
FLUID DYNAMICS 55 

CONVECTIVE INSTABILITY OF A ROTATING FLUID 

G. F. Shaidurov, M. I. Shliomis, and G. V. Yastrebov 

Izv. AN SSSR. Mekhanika Zhidkosti i Gaza, Vol. 4', No. 

A physical system may be in thermodynamic equilibrium when partic- 
ipating as a whole in uniform rotational motion [i]. In particular, 
mechanical equilibrium of a liquid in a cavity rotating about a sta- 
tionary axis with the constant angular velocity ft (tsolid-body~ rota- 
tion of the liquid) is possible. If the liquid is uniform in composition 
and isothermal, then such equilibrium, as shown in [2], is stable for 
all ~. However, in the ease of a nonuniformly heated liquid, stability 
of the solid-state rotation is, generally speaking, impossible. 

The appearance of two steady-state force fields is associated with uni- 
form rotation: the centrifugal field and the Coriolis force field. The 
former field forces the liquid elements which are less heated and 
therefore more dense to move away from the axis of rotation, dis- 
placing the less dense liquid layers (centrifugation). If we maintain in 
the liquid a temperature gradient which prevents the establishment of 
equiIibrium stratification of the liquid, then with a suitable value of 
this gradient (the magnitude obviously depending on fl) undamped 
flows--convection--will develop in the liquid. Thus, whiie in con- 
ventional gravitational convection the gravity field is the reason for 
the appearance of the Archimedes buoyant forces, in the rotating 
cavity the mixing of the nonuniformly heated liquid is caused by the 
centrifugal field. As soon as the convective flows arise the Coriolis 
forces come into play. Account for the latter, as is shown below, 
prevents reducing in a trivial fashion the study of convective stability 
of rotating liquid to the well-studied problems of gravitational con- 
vection. 

1, A s s u m e  tha t  a l iquid  w h o s e  d e n s i t y  is  

P ---- po(l - -  ~T) (1.1) 

f i l l s  a cav i ty  r o t a t i n g  wi th  the  c o n s t a n t  a n g u l a r  v e l o c -  

i ty 

l'} = f ly ,  yz = I ( 1 . 2 )  

If the  t e m p e r a t u r e  T, m e a s u r e d  f r o m  an a r b i t r a r y  

z e r o ,  i s  not  u n i f o r m  t h r o u g h o u t  the  l iquid  v o l u m e ,  

then,  g e n e r a l I y  s p e a k i n g ,  m o t i o n  d e v e l o p s  in the  e a r -  
i ty.  In a r e f e r e n c e  s y s t e m  r o t a t i n g  wi th  the a n g u l a r  
v e l o c i t y  a the  c o n v e c t i o n  e q u a t i o n s  have  the  f o r m  

~ t  + ( v V ) v ~  --P--~l V ( p  ta~ ) +  

+ v V Z v  - -  r f F [ ~ T n  + 2~(v  • "~). 

OT 
0-7- + vVT ~ zVZT, divv = 0.  (1.3) 

H e r e  v i s  the  l iquid  v e l o c i t y  r e l a t i v e  to the  bo u n d -  

a r i e s  of the  cav i ty ,  p i s  p r e s s u r e ,  and n i s  the  un i t  
v e c t o r  a long the  c y l i n d r i c a l  c o o r d i n a t e  r ,  m e a s u r e d  
f r o m  the  ax i s  of r o t a t i on .  The l a s t  two t e r m s  in the  
f i r s t  equa t ion ,  w h e n  m u l t i p l i e d  by P0, y i e l d  the  i n -  
t e n s i t y  of the  buoyant  ( A r c h i m e d e s )  f o r c e  in the  c e n -  
t r i f u g a l  f i e l d  and the  i n t e n s i t y  of the  C o r i o l i s  f o r c e .  

It is  e a s y  to s e e  f r o m  (1.3) tha t  in the  s t e a d y  e q u i -  
l i b r i u m  s t a t e  (v = 0 and al l  q u a n t i t i e s  i n d e p e n d e n t  of 

t i m e )  the  t e m p e r a t u r e  To and p r e s s u r e  P0 s a t i s f y  the  
e q u a t i o n s  

6, pp. 8 8 - 9 3 ,  1969 

VZT0 = 0, VT0 • y = 0, Vpo = pQ2rn. (1.4) 

Th is  i m p l i e s  tha t  in e q u i l i b r i u m  the  t e m p e r a t u r e  

and d e n s i t y  g r a d i e n t s  a r e  p e r p e n d i c u l a r  to the  ax i s  of 

r o t a t i o n  and the  c e n t r i f u g a l  p r e s s u r e  is  b a l a n c e d  by 

the  h y d r o s t a t i c  p r e s s u r e .  
Le t  u s  s tudy  the  s t ab i l i t y  of the e q u i l i b r i u m  of a 

th in  c y l i n d r i c a l  l a y e r  of l iquid  bounded  by so l id  s u r -  

f a c e s  of radii rl and r 2 (r 2- rl=5 << rl). The equi- 

librium temperature differential between the bound- 

aries of the layer is 0 = T 2- T I > 0. Both cylin- 

drical surfaces rotate with the same angular velocity 

(1.2) about the common axis of symmetry (the z-axis; 
the unit vector "g is directed along this axis). In the 

gravity field g the applicability of (1.3) to the prob- 

lem in question is limited to the ease of large centri- 

fugal accelerations 

rlg~ ~ >~ g. (1.5) 

If the  r e v e r s e  inequa l i ty  is  s a t i s f i e d ,  in the  r i g h t -  

hand  s i d e  of (1.3.1) we  m u s t  inc lude  the  t e r m  - g r i t  

and d r o p  the  t e r m s  w h i c h  a r e  q u a d r a t i c  in fL The 

C o r i o l i s  f o r c e s  a r e  l i n e a r  in f~ and m u s t  be  r e t a i n e d .  

The in f luence  of the  C o r i o l i s  f o r c e s  on g r a v i t a t i o n a l  
c o n v e c t i o n  w a s  e x a m i n e d  in [3, 4]. 

The e q u i l i b r i u m  t e m p e r a t u r e  g r a d i e n t  in the th in  

l iquid  I a y e r  is d e t e r m i n e d  f r o m  (1.4.1): 

0 
V T 0 = - - n  (6~ r~). (1.6) 

5 

We choose the units of distance 5, velocity v/5, 
temperature u0/)~, and pressure pou2/62. Linearizing 

(1.3), we write the equations for the critical pertur- 
bations in dimensionless form: 

0 = - - V p +  V~v-- BTn + D ( v  X y), 

0 -~ V2T - -  nv, div v ---- 0 

(R = r , ~ O 5 3 1 v Z ,  D = 2f~62/v). - (1.7) 

Two dimemionless parameters appear in these equations: the Ray- 
Ieigh number R and the Taylor number D z. We note that both param- 
eters contain the angular velocity of rotation. This is associated with 
the fact that f~ appears in the expressions for the Archimedes and 
Coriolis forces and therefore plays a dual role. On the one hand the 
rotation is the cause of the centrifugal forces, without which con- 
vection would be impossible, and on the other hand the CorioIis forces 
which develop with rotation affect the stmcture of the critical per- 
turbatiom, which leads in the final analysis to greater stability. 

2. The so lu t ion  of the  c o n v e e t i o n  e q u a t i o n s  (1.7), 
p e r i o d i c  in ~p and z, i s  sough t  in the  f o r m  

Vr ~ v ( r ) e i m ~ e  ikz, 

V(p = ~ ( r ) e ~ m ~ e  ihz, v z = W ( r ) e i r a ~ e  ihz , 

p --= p ( r ) e i m ~ e  i~z, T = ~ ( r ) e * m ~ e i  k* . (2.1) 
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S u b s t i t u t i n g  (2 .1)  in to  (1 .7 )  a n d  e x c l u d i n g  p a n d  w,  

w e  o b t a i n  

LaY ~-  i sDv  I @ a2R'~ - -  a2Du : O, 

a2La - -  k2Dv - -  i s L J  ~ O, L~  - -  v ~ O, 

( L ~ - - d 2 / d r 2 - - a ~ , a ~ s : ~ - k ~ , s - ~ - m S / r l ) .  (2 .2)  

In w r i t i n g  t h e s e  e q u a t i o n s  w e  h a v e  m a d e  s i g n i f i c a n t  

u s e  of  t h e  t h i n n e s s  o f  t h e  l i q u i d  l a y e r .  In p a r t i c u l a r ,  

l 'd  
F i g~  1 

t e r m s  of  t h e  t y p e  l / r ,  w h i c h  a p p e a r  in  t h e  e x a c t  e q u a -  

t i o n s  a l o n g  w i t h  d ( . ) / d r ,  h a v e  b e e n  d r o p p e d  e v e r y w h e r e ,  

s i n c e  t h e i r  r a t i o  i s  of  o r d e r  5 / r i  << 1. 

T h e  v e l o c i t y  p e r t u r b a t i o n s  m u s t  d i s a p p e a r  a t  t h e  

s o l i d  b o u n d a r i e s  of  t h e  l a y e r .  W i t h  a c c o u n t  f o r  (1.7.3) 
w e  h a v e  

v = v ' ~ ~ ~--- 0 f o r  r : / ' 1 ,  r = r2. (2 .3 )  

W e  i n d i c a t e  t h e  e x a c t  s o l u t i o n  o f  (2 .2)  f o r  t h e  c a s e  

in  w h i c h  t h e  s u r f a c e s  o f  t h e  l i q u i d  l a y e r  a r e  m a i n t a i n e d  

a t  c o n s t a n t  t e m p e r a t u r e s ,  i . e . ,  T = 0 a t  t h e  b o u n d a r i e s  

of  t h e  l a y e r .  In t h i s  c a s e  i t  i s  c o n v e n i e n t  to  e x c l u d e  u 

a n d  ~- f r o m  (2 .2) ,  w h i c h  l e a d s  to  a s i x t h - o r d e r  e q u a t i o n  

f o r  t h e  r a d i a l  c o m p o n e n t :  

L 3v -t- a 2Fv : O, F ~ l:l - -  (k  2 / a ~) D a . (2 .4 )  

T h e  s o l u t i o n  o f  t h i s  e q u a t i o n  m u s t  s a t i s f y  t h e  c o n -  

d i t i o n s  

v = v ~ = L~v = 0. (2 .5 )  

at the boundaries of the liquid layer. The last condi- 
tion follows from (2.2.1). The eigenvalues F(a ~) of 
the boundary value problem (2.4), (2.5) define the 

connection between the parameters R and D for fixed 
values of a and k: 

1~ = F (a 2) -]- (k2 / a2)D 2. (2 .6 )  

Minimization of the function P,(a 2, k 2) makes it possible to deter- 
mine the lower threshold value R 0 of the Rayleigh number and the 
form of the critical perturbation which disrupts the solid-body ro- 
tational stability. We see from (2.6) that the minimum R = a o is 
reached for k = 0 and is independent of D. Finding R 0 thus reduces 
to finding the minimum of the function F(a2). However, there is no 
need to do this, since for k = 0 the boundary value problem in ques- 
tion coincides with the problem of finding the equilibrium stability 
of a plane horizontal fluid layer which is heated from below in a 
gravity field [5]. Using the results of [5], we have P~ = 1708, a a = 
= 3.13. The basic critical motion is a system of two-dimensional 
rolls which fill the cylindrical layer and are oriented along the axis 
of rotation (Fig. 1). This figure shows a cross section of the cylindri- 
cal layer and indicates the streamlines of the basic critical motion. 

The number of roils is 2m = 2a0rl/6. Since a 0 is close to v, the 
width of each roll is close to the layer thickness 5. 

We note that a similar sort of motion develops in a plane layer 
of conducting liquid heated from below in a longitudinal magnetic 
field [6]. Just liketheCoriolis forces in the present problem, the Iongi- 
tudinal field does not affect the stability (the critical Rayleigh num- 
ber is independent of the field intensity), but it does alter the form 
of the critical motion: in place of the usual Benard convective ceils 
there appear rolls which are stretched out along the direction of the 
field. 

The critical Rayleigh number is also independent of the Taylor 
number when the layer boundaries are thermally insulated (T' = 0). 
In this case the exact solution yields R0= 720, a 0 = 0. 

T h e s e  two  e x a c t  s o l u t i o n s  c o r r e s p o n d  to  t h e  two  

l i m i t i n g  c a s e s  in  w h i c h  t h e  t e m p e r a t u r e  p e r t u r b a t i o n s  

e i t h e r  d a m p  o u t  c o m p l e t e l y  a t  t h e  l a y e r  b o u n d a r i e s  

(~- = 0) o r  t h e y  do  n o t  d e c a y  a t  a l l  ( r '  = 0).  In  t h e  i n -  

t e r m e d i a t e  c a s e s  t h e  b o u n d a r y  c o n d i t i o n s  f o r  t h e  t e r n -  

p e r a t u r e  m a y  b e  w r i t t e n  i n  t h e  f o r m  

0~ 
- -  X~ (co ~)~ ~ 0). (2.7) 

On 

Here the differentiation is performed along the di- 
rection of the outward normal to the surfaces of the 
liquid layer. The parameter )v characterizes the rate 
of decay of the temperature perturbations at the layer 
boundaries. For 2v = ~ and X = 0, condition (2.7) be- 
comes the limiting cases r = 0 and T' = 0 of the bound- 
ary conditions considered above. 

The boundary value problem (2.2), (2.3), (2.7) was 
solved by the Bubnov-Galerkin method. The approxi- 
mating functions used were 

v = c , z2 ( t  - z ) ~ ,  ,~ ---- c2x( t  - z ) ,  

" ~ = c a [ t - l - ) ~ x ( t - - x ) ]  ( 0 ~ x ~  t ) .  (2 .8 )  

T h e  o r i g i n  of t h e  d i m e n s i o n l e s s  c o o r d i n a t e  x w a s  

l o c a t e d  a t  t h e  i n n e r  s u r f a c e  of  t h e  l a y e r .  T h e  s t a n d a r d  

s o l u t i o n  p r o c e d u r e  l e a d s  to  a s y s t e m  of  t h r e e  a l g e -  

b r a i c  e q u a t i o n s  f o r  t h e  a m p l i t u d e s  c i, f o r  w h i c h  t h e  

s o l v a b i l i t y  c o n d i t i o n  y i e l d s  

k z 
R = F ( a  2, ~.) -[- ~ G ( a  z, )~)D z , 

F - ~ -  2 8 ( 5 0 4 - { -  24a2 ~- a~)B G --= 9 B  

3a 2 ' t 0 ~ -  a 2 '  

B = t0),(6 + )~) -t- a~(30 q- {0~ -/- ~2) (2 .9)  
( t 4 +  3~) 2 

H e n c e  w e  s e e  t h a t  t h e  c r i t i c a l  v a l u e  R 0 a g a i n  c o r -  

r e s p o n d s  to  k = 0 a n d  i s  i n d e p e n d e n t  of  D. 

C Z ~ 6 8 /g 

Fig. 2 

The results of the calculation, made using the for- 
mula 

/~0(~) : m i n  F ( a  2, ;~), ( 2 . 1 0 )  
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a r e  s h o w n  in F ig .  2, w h e r e  the  o r d i n a t e  i s  a* = ag(X)/ 
/a~(~), R* = a0(X)/R0(~o). 

F o r  the  l i m i t i n g  v a l u e s  of X we o b t a i n  a0(~) = 3.12,  
R0(~ ) = 1748 and R0(0) = 720. C o m p a r i n g  t h i s  wi th  t he  

e x a c t  so lu t ion ,  we c o n c l u d e  t h a t  the  e r r o r  in  d e t e r -  
m i n i n g  R0, a s s o c i a t e d  w i t h  the  a p p r o x i m a t e  n a t u r e  of 
s o l u t i o n  (2.8),  d o e s  not  e x c e e d  2.5% o v e r  the  e n t i r e  
r a n g e  of v a l u e s  of X. 

The  T a y l o r  n u m b e r  a p p e a r s  in e x p r e s s i o n s  (2 .6)  

a n d  (2 .9)  f o r  t he  c r i t i c a l  R a y l e i g h  n u m b e r  in  the  c o m -  

b i n a t i o n  (kD2), w h e r e  k i s  t he  w a v e n u m b e r  d e f i n i n g  

the  p e r t u r b a t i o n  w a v e l e n g t h  a l o n g  the  c y l i n d e r  a x i s .  

The  b a s i c  c r i t i c a l  m o t i o n  w i t h  k = 0 c a n  b e  r e a l i z e d  

on ly  in  a c y l i n d r i c a l  l a y e r  of i n f i n i t e  l eng t h .  In a l a y e r  

of f i n i t e  l e n g t h  h the  p e r t u r b a t i o n  w a v e l e n g t h  2l  c a n -  

n o t  e x c e e d  t w i c e  the  l a y e r  l e n g t h .  If t h e r e  a r e  v e l o c i t y  

n o d e s  a t  t he  e n d s  of t he  l a y e r ,  t h e n  in t he  g e n e r a l  c a s e  

an  i n t e g r a l  n u m b e r  of h a l f - w a v e s  m u s t  f i t  i n to  the  

c y l i n d e r  l e n g t h .  T h i s  r e q u i r e m e n t  l e a d s  to a d i s c r e t e  

s p e c t r u m  of v a l u e s  of k. 

H o w e v e r ,  w i t h  i n c r e a s e  of k t he  c r i t i c a l  R i n c r e a s e  

r a p i d l y ,  a n d  t h e r e f o r e  w e  w o u l d  e x p e c t  e x p e r i m e n t a l  

r e a l i z a t i o n  of  on ly  t h e  in i t i a l  p o r t i o n  of  t h e  k s p e c t r u m .  

S ince  l 4 h, t h e n  k = 7r5/I >. 7rS/h. A s s u m i n g  t h a t  a ~ lr, 

f o r  t he  t h in  l a y e r  5 << h w e  o b t a i n  k << a. F o r  v a l u e s  of 

D w h i c h  a r e  no t  too  l a r g e  w e  c a n  n e g l e c t  t e r m s  w i t h  

(kD 2) in  m i n i m i z i n g  the  r i g h t - h a n d  s i d e  of  (209). The  

R0(X) a n d  a0(X) w h i c h  a r e  t h e n  o b t a i n e d  (F ig .  2) a r e  

i n d e p e n d e n t  of  D, so  t h a t  t he  c r i t i c a l  R a y l e i g h  n u m b e r  

R d e f i n e d  by  (2 .9)  i n c r e a s e s  l i n e a r l y  w i t h  the  T a y l o r  

n u m b e r  D 2. The  r a t e  of  g r o w t h  of R d e c r e a s e s  f o r  

l a r g e  v a l u e s  of  D and  a s  D ~ ~ m i n i m i z a t i o n  of  t h e  

e n t i r e  e x p r e s s i o n  ( 2 . 9 ) y i e l d s  a02 ~ (kD) 2/a, R ~ (kD) 4/a. 

3. The experiments were conducted with distilled water filling a 
cylindrical slot of length either 100 or 50 mm between two coaxial 
hollow plexiglass cylinders. The cylinders were rigidly interconnected 
and formed the rotating portion (rotor) of the setup. The liquid layer 
thickness was 5 = 1.42 mm and the inner radius was q = 27.5 mm. 
The uniform rotational velocity was measured by a ST-MEI strobotach 
and could be varied in the 1300-5000-rpm range. For these velocities 
the centrifugal acceleration varied from 55 g to 800 g, so that con- 
dition (1.5) was well satisfied. The temperature difference across the 
boundaries of the liquid layer was measured by a thermopile con- 
sisting of 12 fine copper-constantan thermocouples whose junctions 
were located at the walls of the layer at equal distances from one 
another along the circumference. Thermocouples were also used to 

l.g ?~ . . . . . . . . . . . . . . . . .  

J 

2 $ 

F ig~ 3 

measure the radial temperature difference in the rotor walls. The 
leads of all the thermocouples were bonded flush with the wails in 
grooves along the cylinder generators and were brought out to a slip- 
ring assembly. The radial heat flux through the rotor walls was ere- 

ated by a stationary heater and cooler. The latter consisted of water 
jackets in the form of hollow coaxial cylinders between which the 
rotor turned. The heater and cooler were fed from two jet-type ultra- 

- Z -'/ h'-/$ ~' 

F i g .  4 

thermostats. Each of the thermostats was equipped with an automatic 
programmer which made it possible to vary the temperature of the 
thermostatted liquid smoothly. 

In the beginning of the experiment a steady-state radial tempera- 
ture differential which obviousIy exceeded the critical value was cre- 
ated in the rotating rotor. Then this temperature difference was grad- 
ually reduced to zero in accordance with a set program which ensured 
quasi-steadiness of the process. A Kurnakov FPK-89 photoelectric 
pyrometer was used to record automatically the time variation of the 
temperature difference 0 across the boundaries of the liquid layer and 
the radial temperature difference 0 t in the rotor walls~ A graph of 
0 = f(01) was plotted from measurements of the photoreeording; Fig. 3 
shows one such graph. The results were obtained with the rotor verti- 
cal, • = 1850 rpm, h = g0 ram. The critical temperature difference 
across the boundaries of the layer was determined from the break in 
the curve, which is caused by the change of the heat transfer regime 
after termination of convection. 

The experimental points obtained for different values of g~ and h 
are grouped on the D2R plane around three straight lines which diverge 
fanwise (Fig. 4), The lines were calculated with (8.2) and correspond 
to the foIIowing values of l: 1 - 2 ,  2-2.5,  3-3.88 cm. The con- 
ttnuations of all the straight lines intersect one another and the R-axis 
at the point l~ = 1460 :L g0. According to (2.10) this value of R 0 cor- 
responds to X = g, a0 = 2.78. Substituting these values into (2.9), we 
have 

R ~ 1460 ~ 0.t06kZD 2. (3 .1 )  

For comparison with experiment it is convenient to write this 
formula in the form 

0.02i0 
R = 1460 + D z , (3 .2 )  

where 2 l is the perturbation wavelength in centimeters. As noted 
previously, the ratio h / l  must be an integer. Comparison of the ex- 
perimentaI curves with the theoretical curves (curves 1, 2, and 3), 

constructed with the use of (3.2), makes it possible to conclude that 
critical flows with l = 2, 2.5, and 8.83 mm for h = 10 cm, and with 
l = 2.5 cm for h = 5 cm were realized inthe experiments. The largest- 
scale (l  ~ h) possible flows, corresponding to the minimum R, were 
not realized in the experiments. A possible reason for this was the 
disturbance of the temperature field in the liquid layer by the thermo- 
couple junctions. These junctions were located at a distance 2h/5 
from the end of the layer. 

Figure 8 shows on a logarithmic scale the theoretical straight line 
A = D z, where A = I~(R -- 1460/0.021. This same figure shows the 
experimental points 1, 2, and 3 associated with the values l = 2, 
2.5, and 8.38 era. The results of measurements obtained with the 
rotor horizontal are indicated by the open points, those for the verti- 
cal position are indicated by the filled points. The satisfactory agree- 
ment of the theoretical and experimental data indicates the correct- 
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ness of the comparison made. One of the reasons for the scatter of the 
experimental points is the noncoincidenee of the hydrodynamic bound- 
aries of the convective ceils with the soiid end surfaces: at the ends 

5.5 ~.0 s  70 

F i g .  5 

of the layer the periodicity conditions used in the calculations are vi- 
olated. Another possible reason for the scatter is the appearance of 
ceils of different length because of the disturbing influence of the 
thermopiles. 

It should be particularly emphasized that the experiments were 
conducted with a cylindricai layer whose length was many times 
greater than the thickness" h/5 ~ 70. It would appear that the end 
effects wouid not be significant in such a thin layer. However, be- 
cause of the strong dependence of the critical Rayleigh number on the 
wavenumber k the influence of the ends of the layer was dominant. 
As far as we know, the very important role of the longitudinal dimen- 
sions for geometrically thin liquid layers (5 << h) has not been noted 
previously. 

In conclusion we note that dimensional effects must also be sig- 
nificant in many analogous problems: for example, in studying the 
convective stability of a horizontal layer of a conducting liquid in a 
longitudinal magnetic fieId. 
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