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Statistical Moments of the Hypsometric Curve 
and Its Density Function 1 

John M .  Harlin 2 

A method, applicable to multivariate designs, describing the form of  the percentage hypso- 
metric curve is developed in this research. Emphasis is placed on the quantitative aspects of  
curve form, rather than on average slopes, inflection points, or hypsometric integrals. A 
question of  uniqueness arises when values, like the integral, are used as landform surrogates in 
process-response models involving drainage basins. It is demonstrated that the hypsometric 
curve has a much greater potential for quantitative landform analysis than can be realized 
through employment of  the integral value alone. Unlike the integral, the functional form of the 
curve is unique to a particular area, depicting, among other things, evolutionary changes in the 
form of  drainage basins. The technique involves treating the "decumulation" of  the hypso- 
metric curve in its mirror image as a cumulative distribution function. StatistiCal moments of  
the curve, and expectations of  (x) for the curve's density function are derived, projecting a 
vector of  curve-form attributes. KEY WORDS: geomorphology, hypsometric analysis, 
statistical moments. 

INTRODUCTION 

Hypsometric analysis was first used in fluvial geomorphology when Langbein 
et  al. (1947) employed hypsometric (area-altitude) analysis to express the 
overall slope of selected drainage basins. The hypsometric curve found 
repeated usage throughout the 1950's (Strahler, 1952; Miller, 1953; Schumm, 
1956; Coates, 1956), as the curve and its integral were incorporated into 
research dealing with erosional topography. After this original wave of 
"developmental" research, hypsometric analysis seemed to vanish from the 
literature with the exception of occasional textbook references. Part of the 
reason for this evanescence is that historically the technique demonstrated 
inability in adapting to multivariate designs. The integral value is readily 
available as a continuous parameter, but the form of the curve, not lending 
itself easily to quantification, has often been left to casual description. 

Dependence on the integral for basin description presents immediate 
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problems. For example, Schumm (1956) found that a strong linear relation- 
ship exists between the integral and both relief ratio and stream gradient. 
However, once more than 25 percent of the mass is removed from the basin, 
relief ratio and gradient remain essentially constant throughout an area's 
development. Therefore, meaningful correlations between the integral and 
other basin parameters are not forthcoming. Carson and Kirkby (1972) 
indicate that when a basin attains "maturity" the integral settles down to a 
value of about 50 percent and thereafter changes little, adding that this may 
be a property of basins, or may show the hypsometric method to be 
"insensitive." Chorley and Kennedy (1971) state that at a hypsometric 
integral of 60 percent or less, the integral more or less stabilizes itself, 
irrespective of the absolute relief, as the basin is geometrically transformed, 
suggesting that there may exist a multitude of forms for any particular 
integral. The hypsometric method, however, has a much greater potential for 
quantitative landform analysis than can be realized through employment of 
the integral value alone. 

Unlike the integral, the functional form of the curve is unique to a parti- 
cular area, depicting, among other things, evolutionary changes in the form 
of the basin. Tanner (1957), Scheidegger (1961), and Evans (1972) have 
proposed that, since the hypsometric curve is not Gaussian, there is a signifi- 
cant skewness and kurtosis which can be used to characterize an area. The 
focus of this paper is to outline a technique to quantify the form of the curve 
so as to produce not only skewness and kurtosis for the curve, but also for its 
density function, and do it in a manner that is prohibitive in neither cost nor 
time. The model involves treating the "decumulation" of the hypsometric 
curve in its mirror image as a cumulative distribution function. Statistical 
moments of the curve, and expectations of (x) for the curve's density function 
are derived, projecting a dependent vector of curve-form attributes that can 
be utilized in subsequent models dealing with process-response within the 
drainage basin environment. 

THE MODEL 

Since the hypsometric curve (Fig. 1), drawn in mirror image from its usual 
form, has the characteristics of the cumulative distribution of a random 
variable (equals zero to the left of x = 0, equals 1 to the right of x = 1, 
and is monotonically increasing) moments and centers of gravity for the 
distribution can be established indicating very subtle changes in relative 
amounts of erosion occurring within various sections of the drainage basin. 
The first of two techniques to be described here treats the curve as a distribu- 
tion function about which centroids for both the x- and y-axes are developed. 
The second, third, and fourth moments are then derived about the centroids 
that yield measures of skewness and kurtosis for the hypsometrie curve. 
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Figure 1. Hypsometric curve, after Strahler (1957). 

The Hypsometr ic  Curve as a Cumulative Distribution Function 

The hypsometric curve is, by definition, monotonic and can be represented 
by a continuous polynomial function with the form 

f ( x )  = a o + a ~ x + a 2 x 2  + . . .  + a , x  n (1) 

There are various ways in which the functional form of the curve may be 
generated. In this instance the polynomial is produced by polynomial 
regression. Allen (1975) used polynomial regression to obtain mathematical 
functions for beach profiles. These polynomials, termed "beach equations," 
were found to be extremely tractable in mathematical designs describing 
beach changes. The hypsometric curve may weli have an advantage over 
other profiles when the regression format is employed, in that hypsometric 
curves are monotonic with few inflections. The relatively simple forms can be 
fitted to low-order (2nd and 3rd) polynomials which are highly significant. 
All hypsometric equations analyzed thus far have been significant at the 0.01 
level, when compared to actual plots. 

Referring again to Figure 1, the hypsometric curve takes on the value 
If(x)] within a unit square defined by the area and altitude axes. The 
hypsometric integral can therefore be defined as equal to the region "R" 
under the function f(x),  i.e., define: 

A (area) = S~ dx dy (2) 
R 
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Then definef(x) to be the value o fy  on the upper boundary of R at the value 
x, so that R is seen to be bounded by the three curves: 

Define: 
x = 0, y = 0, and y ---f(x) 

lZ;o = (I/A) IS x dy dx (3) 

= (l/A) So 1 xF(x) dx (4) 

where/1~o equals the x-mean or centroid, and 

= (1/A) Y ay ax (5) 

= (l/A) ~o ~ ½(f(x))  2 dx (6) 

where p~ 1 equals the y-mean, or centroid. Thereafter define: 

Pio -- (l/A) ~ (x-p~o) '  dy dx (7) 
= (l/A) ~o: ( x - ~ o )  i [j'~(~) dy] dx (8) 
= (l/A) ~o 1 ( x - I ~ o ) ~ f ( x )  dx (9) 

and 
/l~j -= (l/A) ~ (y- l t~ l )  j dy dx (10) 

= (l/A)f~ [~oI(X)(y-/~o,)J dy] dx (11) 

The cumulative distribution approach, hereafter termed C.D.F., 
generates 9 indices of form elements--the first four moments about both the 
x- and y-axes, and the hypsometric integral. When the model is programmed 
for the final analysis the third and fourth moments about the ordinate are 
dropped. They add little additional information about the curve, and prove 
to be extremely unwieldy once expanded for programming. As previously 
stated, a second technique will be explored as an expression of form involving 
the hypsometric curve's density function. 

Density Function for the Hypsometric Curve 

A new function must now be developed having density equal to 1, in the form: 

g(x) = [F(1)-F(O)]-IF'(x), 0 ~< x ~< 1 (12) 

The least-square method is used to calculate the polynomials, and it has been 
found that no significant reduction in sum of squares occurs after the genera- 
tion of third-degree equations. Therefore, g(x) will be a polynomial of about 
order two: 

g(x)  : go -t-glx"~g2 x2 (13) 

The hypsometric curve is of the form 

V(x) = fo + f i x  +f2 x z +/3 x 3 (14) 
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Thus, given eq (4), and remembering that eq (12) will be in the form of 
eq (13), it must now be determined what go, gl, and g2 are as functions of 
fo, f~,f2, and f3. 

Given eq (12), define: 

E(x) = S~o xg(x) dx (l 5) 

which will denote the mean for a random variable X where the nth moment 
about that mean can now be expressed as E[X-E(X)]" .  

Now that the form attributes have been outlined for both the C.D.F. and 
the density function, there remains the problem of programming a system of 
rather complex functions in such a manner that renders the model an efficient 
and expedient tool for geomorphologists. Returns on investments of time 
devoted to research should be high, and initial trials of the simple technique 
that follows have shown the method to be a useful device involving minimal 
effort and expense. 

THE PROGRAM 

There are various approximation packages available for integration, how- 
ever, with respect to the model now described, considerable computer time 
would be necessary for any study involving several drainage basins. Hence, a 
conversion follows, solving each equation as a summation expression involv- 
ing only the coefficients (ao, al, a2, and a3) obtained from the regression 
output allowing for exact integration. Given from eq (2): 

A = S S d x a y  
R 

= S~f(x)  ax (16) 
where f ( x )  equals a polynomial of the form: 

a 0 -Jr- a l x  -Jr" a2 X2 -t- a3 x3  

(a) define: 
A = aoxl +a xZl +a2x31 +a3x'l o (17) 

3 

= ~ ak/(k+ I), (hypsometric integral) (18) 
k = O  

(b) define: 
/~' o = (l/A) S ° x(a o + alx + a2 x2 + a3x 3) dx (19) 

= (1/A)[aoX2/2[~+atx3/3[~+a2x4/41~o+a3xS/5[~o] (20) 
3 

= (l/A) ~ aJk+2,  (x-centroid) (21) 
k = O  

(c) likewise define: 

, [, >] ;20 = 1/A k k + 3  _/~o,  
(second moment on x) (22) 
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(d) and: 

l t 3 o : [ ( 1 / A ) ~ = a k / k + 4 1  - , 3 

(third moment on x) 
(e) finally: 

/l ,o= [(1/A)~ ak/(k + 5)]-[("<o/A)~ak/(k + 4)] 

+ [(6/A)(/Z~o) ~ ~ a , / (k  + 4 ) ] -  3(/t~o) 4, 

(fourth moment on x) 

(23) 

(24) 

Figure 2. Wolbach, Nebraska. 
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Figure 3. Nickerson, Nebraska. 

In similar fashion summations were derived for the density approach. 
The conversion of the original equations is a rather tedious process. However, 
the summations now involve only the coefficients from regression, making 
the model easily adaptable to computer language. A program has been 
devised that reads any number of cubic polynomial coefficients and computes 
moments, skewness, and kurtosis for both the C.D.F. and density functions. 
The program reads each set of four coefficients using PL/I's stream input. 
There is no constraint upon the format of the numbers, other than they must 
be in the order ao, as, a2, a3. After the moments, etc. have been computed 
each is printed and labeled along with the identification of the respective 
drainage basin. Copies of the program are available from the author. 
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Figure 4. Glenwood, Iowa y¢ 1. 

PRELIMINARY APPLICATION 

Third- and fourth-order basins were chosen from upland areas in Iowa and 
Nebraska to test the model's ability to segregate basins that, in some cases, 
are very similar in form. In each case the drainage basins are carved in deep 
Peorian loess overlying drift topography. The maps depicted in Figures 2-6 
are taken from 7.5 minute topographic sheets. References to specific drainage 
basins will be made as to the name of the topographic sheet from which the 
basins were drawn. 

As a drainage basin develops, mass is removed, and the centroids for the 
forms shown in Figures 7-11 begin to converge on the origin, having upper 
limits of  0.5. Skewness will equal zero with the unit square where there is no 

1 mass removed, or where Sol(x)dx = 1. In practical application, skewness 
may approach zero as the centroid approaches the median for the curve, or 
0.5. The curve will become more and more positively skewed with headward 
development of  the main stream and its tributaries as these streams encroach 



Figure 5. Glenwood, Iowa #2. 

Figure 6. Legrand, Iowa. 
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Figure  7. Hypsomet r ic  curve for Wolbach,  Nebraska  (shaded 
port ion represents density of  the  curve). 
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Figure 11. Hypsometr ic  curve for Legrand, Iowa. 

on flat-upland parcels in the upper reaches of the basin. When the curve 
demonstrates little development, as indicative of Strahler's (1952) inequili- 
brium phase, the curve is only slightly skewed, e.g., skewness equals 0.23 for 
Legrand (Fig. 11) with an integral of 0.710. As the integral decreases the 
skewness value becomes larger, e.g., skewness equals 0.44 for Wolbach 
(Fig. 7) with an integral of 0.47. 

The values for skewness and kurtosis in particular seem to be more 
unique to specific curve forms than the integral. There is not a perfect linear 
relationship between skewness and the hypsometric integral. For example, 
Glenwood (Fig. 9) with an integral of 0.559, has skewness of 0.379. This is 
greater than the skewness value for Nickerson (Fig. 8) with an integral of 
0.545. An explanation for this anomaly can be found in the amount of 
headward development that has occurred in the Glenwood basin (Fig. 4) 
relative to the total amount of material removed. 

The ratio of a range of central values compared to a range that en- 
compasses a large part of the distribution has been used in statistics to 
measure kurtosis. When the distribution is that of the hypsometric curve, 
and advanced erosion has occurred in both the upper and lower reaches of a 
basin, the value for kurtosis is relatively high, i.e., Nickerson and Glenwood, 
Figures 3 and 4, respectively. 

The density function approach may be a more precise tool than the 
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C.D.F. This part of the model monitors changes (rates of change) all along 
the hypsometric function. Where change is rapid, density will be great. For 
areas demonstrating little development, hence little headward erosion and 
large tracts of flat-upland, change is concentrated in the lower reaches of the 
basin. A critical moment in basin development occurs when the density 
function changes from high negative skewness, as in the case of Legrand 
(Fig. 11), to positive skewness, as in the case of Wolbach (Fig. 7). This 
indicates that the inertia for erosion has shifted within the basin. Positive 
values would indicate when accelerated forms of erosion, like mass wasting, 
are more probable in the basin's upper reaches. When density skewness 
equals 0.0 an equal amount of change is occurring, or has occurred, in the 
upper and lower reaches. Further research may show that this is an indication 
of equilibrium. 

CONCLUDING REMARKS 

The true potential of the hypsometric method in quantitative landform 
analysis cannot be realized through application of the integral value alone. 
Indices pertaining to the form of the hypsometric curve, from both the 
theoretical and practical points of view, are more unique to an area than is 
the hypsometric integral. 

The time and effort necessary for a statistical analysis of the hypsometric 
curve is no longer a prohibitive factor in research involving drainage basins. 
The method of curve-form description outlined here is readily accessible 
through a short, 67-step computer program. The program prints out moments, 
values of skewness and kurtosis for the hypsometric curve, and corresponding 
hypsometric density function, for less than 3 cents per basin. 

The technique is especially applicable to small basins that demonstrate 
little variation in form and perhaps no variation in the integral. The original 
data is not difficult to produce for smaller drainage basins. The time- 
consuming process of collecting hypsometric data is one reason the technique 
may have originally gained little acceptance. However, as stated above small 
basins do not require a great deal of time, and the resulting vector of unique 
basin attributes provide much higher returns for time spent over topographic 
maps. With digitizers appearing in many departments even very large 
drainage basins can be processed with little effort. 

In summary, preliminary analysis has shown the model to be a rigorous 
tool, sensitive to subtle differences in hypsometric form, providing the 
geomorphologist greater latitude when the hypsometrie method is utilized in 
multivariate designs. 
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