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Cross  Val idat ion  o f  Kriging in 
a U n i q u e  N e i g h b o r h o o d  ~ 

Oliv ier  D u b r u l e  2 

Cross validation is an appropriate tool .for testing interpolation methods. it consists o f  leav- 
#2g out one data point at a time, and determining how weil this po#2t can be estimated from 
the other data. Cross validation is oft'en used for testing "moving neighborhood" kriging 
models; #2 this ease, each unknown value is predieted from a small number of  surrounding 
data. In "unique neighborhood" kriging algorithms, eaeh estimätion uses all the available 
data," as a result, eross validation would spend rauch computer time. For instanee, with n 
data points it would eost at least the resolution o f  n systems o f  n X n linear equations 
(eaeh with a d(fferent matrix). Here, we present a mueh fäster method for eross validation 
h2 a unique neighborhood, lnstead o f  solving n systems n X n, it only requires the inversion 
of  onen  X n matrix. We also generalized this method to leaving out several points instead 
of  orte. 
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I N T R O D U C T I O N  

To perform a kriging, one often has the choice between different structural 
models. For instance, in nonstat ionary geostatistics, one can use a fit of  the 
variogram of  the residuals, or a generalized covariance (which may have been 
computed by the geostatistical package BLUEPACK). 

To test each model, a good method is to use "cross validation": each at a 
time, the values at data points x~ are kriged, as if they were unknown. Then, 
one can compare the true values z ( x « )  with their estimates z*(xc~), and decide 
(for instance) to keep the model which gives the lowest mean squared error 

1 t/ 

n ~ [«(x~)- z*(x~)] 2 
O~=1 
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In addition to the estimate, kriging gives a standard deviation o(xa) of  the error 
at point x~. One can test if the sum 

Bz(x~)-  z*(x~)] ~ 
'-kL- ;~7 ] /~ ~=I 

which measures the quality of  the error prevision, is close to 1 or not. 
In a moving neighborhood, each kriged point is estimated by a linear com- 

bination of  the values at its nearest neighbors. Generally, one uses about the 15 
nearest neighbors. So, for instance in two dimensions with a parabolic drift, each 
kriging requires the resolution of  a (15 + 6)X (15 + 6) system of  linear equa- 
tions (there are six non-bias conditions). 

In a unique neighborhood, each point is estimated by a linear combination 
of  all the other data. For instance, in two dimensions with a parabolic drift and 
n = 100 data, each estimation requires the resolution of  a 106 X 106 system. 
Cross validation of  a model would require the resolution of  100 systems 106 X 
106 (with a different matrix each time), which would be very expensive. That is 
why cross validation is used in a unique neighborhood only for small sets of  
data. However, cross validation would be very helpful, first, because it is im- 
possible to make a good statistical inference of  global structural models (cross 
validation would be an objective way of  testing them) and second, because maps 
obtained by kriging in a unique neighborhood are rauch more "smooth"  and 
aesthetic than those obtained in a moving neighborhood. So, by cross validating 
moving and unique neighborhood krigings for a given structural model, we could 
test if the gain in smoothness implies a gain, or loss, in accuracy. 

THE KRIGING SYSTEM 

Consider a variable z(x) which is a realization of  a random function Z(x) 
such that 

t E[Z(x)] = ra(x) 
Var [Z(x + h) - Z(x)]  = 27(h)  

If x is a point on a plane, we call u and v its coordinates: x = (u, v); in three 
dimensions x = (u, v, w). If the drift ra(x) is a polynomial of degree k in the 
coordinates of  x, we can write 

ra(x) = £ alfl(x) 
l = 0  
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where the fZ(x) are monomials of  degree lower or equal to k. For example, if 
we work on a plane with a parabolic drift 

ra(x)  = ra(u, v) =ao + a , u  +a2v  +a»u 2 +a4uv  +a»v 2 

we have 

m = 5  f ° (x )  = 1 

f I ( x ) = u  £2(x)=v 

fa(x)=u2 f4(x) =uv f5 (x) = v 2 

With universal kriging we estimate the value at a point x by a linear com- 
bination of  the values at n data points 

Z*(x)= F~ vz(«(2) 
(2=1  

The X(2 must be such that 

1 E[Z*(x)] = E[Z(x)] (non-bias condition) 

Var [Z(x) - Z*(x)] minimum (optimality conditioff 

And the system which gives them is (Matheron 1971) 

B X%(x(2 - x e )  + Z ,  ù , f ' ( x e )  = ~ (xe  - x )  
l=0 

)k(2f l(x(2) = f l(x) 
\ (2=1 

( v ~ c ( 1 , .  

(v  l ~ ( 0 , . .  

,n)) 

ùm)) (1) 

• The #z are some Lagrange multipliers which are also unknown. 
• If m = 0, we find the well-known ordinary kriging system (Journel and Huij- 

bregts, 1978). If we were working with a generalized covariance K(h) instead 
of  a variogram, we would just have to replace 7 by K everywhere in the sys- 
tem (Delfiner and Delhomme, 1973). So this system is general; it includes the 
stationary case and the generalized covariance case. Ail the results deduced 
from this system will also be general. 

• In the following, we will offen use some simplified notations 
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KRIGING AS AN INTERPOLATOR 

In a unique neighborhood, the left-hand side of  the system (1) does not 
depend on the kriged point x: only the right-hand side does. Hence, kriging in 
a unique neighborhood can also be interpreted as a function of  the kriged point 
x (Matheron, 1971 ; Dubrule, 1981 ). 

n m 

z*(x) = Z b~v(~ - x~) + Z elfe(x) 
oz=l I = 0  

The coefficients b c~ and cl being determined by the system 

B b °~ ~(xa  - Xfl) + Z c l f l ( x3  ) = Z(X/3) '  ('7'/3 Œ (1 . . . . .  n ) )  

l=O 

b«ff(xa) = 0 (V l C (0 . . . . .  m))  
k ~ = 1  

(The first set o f  conditions simply means that kriging taust honor data points.) 
Using matrices, system (2) can be written 

~ 1 1  "Y12 " ' " ' ~ l n  f ~  ""  . f ~ n  

")/21 ')'22 " " " 7-2n f ~  "" .f~n 

"Ynl "In2 " " " ~nn f o  . . . f ~  

;~ ;~ ...fo ( ~  

f'~ f~ ...f~ 
If we suppose that the value at datum point Xao 
lating function will be 

(2) 

] - b  l -  

b E 

b" n 

C o 
I • 

C m  

] Z1 

Z2 

0 

(3) 

is unknown,  the new interpo- 

~*'(x)= ~ b'~v;x-x~)+ ~ «;f~~x) 
a ß o ~  o l = 0  

with 

y" b'«T(x~- x~)+ ~ c;fl(x~)=z(x~) 
~vec~ o I=0  

~_, b"~fl(xc~) = 0 
o~ ¢ o~ o 

[V 13E (1 . . . . .  n),13~%] 

[V l ~ ( 0 , . . ,  m)] 



Cross Validation of Kriging in a Unique Neighborhood 691 

This can be written 

I 
" / l  I " "  " 7 1 , ~ o - 1  7 1 , C ~ o + 1  " "  " 7 1 n  f~ 

1 fo "~o~ O -  I ,  1 . . . . . . .  "~o~ o - 1 ,  n S o -  1 

/ ' ~ O ~ o +  1 , 1 . . . . . .  "~0~0+ 1 , r / f ° o +  1 

"fT' 

77l 
• f o t o +  1 

Œnl" " '7n ,~o-1  7n,~o+l "" 7nn 

f ~  . o o o 
• f « o - 1  f ~ O  + 1 "" f n  

f ~l  . . D7 tn 17"l 
" f o ~  O -  1 fOZo+I ""  " f n  

" b ' l  1 
b ,c~o- l [ 
b.'a°+1 I 

X " • I 
b'n 

t 
CO 

t 
C m  

Z 9 - I  

Z 9 + 1  

Z 

0 

0 

fo 

@ 
f ~  

(4) 

SOLUTION OF THE PROBLEM 

The (n + m) × (n + m) matrix (4) is obtained by deleting line and column 
% of  the (n + m + 1) × (n + m + 1) matrix (3). The question is: instead of  sepa- 
rately solving all the systems (4), for each % E {1 . . . . .  n}, would it be possible 
to invert matrix (3) once for all, and, from its inverse, deduce the solutions of  
systems (4)? In fact, we do not need to really invert systems (4): we only want 
to be able to compute z*'(Xao), for each % 

t77 
, t  ~~ « l z (x%) = Z b 7 ( x c ~ - x % ) + ~ _ ,  clf(Xo~o) 

o~~o~ o l = 0  
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System (4) can be wri t ten  
m 

3'11 " " ' 3 '1,%-1 3'1,c~ o 3'1,~o+1 " ' ' 3 ' l n  f~ . f ~  

Dubrule 

3"0~ 0 - 1,  1 

"Yo~ o, 1 
3"~o + 1,1  

3"~o-  1, n 

3 " ~ o + l , n  

f O  O -  1 

f °  o 

f°o÷~ 

m 
• f e e  o - 1 

"f2o 

" f2o+~ 

~ n ,  1 " " " 3"n, a o -  1 7 n ,  o~ o 

f ~  . o o 
• f o ~  O -  1 f o ~  0 

f r ~  , .  , f ~ o _ l  

" -b  '1 - 7  

6 
% -  t 

b'%+ 1 
× . 

b,n, l Cl 

! 
C m  

3 " n , a o + l  " " "3"nn 

f«o+ 1 . . . fo  

m m 
f~o+l " ";n 

--zl 

Z o~ o - 1 

Z*'(Xozo ) 

ZOto+ 1 

L~ ~ 

fo . m 
• fn 

0 

(5) 

Matrix (3) is symmetr ic .  So is its inverse, which  we can write in a b lock  configu- 

rat ion 

- b l l  b i 2  . . . b i n  

b 21 b22 . . .  b 2 n  

b n l  b n2 . . b n n  

xò x~ . . . x ~  

x] x~ . . .xT 

xò . . .  xL 

X~o • x~ 

Boo " ' ~om 

/A10 " ' ' / ' / I m  

(6) 
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And we get, after the eòh line of  system (5): 

693 

And 

0 = Z b°Z°°z O~oOZ 0 , t r  .~ zo~ + b z tx%) 
a ß a  o 

bozO oz 
z*'(~%):- Z - - z ( x « )  (7) 

c~ ~ s o b c~°% 

This is the result we were expecting: using the inverse of matrix (3), it is 
possible to compute z*'(x%), for each a o Œ {1 . . . . .  n}. So, instead of solving 
system (4) for each point x% (with ä different matrix at each time), one has 
only to calculate the inverse of  matrix (3). And this inverse can be reused later: 
for, if the variogram model corresponding to matrix (3) is finally selected for 
kriging, matrix (3) will be the matrix of  the kriging system. Formuta (7) also 
shows that the kriging weights for the estimation of  z(x%) on the basis of  the 
z(xc~) (a ~ %) are respectively 

b ozO O~ 
~ ~ -  

b °~°°~° 

We can also compute the kriging variance 

Var [Z(x%)- Z*'(x%)] 

: Va~ (~%) + Z zO:~ 
oz ~ % b «°% 

Io~ b %~ =Var  L b~o% Z(x ~ 
=1 

=- L k b%c~b%~ 
~=~ ~=~ 6%~° ~ v(x~-x~) 

(if we worked with a covariance or generalized covariance K(h), we would have 
to replace - 7 by K) 

b o~o O~ 

~ = 1  ~3=I 

But matrix (6) is the inverse of  matrix (3). So, we have 

t~l Jo~ 
B=l l = o  

(6~ ° i s e q u a l t o  l i f a  o = a , O i f a  o~cO: 
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And 

b olO o~ 

-~ :o:o~. ~oo~~~~o- 
o~=1 ~=1 

x~) - 
1 

bOLOOlO 

+~ß.~ X~° 
b c~°«2° ~ - «o ¢x -I 

1=0 ~ = 1  

But, because (6) is the inverse of  (3), we have 

H 
OZoO~ l 

~--~b f a = 0  
ez=l 

And we get 

1 ~t 
Var [Z(X«o ) - Z (x%)] = buO% 

If we worked with a covariance, or generalized covariance, instead of  a 
variogram, we would find 

1 *P 
V a r  [ z (x~  o) - z ( x ~ ) ]  = + - -  ( 8 )  

b~O~O 

CASES OF SINGULARITY 

Until now, we supposed that 

b~O~v¢O (V % e{1  - -n})  

Isi t  possible to find an a o such that 

b ~°~° = 0? 

We know that b ~°~° is a diagonal term of  the inverse of  matrix (3). So 

det (A~o%) 
b~O~O - 

det A 

where A is the matrix (3), and A«oeo is the matrix obtained by deleting line 
and column % of matrix (3), A~o~o is exactly the matrix (4). So, we have the 
equivalence b ~°~° = 0 *=* det (A~o~o) = 0 ~ system (4) has no solution so 

b ~°~° = 0 ~=~ z*'(Xc~o) is undetermined 

This result is quite logical; as soon as z (X~o) exists, it can be calculated 
using formula (7). 
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GENERALIZING THE CROSS VALIDAT1ON 
TO MORE THAN ONE POINT 

Let us suppose now that  two data points  x %  and x0:1 are unknown.  On 

the basis o f  the (n - 2) o ther  data z(x0:) (a C (1 - - n) ,  c~ 4= % ,  % )  kriging at a 

point  x can be wr i t ten  

with  

m 

z * ' ( x )  = ~_, b"0:7(x - x0:) + ~_, c ; ' f ' ( x )  
0:4:0:0 l=o 
0: ~ 0:1 

r?l 
Z .0:  tt ~'l b 70:~ + ~ cl J¢~ =z~  

0: 4:0:0 I=0 
' 0: :/- 0:1 

h "0: Bl 
Z ~ a0: ~ 0 

0: 4:0:0 
0:@0:1 

( V t 3 E { 1  - -n},~3 =/= % ,  ~ t )  

( v  z e ( o  - - m } )  

This can be wri t ten  the same way as (5) 

- 7 1 1  ' "  71,o: 0 "" 'Yl ,0 :1  ' ' "  71/7 f ~  ù f ' l '  

7C~o,1 "" 7 % , % . . . % e o , O q . . . 7 0 : o , n  f ° o ' " f 0 : m  o 

V0:1,1 ""  '~0:1,0:O " " ' 'y0:1,0:1 ' " ' ' y 0 : l , r t  f O  1 ' '  "fotO1 

"YlT~ I " " ~/tl~ 0:0 

f ~  . .  f o  ° 

• "yn,0:1 

• o 

f 0:i 

• "r,, f o  . . . f , ~  

• 0 

• FFl 

fù  ig ...s0:R . m 

f0:1 

Af ter  the ( % ) t h  and (a 1) th  lines we get 

~gr~ 
b 0:00~0 z ( X 0 : o ) + b 0 : ° 0 : 1  z * ' t ( X 0 : l ) = -  Z 

0: 4:0: o 
0::¢:0:1 

, p t r  - Oq0:l @ttr  .~ 
b0:10:° z t x % ) + b  z Lxcq) = -  

0:¢0:o 
0: q= c¢ 1 

rol 
b ~  

b 0:°~ z(x«) 

b o:'~ z(x0:) 

m -el 

gg~tl 
z kX~o) 

~gtt 
z (x<)  

Z n  

0 

0 

(9) 
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If 

b%% b~Oal 

b a l ~  ° bCq~ 1 =/: 0 

g < t t /  x 
The values of  z * " ( x % )  and z txal)  are obtained by solving the (2 × 2) system 
(9). 

It can be proved (see appendix) that, as for the one-point case, the deter- 
minant of  (9) is null only Hz  t x~o  ) and z tx~l ) are undetermined. 

This result can be generalized to more than two points: if we suppose 
that the p data points x % ,  X~l  - -  X a p _ l  are unknown, the kriging estimates 
z*(P)(xc~o ), ---z*(P)(X~p-1 ) can be calculated by inverting the (p × p)  system 

p - 1 o~i~ 
b ~i~j z*(p)(x~j) = - E b z(x~), ( v  i • ( o  - -  ( p  - 1)}) 

/=0  a : ~ a o  - - a p -  1 

(10) 

The determinant of  this system is 

b aO% . . . b ~O~p - 1 

b ~ P - l ~ o  . . . b a P - l ~ p - 1  

It is equal to zero only if the kriging system without the p points X«o - -  Xc~p_ 1 

has no solution (see appendix). 

APPENDIX 

We prove here that the determinant of  system (10) is null only i f the  krig- 
ing matrix based on the (n - p) points (x~, a 4: ao,  «1, - - ,  ap_ 1 ) is singular. To 
obtain this result, we prove the following proposition. 

Consider a (n + m  + 1) X (n + m  + 1) matrix A, that we write in a block 
configuration 

A = l l  A22/  

where 

A ~ l i s a p X p m a t r i x  
AI= i s a p  X (n +m + 1 - p)  matrix 

A 2 1 i s a ( n + m + l - p )  X p m a t r i x  
A22 is a (n + m + 1 - p) X (n + m + 1 - p) matrix 
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We make the hypothesis that both matrices A22 and A are nonsingular. We are 

going to prove that, if 

=(Æll Bl2~ 
Æ =A-1 \B21 B22/ 

we have the identity 

detA22 
det B1 x - 

det A 

This result will be a generalization of the case p = 1, where it is a well-known 
result that, i fb  22 is a diagonal term ofA -1 , we have 

Proof 

b22 _ det A22 
det A 

A can be written 

(Ip and Im+n+ l_p are the p X p and (m + n  + 1 - p)  X (in + n  + 1 - p)  identity 
matrices). 

To obtain such a decomposition, we simply have to take 

All  =Cll + X Y  X =A12A~~ (A22 is nonsingutar) 

A12 =XA22 ~ Y=A21 

A21 = y 
So, we have 

But 

Cll  = A l l  -A12A2~A21 

det A = det Cx 1 det A 22 

(/; 0 )_1 (~1, ~ )_1 
B =A - t  = X 

A22 0 fn+m+l-p 

From equality (A l ), C11 is nonsingular, and we can also write 

B =A -1 = X 
A;~I G+n+~-p 

(The exact expression of the Z and T matrices does not matter) so 

B , ,  = Cl )  

d e t B l l  = 1/det Cll 

(A1) 
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And, after (A 1 ), we get 

det A22 
det B11 - 

det A 

Take for A the matrix of  the global kriging system, using the n data (matrix 
3), and make the decomposit ion 

")'1 1 " " " 'Ylp 

"Ypl " " " '¥pp 

")'p+l,1 " " " ")'p+l,p 

f~ 

f~ 

A = 

• " " "Yn,p 

• 0 
• f p  

• m 
• . . f p  

~'1,p+1 ""71n f~ ""fT' 

Fr2 
~p,p+ l ")'pn f ~  "" f p 

0 m 
. . . . .  f p+l  ~p+l,p+ 1 ~p+ 1,n f p ÷ l  

7 n , p + l  " ' ' " / n , n  f o  . . . f m  

+1  " " " f  rt  

m m 

f r ,  « " ' ' f ~  

In this case A22 is the kriging matr ix corresponding the n - p data Xp+ a - -  Xn  

(of course, we do not lose generality by  supposing that  the p data which are 

supposed unknown are the p first ones). 

From matrix (6), we see that 

B l l  

\ b  p l  b P P /  

S o  

Matrix A 22 nonsingular 
l de tA22 » det B l l  - v ~ 0 = system (10) nonsingular 

det A 22 =~ 0 det A 

And the system (10) is nonsingular as soon as the kriging system without  the p 
points is nonsingular. 
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