~-'P~)~S~, froze0, by virtue of (3.5), (3.6), and (3.7). 

Thus, ~ X  ~ and ~(z)SES~. The operator I§ is invertible for Im z @ 0; this follows from 
the self-adjointness of the operator H as well (the proof completely repeats the corresponding argument in 
[1] arid is here omitted). 

We give the invers ion  l e m m a  f rom [17]. 

LEMMA 4 .4 .  Suppose the o p e r a t o r  function a~X~ I--a(z)ES| e(z)-'~B(r), Imz4=0, and the 
o p e r a t o r  function a is analytic with r e s p e c t  to z ~ w~:. Then there  exis ts  a c losed set  ~ ,  ~ c R, of 
Lebesgue m e a s u r e  ze ro  such that aO~::t=iO)-'eB(r), ~.~B\~. 

Applying this l e m m a  for  a=l-~r  ~ and using the r ep resen ta t ion  (1A-~r (I-~r  ( 1 - ~  t~)-', we find 
that for  some closed set  fl, fl C R, of Lebesgue m e a s u r e  ze ro  

(I+,.r162 )-'fiB, ~.~R\g2. (4.8) 

Note that the se t  ~ contains the s ingular  s p e c t r u m  of the se l f -adjo in t  ope ra to r  H if it ex is t s .  

We now conclude the proof  of T h e o r e m  3.1 .  F o r  th is ,  we mus t  ver i fy  the smoothness  of the 
o p e r a t o r s  N~, ~, k=0, t, with r e s p e c t  to the se l f -ad jo in t  o p e r a t o r  H. F r o m  the smoothness  of the ope ra to r  
function ~r we find f r o m  (4.8), (4.2), and (4.1) that the o p e r a t o r  function ~ f= ( i+~ r  is continuous with 
r e s p e c t  to zfiII\~.. This  l a s t  resu l t  g ives  us somewhat  m o r e  than we need; with al lowance for  the definition 

N* of the o p e r a t o r s  ~ , this means  that the ope r a to r  function N=,~R(z) y,~ is continuous with r e spec t  to z~H\~. 

We now prove  (4.1). We f i r s t  p rove  that the o p e r a t o r  ~0,x is bounded. Suppose f i r s t  N=N~.o. Then 
the boundedness of the o p e r a t o r  ~ 0  ~ follows f r o m  (3.3) and (3.5) for  y r a and ~0  =0 for  ~ = a .  We r 

obtain the boundedness of the o p e r a t o r  s for  N~N~,, f rom (3.6) and (3.5). Now cons ider  the ope ra to r  
function ~,0 Suppose N=N~, o. Then f r o m  (4.5) and (3.5) we find that ~'~ p~(pc'P~p~ ) ~X ~. Suppose 0~,0 " 

N~N~, ,. Then ~Z'~,0= p~P~•162 )*~X ~ which follows f r o m  (4.5) and the boundedness of ~r T h e o r e m  
$ ~ t t  

3.1 is comple te ly  proved�9 
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C O N T I N U O U S  M O D E L S  O F  P E R C O L A T I O N  T H E O R Y .  II 

S . A .  Z u e v  and A . F .  S i d o r e n k o  

P e r c o l a t i o n  mode l s  in which the c e n t e r s  of  defec ts  a r e  d i s t r ibu ted  r a n d o m l y  in space  
in a c c o r d a n c e  with P o i s s o n ' s  law and the shape  of  each  defect  is a l so  r a n d o m  a r e  
c o n s i d e r e d .  Methods of obta ining r i g o r o u s  e s t i m a t e s  of  the c r i t i c a l  dens i t i e s  a r e  
d e s c r i b e d .  It is  shown that  the n u m b e r  of infinite c l u s t e r s  can take only t h r ee  va lues :  
0, 1, o r  ~ .  Models  in which the defec t s  have an e longated  shape and a r a n d o m  
or ien ta t ion  a r e  inves t iga ted  in deta i l .  In the two-d imens iona l  c a s e ,  it is shown that  
the c r i t i c a l  vo lume  c o n c e n t r a t i o n  of  the defec t s  is p ropo r t i ona l  to all ,  w h e r e  l and 
a a r e ,  r e s p e c t i v e l y ,  the m a j o r  and m i n o r  axes  of the defec t ;  the m e a n  n u m b e r  of  
(direct) bonds p e r  defect  when p e r c o l a t i o n  o c c u r s  is bounded.  

I n t r o d u c t i o n  

The p r e s e n t  p a p e r  cont inues  ou r  [1], which gave a r i g o r o u s  fo rmu la t i on  of  cont inuous  p e r c o l a t i o n  
p r o b l e m s .  F o r  conven ience  of r e f e r e n c e ,  we cont inue  the number ing  of  the s ec t i ons  begun in [1]. 

4 .  M e t h o d s  o f  E s t i m a t i n g  C r i t i c a l  Q u a n t i t i e s  

4 . 1 .  The Method of  Ge ne ra t i ons .  In ~d, we c o n s i d e r  the cont inuous p r o b l e m  of pe r co l a t i on  in which  
the shape  of  the defec t  is fixed and only the o r i en ta t ion  can be r a n d o m .  Let  n be the d i r ec t ion  v e c t o r  of  a 
defect  (see Sec .2  in [1]). F o r  a fixed c e n t e r ,  the o r i en ta t ion  of  a defec t  is d e t e r m i n e d  by the p robab i l i t y  
m e a s u r e  # on the sphe re  S d-'. We r e s t r i c t  o u r s e l v e s  f o r  the t ime  being to m e a s u r e s  such  that  f o r  two 
independent  r a n d o m  v a r i a b l e s  n 1 and n 2 sub jec t  to the d i s t r ibu t ion  on S ~-' the d i f f e rence  n 2 - n I does  not 
depend on n 1. We shal l  s ay  that  such  m e a s u r e s  a r e  s y m m e t r i c .  In p a r t i c u l a r ,  the u n i f o r m  d i s t r ibu t ion  is 
s y m m e t r i c .  It is  r ead i ly  seen  that  bes ides  this  the only s y m m e t r i c  d i s t r ibu t ions  a r e  those  c o n c e n t r a t e d  at 
k points  that  f o r m  the v e r t i c e s  of  the r e g u l a r  (platonic) so l ids  i n sc r ibed  in S ~-', so that  the m e a s u r e  of  each  
point  is 1 /k .  F o r  example ,  fo r  d = 2 the c l a s s  of  s y m m e t r i c  d i s t r ibu t ions  c o n s i s t s  of the u n i f o r m  d i s t r i b u -  
t ion on the c i r c l e  and the un i fo rm  d i s t r ibu t ion  o v e r  the v e r t i c e s  of  the r e g u l a r  k - g o n  (k = 1, 2 . . . .  ). 

We shal l  s ay  that  defec t s  a r e  ne ighbors  if they i n t e r s e c t .  Let  K ( r ,  n~, n 2) be the p p robab i l i t y  that  
a defec t  with c e n t e r  at 0 and d i r ec t ion  n~ i n t e r s e c t s  a defec t  with c e n t e r  at r and d i r ec t i on  n 2. We denote 

B (n!) = ~ .~ K(r, nl, he) dr ~ (dn~). We use  the s y m m e t r y  of  the m e a s u r e  ~. Let  p '  be the p robab i l i t y  m e a s u r e  
~d 

c o r r e s p o n d i n g  to the d i s t r ibu t ion  of  the d i f f e rence  n 2 - n I. We d i s t ingu ish  in space  a c e r t a i n  fixed d i r ec t ion  
e and denote  by An, the ro ta t ion  about  the o r ig in  that  c a r r i e s  the d i r ec t ion  n 1 to e.  Then 

B ( n . ) ~  I -~ K(r,  nx, n2) dr~t(dn2)~--- ~ ~ K ( A n r ,  e, n2--nx) dr~t(dn~) 
s d-1 ~d s ~-1 

"d 

!!aK(r',e,n')dr~'(dn')--~B-~const. 
s -1 

Thus ,  if the d i s t r ibu t ion  of  the o r i en ta t ion  is s y m m e t r i c ,  then f o r  any defect  ( i r r e spec t ive  of  its o r ien ta t ion)  
the m a t h e m a t i c a l  expec ta t ion  of  the n u m b e r  of  its ne ighbors  is the s a m e  and equal to kB, w h e r e  ~ is the 
in tens i ty  o f  the P o i s s o n  field of  the defect  c e n t e r s .  

We d is t inguish  s o m e  defec t  and cal l  it the defect  of  g e n e r a t i o n  0. If  we have a l r e a d y  d e t e r m i n e d  the 
de fec t s  of  the g e n e r a t i o n s  0, 1 . . . .  , k - 1, then the defec t s  of  g e n e r a t i o n  k a r e  those  that  a r e  ne ighbors  of  
the defec ts  of  gene ra t i on  k - 1 and a r e  not de fec t s  of  the g e n e r a t i o n  k - 2. C o n s i d e r  the r a n d o m  va r i ab l e  
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