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Fitting Variogram Models by Weighted 
Least Squares 1 

Noe l  Cress i e  2 

The method o f  weighted least squares is shown to be an appropriate way o f  fi t t ing variogram 
models. The weighting scheme automatically gives most weight to early lags and down- 
weights those lags with a small number o f  pairs. Although weights are derived assuming the 
data are Gaussian (normal), they are shown to be still appropriate in the setting where data 
are a (smooth) transform o f  the Gaussian case. The method o f  (iterated) generalized least 
squares, which takes into account correlation between variogram estimators at different lags, 
offer more statistical efficiency at the price o f  more complexity. Weighted least squares for 
the robust estimator, based on square root differences, is less o f  a compromise. 
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1. INTRODUCTION 

Any geostatistical study should ideally involve many different areas of expertise. 
In mining applications, the team should include at least a geologist, a mining 
engineer, a metallurgist, a financial manager, and a statistician. This article is 
written from a statistician's point of view highlighting that role in the study; the 
broader perspective can be gained by reading King, McMahon, and Bujtor (1982). 
The statistician can typically be expected to lead the team through the following 
stages: 

1. Graphing and summarizing data. 
2. Detecting and allowing for nonstationarity. 
3. Estimating spatial relationships, usually by estimating the variogram or 

covariogram. 
4. Estimating in si tu resources, often by kriging. 
5. Assessing recoverable reserves. 

Cressie (1984) presents a resistant approach (i.e., using techniques not af- 
fected by a small proportion of outlying or aberrant values) to stages 1 and 2, 
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and shows techniques of exploratory data analysis (EDA) to be adaptable to 
spatial data. Robust estimation of the variogram in the presence of contaminated 
data is already discussed at some length by Cressie (1979), Cressie and Hawkins 
(1980), Armstrong (1984), Hawkins and Cressie (1984), and Switzer (1984). 
Here we mainly address the problem of fitting a model to various variogram esti- 
mators, both classical and robust. Until now, fitting procedures have either been 
"by eye," by ad hoc methods particular to the model being fitted, or by least 
squares. These approaches will be improved by using statistical criteria to weight  
the influence of various parts of the estimator. 

In order to invoke a certain amount of statistical rigor, we proceed directly 
to assumptions of our model. We assume throughout that the intrinsic hypothesis 
holds: Suppose that the grade of an ore body D at a point t (in general in IR 3, 
but for our purposes here in 11t 2) is the realization of a random function {Zt; t E 
D} and that this is observed at certain points {ti} (often a regular grid) of the ore 
body. Then the so-called intrinsic hypothesis  assumes that for h, a vector in N 2 

E(Zt+ h - Z t )  = 0 

E ( z t  ÷ h - z t )  2 = 2 ~ ( h )  ( 1 )  

This is almost second-order stationarity of first differences. The quantity 27(h)is 
known as the variogram and is the crucial parameter ofgeostatistics; see Matheron 
(1963) and Journel and Huijbregts (1978). It is a more general model than that 
of second-order stationarity of {Zt} , but when the latter is appropriate 

coy (Zt ,  Z t + h) = C(h) (2) 

and  ~ ( h )  = C ( 0 )  - C(h) .  
When data are nonstationary in the drift d(t)  =E(Zt ) ,  Starks and Fang 

(1982b) show how naive attempts to estimate the variogram yield a substantial 
bias. If  one thinks drift can be expressed as a polynomial in t with known order, 
then the technique based on the generalized covariance function (Detfiner, 1976) 
does allow unbiased inference. However it is a complicated procedure to imple- 
ment (Starks and Fang, 1982a), and if one guesses the order of the polynomial 
wrongly, one is faced with exactly the same bias problems as with the variogram. 
A straightforward approach to the problem of nonstationarity in the mean is 
taken by Cressie (1984); there, resistant techniques are used to estimate drift. 
These are shown to ameliorate the bias problem (Cressie and Glonek, 1984); 
hence residuals from this resistant fit are used to estimate the variogram. So, if 
data are nonstationary in the mean, now an easy-to-apply method exists to reduce 
the problem to one involving mean stationarity. Nonresistant fitting of low-order 
polynomials in disjoint regions (Buxton, 1982) is another simple technique often 
employed, but its drawback is that the residual bias problem is still present. The 
classical estimator of the variogram based on data {Zri , i = 1, - • •, n} is (Matheron, 
1963) 
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1Nh 
- h = h ( 1 ) , h ( 2 ) , "  • - ( 3 )  

where N h is the number of lag-h differences. In order to use available knowledge 
of robust l o c a t i o n  estimation, Cressie and Hawkins (1980) take fourth roots of 
squared differences, yielding robust (to contamination by outliers; see Hawkins 
and Cressie, 1984) estimators 

N--h-P/ Nh !Z 1/2 2~7(h) = 1 ~ I t i + h -  Z t i l  (0.457+ 0 . 4 9 4 / N h )  (4) 
i=1 

2~(h) = (reed ( I Z t i  + h - Z t i [ l J 2 } ) 4 / B h  (5) 

where med {- } denotes median of the sequence ( - ) ,  and B h corrects for bias. 
We could consider other robust estimators proposed by Armstrong and Del- 

finer (1980), but the following argument shows them to be asymptotically equiv- 
alent to (5). Armstrong and Delfiner followed up Cressie and Hawkins' idea that 
the variogram is simply var ( Z t +  h - Z t )  under the intrinsic hypothesis, so that a 
"robustification" could be made by using a robust estimator of scale on the dif- 
ferences ( ( Z t i  + h - Z t i ) ;  i = 1," • • , Nh}. Provided stationarity holds, ( Z  t + h - Z t )  
is a symmetric random variable with mean 0, which ameliorates the scale estima- 
tion problem considerably. They defined "Huberized" variograms (i.e., using the 
scale estimator of Huber, 1964, rather than the sample variance of ( ( Z t i +  a - 

Z t i ) }  ), and quantile variograms. Huberized variograms are Iengthy to compute, 
requiring iteration at every lag. The square of the interquartile range of differ- 
ences, however, is a resistant, quick, and easy alternative; consider then 

( U Q { Z t  i + h - Z t i }  - L Q ( Z t  i + h - Z t i ) )  z 

where UQ stands for "upper quartile" and LQ for "lower quartile." Furthermore, 
- Z  2 the quantile variogram is based on a sample quantile of ( ( Z t i  + h ti ) }, the 

most popular choice being the median. The idea is that quantiles are more re- 
sistant to outliers than the mean; consider then 

med ( ( Z t i  + h - Z t i ) 2 }  

Both of the above approaches need some normalization to make them un- 
biased; however, leaving this aside, we show that both are e q u i v a l e n t  to 2~(h) in 
(5), the fourth root type estimator based on the median. Now reed ( ( Z t i  + h - 

Z t i ) 2  } = (reed { t Z t i  + h - Z t i l l / 2 } )  4 , because f ( x )  = x 1/4 is a monotonic function. 
Also, asymptotically, U Q { Z t i  + h - Z t i }  - L Q ( Z t  i + h - Z t  i )  = 2 m e d  ( ] Z t i  + h - 

Z t i l }  = 2(reed ( ] Z t i  + h - Z t i ] l / 2 } )  2. Hence the estimator 2~(h), based on fourth 
roots of squared differences, simultaneously captures the essence of a robust 
scale approach and a quantile approach. 

The next section shows that present methods of variogram fitting are in- 
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adequate. Under suitable asymptotics, using the criterion of weighted least squares 
will improve the fit. The method automatically gives most weight to early lags, 
and downweights those lags with a small number of  contributing pairs. 

2. WEIGHTED LEAST-SQUARES FITTING 

The variogram (27(h)}, defined in (1), is a function of h that is typically 
estimated at discrete lags: h(1), h(2), • • • , h(k); for example, for data on a rect- 
angular grid, and for a fixed direction of the grid, h(] )=] ; j  = 1 , 2 , - . ,  in units 
of  the grid spacing. Through these estimated values, a variogram model (such as 
spherical, exponential, Gaussian, de Wijsian, linear, etc.), which typically depends 
on several parameters, is fitted. It is the method of fitting that is the subject of  
this section. 

Up to now, variogram fitting procedures have been either "by  eye," ad hoc 
methods particular to the model being fitted, or by least squares through the 
points ((h(j) ,  2"~(h(j))); ] = 1, 2 , ' "  , k} (David, 1977, Sect. 6.1, 6.2; Journel 
and Huijbregts, 1978, Sect. III.C.6, Chap. IV; Clark, 1979, Chap. 2). What we 
would like to do here is present a general fitting procedure which gleans the cor- 
rect features from current practice, discards incorrect features, and produces a 
statistical rationale for an overall approach. For example, some variograms have 
a sill parameter, which in turn appears as a multiplicative factor in prediction 
(kriging) variances. Currently (David, 1977, p. 122; Journel and Huijbregts, 1978, 
p. 231 ; Clark, 1979, p. 29), we are told that if {Zt} is stationary and mixing (i.e., 
weak dependence at large lags) and hence o;  = rar (Zt) = limn --, = 7(h),  

1 N 
i~l (Zti _ 2)2 = ~2 N - I . =  

is a good estimator of  a 2 . Yet in the same body of theory, we are told that should 
nonstationarity in the mean E(Zt)= d(t) exist, then the variogram estimator 
based on residuals {Zti - ä~(ti)} will be intolerably biased in estimating the vario- 
gram of  the errors, E[Zt+ h - d(t + h) - Z t + d(t)] 2 (IVlatheron, 1971, p. 196). 
But in exactly the same way as for the nonstationary case, residuals {Zti - Z} in 
the stationary case produce a biased estimator of  02 . Suppose the points (ti} are 
equally spaced on a transect (e.g., {Zti } is a t ime series); then 

2 N 
E(ô 2) : 02 - N_~-  n ~  1 [1 - (h/N)] C(h) 

which always exhibits a negative blas when C > 0. Recent results of  Cressie and 
Glonek (1984) indicate that this situation can be ameliorated by choosing a 
resistant quantity to estimate the constant mean, such as med {Zti} instead of 
2 = E Z t i / N .  



Fit t ing Vaxiogram Models 567 

Furthermore,  various ad hoc ways of obtaining the slope of the variogram 
at the origin, the nugget effect, the range, and so forth,  are unsatisfactory in that 
the statistical fluctuations of  a variogram estimator (27*(h( j ) ) ; ]  = 1," • •,  k) are 
not taken into account when fitting a model {23'(h; ~,)}. This could, but usually 
does not, lead to serious errors (in the first instance statistical, but eventually 
financial) because the geostatistician usually returns to look at the fit plotted 
against the estimate, to "eyeball" it and adjust maverick parts of  the fit accord- 
ingly. Moreover, recent interesting results by Diamond and Armstrong (1983) 
show the prediction (kriging) stage of the analysis to be reasonably insensitive to 
the variogram chosen. This, however, should not stop us from trying to make the 
best of  the data {Zti}, to estimate the variogram (robustly), and to fit a modeI 
(efficiently), free of  unconscious biases. 

The method of least squares is not statistical; it is purely a numerical crite- 
rion used to find "the most appropriate" parameter values. In our context,  sup- 
pose {27(h; )t)} is a variogram model depending on parameters )~. Then, the 
method of least squares says to choose the value of/~ which minimizes 

k 
{27*(h(j))  - 27(h(] ' ) ; )@ 2 (6) 

B=l 

call it h~.  However, when 27" = {27"(h(1)), • • •, 27*(h(k))} is a vector of  ran- 
dom variables with variance matrix var (27*) = 2~, then the method ofgeneralized 
least squares says to choose the value of X which minimizes 

[2~*  - 2 7 ( X ) ]  ' Z  -1 [27* - 2 7 ( h ) 1  (7) 

and call it X~. 
Between ~ ]  and / t~  is an intermediate stage, the method of weighted least 

squares, which says to choose the value of h which minimizes 

k 
{var [2-r*(hO))l} -t {2~*(h(j))- 2~(hO);x)} 2 (a) 

1"=1 

and call it X~, where V = diag (var [27"(h(1))] ,  " "" , var [23,*(h(k))]} is a diag- 
onal matrix with zero's everywhere except for variances of  27"(h( / ) )  on the 
diagonal. Notice that we have not considered the maximum likelihood estimator 
of  ~, because it is strongly model dependent; also Carroll and Ruppert  (1982) 
show the generalized least-squares estimator of/~ to possess superior robustness 
to misspecification of error structure. 

Under appropriate asymptotics,  use of/~~,  weighted least-squares estimator, 
is shown to be a statistically sensible estimator ofX. Furthermore,  it can be used 
as an initial value in iterative generalized least squares. 
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2.1 Classical Estimator 

Suppose {Zt)  is Gaussian; that is, any finite linear combination of  Zt's has 
a Gaussian (normal) distribution; this assumption is relaxed later. Then the in- 
trinsic hypothesis (1) implies that in distribution 

( z t  + h - z t )  2 = 2 3 ` ( h )  • X~ 

where X~ denotes a chi-square random variable on 1 df. Cressie and Hawkins 
(1980) base a robust location estimator of  23`(h) on this fact. Now 

E[(Zt+ h - Zt) 2] = 23`(h) 

rar [ ( z t  + h - z021 = 2 [23`(h)1 

corr [ (Zt+ hO) - Z t )  2 , (Zs  + h(2) - Zs) 21 (9) 

: {corr [(Z t + h(x) - Zt),  (Zs+ h(2) - Zs)] }2 

= / 3 ` ( t t -  s + h (1 ) l ) +  3`(It-s- h(2)l  - 3 ` ( t t - s l ) -  3 ` ( I t -  s + h ( 1 ) -  h(2) l )  I ~ 
I {23'(h(1))} 1/2 {23`(h(2))} 1/2 / 

where "corr" denotes correlation. The last expression of  (9) comes from an 
easily proven fact that if Xa, X2 jointly are normal with zero means and corr 
(X1, X2) = p, then corr (X],  X~) =/92 . 

Recall from (3) the formula for {2"~(h); h = h(1), h(2), • ". }. The contents 
of  this subsection are, by necessity, rather technical. We make the following 
asymptotic assumptions: 

Assumption A I  : 

Assumption A2: 

k is fixed (see subsection 2.3 for practical guidelines on the 
choice of  k) 
Nh(i) -~ oofor eachj  = 1 , ' ' ' ,  k, a s N ~  ~o, andN--> ooas tD[ - ,  
oo such that N/ID l, the sampling rate per unit area,is constant. 

Furthermore assume: 

Assumption A3: 7(h) = o 2, for h > a (i.e., beyond the range a, random variables 
Zt,  Z t  + h are uncorrelated); or 3'(h) = c lh + c~, for h > a. 

This last assumption includes many models which either are covariance 
stationary or satisfy the intrinsic hypothesis. Some small modifications to the 
expressions to follow will also take care of the exponential, Gaussian, and 
de Wijsian models, not covered, strictly speaking, by A3. 

We want to find var (2"~(h(]))}, and cov (2"~(h(i)), 2"~(h(]))}. From (9), 
and Cressie and Hawkins (1980) 
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2~27(h(/'))) 2 ~ Nh(j) Nh(j) 
var (2~(h ( f ) ) ) -  2 [ Nh(J) + Z 

Nh(j) 14=m=l m=l  

"[7(tm-tl-h(J))+7(tm-tI+h(J))-27(tm-'t)12 } 2 7 ( h ( f ) )  

(10) 

where we adopt the convention that 7(-h)  = 7(h); h 1> O, and of course, by defi- 
nition, 7(0)= O. Equation (10) gives the exact expression for diagonal elements 
of E, but it is to say the least, unwieldy; oft-diagonal elements are equally so 

~o~ (2~(h«), 2~7(h(»)} 

_ 2(23,(h(i))) (27(h(j))) IN~i)N~/) 
Nh(i)Nh(1) ~ i= 1 m=l 

"I~'(tm-tl+h(f))+~(tm-Q-h(i))-3'(tm-Q)-3'(tm-tl+h(f)-h(i))t 2 } { 2 3 , ( h ( i ) ) } l / 2 { 2 ~ ( h ( f ) ) )  1/2 

(11) 

We need to make further assumptions to obtain some guidance from (10) 
and (11) namely 

Assumption A4: ~Zti; i = !, • • •, N) occur on a transect, and furthermore at 
equally spaced points. Write ti = i, in units of the spacing. 

Under A1 to A4, (10) becomes 

{ j+a fT(m+i)+7(m_])_27(m)12 } var [2~(j)] - 2127(J)]z 1 + 2 ~ 2 ~ f )  
NJ m=l 

+ o (12) 

and (11) becomes, for i =j  - 1 ; 2 ~<j ~< k 

cov [2-~(j - 1), 27( i )1  

_ 2 1 2 7 ( j -  1)] [ 2 7 ( j ) ]  

{ 2 , ~  E~~m+; l~+~~m ,~  ~~m~ ~~o 2 
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fori=j- 2 ;3~< j~<k  

cov [2'~(j - 2), 2~(j)] 

= Ni_2 - [27Õ7_-- 2)1 i72- [2-~1 ' /2  

+ 2 E L - [2--~7~]- iTg/2127(-~ff i  A r n = l  

and in general, for l + 1 ~< j ~< k 

cov [2~(j - l), 2'~(j)] 

_ 2127(j  - / ) ]  [27(j) ]  [ C(], l) N/_t I 
j+a [7(m+j-l)+7(m-j)-7(m)-7(m-l)]2} 

+ 2 y '  [23'(/- /)] 1/2 [2"y(j)] 1/2 
m = l  

I+o(~/ 

(13) 

where (for l + 1 ~< j ~< k) 

{ I 27(j- l /2)-  23'(l/2) t 2  
c(j,l) = - [27(j- /)] ' /2  [23'(j)]'/2 l = 2, 4 , 6 , . - ,  

0 /= 1 ,3 ,5 , - - .  

In order to interpret these results, take the simple model 

{ 0 h =0 

7y(h) = fo 2 h = 1 
o 2 h = 2 , 3 , " ' ,  

where ¼ <f~< 1, to ensure positive definiteness of C(h) = 02 - 7(h). Note that 
f= 1 gives uncorrelated (independent in the Gaussian case) {Ztt). Let us start 
with diagonal elements of ~ = (oq); to leading order 

2127f(1)]2 I1 + (5fz~f6--(+2) 1 
0"11 - -  N~ 

_2123'f(2)]~ [1 (2f2 - ; f +  3).] 
o= N2 + 

o/j- 2 [2Tl(J)] 2 I 1 N j  + (6f2- 212f+ 7)] j = 3 , ' "  ,k 



Fitting Variogram Models 5 71 

Now every pairwise ratio of the terms in large brackets belongs to [1, 4] and, 
hence, for this model we retain enough statistical efficiency (Cressie, 1980) to 
work with 

var [2"~(j)] ~-- 2 [27(j; )t)] 2/Nj (14) 

in (8), giving the approximate weighted least-squares estimate ~v, obtained by 
mlnlmlzlng 

{ ~~~~,» / ~ 
Nh(j) 1 (15) 

j=, v(h(j);x) 

Minimizing (15) is a vast improvement over least squares, although more 
efficient estinaators yet can be obtained by iterating (see subsection 2.3). 

One might hope for oft-diagonal elements of 2; to be negligible, but this is 
not the case, as the simple model illustrates; to leading order 

2127f( j -1)][27y( j )]  ( . 4 f 2 - 1 0 f + 8 )  j : 4 , ' " , k  
°J-l'J - Nj_ 1 2 

2127.t'(j 2)][27f(j)] ( 5 f 2 - ~ 0 f + 7 _ )  
Oj-2'J-- ~])-2 / =  5," "" ,k  

Therefore, even when data are uncorrelated, which corresponds to f =  1 in the 
simple model, ~ has typical diagonal term ajj = 212%(j)] 2 {~}/Nj, and typicaI 
oft-diagonal term ej_t , j=21271(j  - l)1 [2Tl(J)] (1}/Nj_l; thus oj_t,j/ejj = 
{2} [71(J - l)/7a(j)] (Nj/Nj_ l), nonnegligible for l = 1,2, 3. 

We will see that this situation is ameliorated considerably by considering 
the robust estimator based on square root differences (Cressie and Hawkins, 
1980). 

2.2 Robust Estimator 

Recall from (4) the formula for 2{(h); h =h(1), h ( 2 ) , ' " ,  based on 
{IZti + h - Zt i [,/2}. Consider for the moment the quantity 

1 ~ 1/2 Ä(h) - -~h  i ~  [Zti*a - Zti[ h =h(1),h(2)," "" , 

whose variance matrix we wish to find. 
Under the assumption that {Zt} is Gaussian, which is relaxed later, the in- 

trinsic hypothesis (1) implies that, in distribution, 

1Zt+h - Xt[l/2 = [27(h)]'/4 • (X~) a/4 

Then, 
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E [  [Z t + a - Z t  t 1/2 ] = [ 21/4 r (¼ ) /~ l /z ]  [27(h)]  1/4 

var [ lZt  + h - Zt[ t /z]  = 21/2 [n-t/z  _ £2(¼)/7r] [ e v e ) ]  t/2 

c o r r  [ I z , + , , { 1 )  - z,i'/2, I z ~ + , , ~ ,  - z~ll'l 
= ,~ (cot1- [ ( z . , , , ( 1 )  - z ~ ) ,  ( z .+ , , , ( 2 )  - z . ) ] )  

(16) 

These results parallel those of  (9); mean and variance come from Cressie and  
Hawkins (1980) whereas the correlation is not so straightforward. If  Xt ,  X2 
are jointly normal with zero means and corr (X1,) (2)  = O, then tedious algebra 
yields 

corr (iX111/2 

where 

r 2 ( ¼ )  
, p ) 2 F t ( ~ - , ¼ , ½ ; p Z )  - 1] ]X=ii/2)=@(p)-_l/2_ r 2 ( ~ _ ) [ (  1 _  2 3 . 

(17) 

ab a(a + 1) b(b + 1) z 2 
2 F x ( a , b ; c ; z )  = 1 + - - z  + - - + . . .  + 

c e(c +1)  2! 

is the hypergeometric function. Thus for p small, ~b(p) "" (-~) p 2 , which should 
be compared with corr (X~, X~)  = O 2 ; this correlation attenuation is an added 
bonus to those who estimate the variogram with the robust estimator (4). We 
would like at this point, to acknowledge D. M. Hawkins with whom we collabo- 
rated to obtain this result. 

We want to find r(h( i) ,  h ( j ) )  =- coy (,4(h(i)), A(h( j ) ) ) .  From (16) and 
Cressie and Hawkins (1980) 

21/2 [1r-1/2 _ F2(3)/Tr]{27(h(j))} t/2 
r (h ( j ) ,  h ( j ) )  = 2 

Nbn 

N h ( j  ) N h ( j )  

N h ( i )  + Z 
l ~ = m = l  m = l  

¢ ~  3'(tin - h -  h(J) )+ 7(tm23'(h(j))- tt + h ( J ) ) -  23'(tm - tt) ] }  

r (h ( i ) ,  h ( ] ) )  - 
21/217r-1/2 _ r2(43-)/rr] ( 2 7 ( h ( i ) ) }  1/4 {2~/(h(])))  1/4 

N h ( i ) N h ( j )  

OI 3 , ( t  m - t l + h ( / ) )  + 3,(t m - t I - h( i ) )  - 1~(t m - tl) - ~[(t m - t I + h (] )  - h( i ) )  1 }  

(2~(h(i))} 1/2 (2~(h(j)))l/2 
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Now it is a simple matter to show that for a (continuously differentiable) smooth 
function g, cov[g(X), g(Y)] ~-g'[E(X)] g'[E(Y)I coy(X, Y), and because 
2~(h) = [A(h)] 4/(0.457 + 0.494/Nh) 

~2 ~ coy (2~(h(i)), 2~(h(j))} 

(2?(h(i))} B/4 (2v(h(i))) 314 
4 z [21/4 I?(¼)/rrl/2] 6 { 

0.457 + 0.494/Nh(i) 0.457 + 0.494/Nh(j) 

• r ( h ( i ) ,  h ( i ) )  } ( 1 8 )  

This expression for variances and covariances of the robust estimator is the 
analogue of (10) and (t 1) (variances and covariances for the classical estimator). 
Analogous simplifications under assumptions A1 to A4 can be made, and w e  
find, to the leading order of magnitude retained in (12) and ( i3)  

var [2~(/)1 = 
2.885 [27(j)l 2 

and for l + 1 ~<j ~<k 

{1 + 2 s~-~, a +I~(m+J)+~l(rn-j)-2?(m)_l} 
m : l  27( j )  

(19) 

cov [2q( / -  l), 2~7(/)] 

2.885127(j-  I)] [27(i)1 ~d(i, l) 
1 Nj_t 

+2 ~° ~f ~'(~ +j- °+~'(~-j)-'y(m)-'~(m m=, ~-2~7"-771r/T~V/2 -')1} (20) 

where (for l + 1 ~ j  ~< k) 

{lOt 27(~---l/2)5-27(l/2) ] l=2,4,6,... 
a(/,  l) = L[2~( / -  0l ,/2 [2~(i)],2J 

/= 1 , 3 , 5 , - - - ,  

Notice that (19) and (20), variances and covariances of the robust estimator, 
differ from those of the Matheron estimator (12 and 13), most importantly 
through correlation terms involving, respectively, q$(. ) (given by 17) and (-)2. 

Take the simple model 7f(h) of the previous subsection, and use the ap- 
proximation ~b(O) --~ ( ] )  02 . Elements of ~2 =(coii ) are, to leading order 

2"885127f(1)] 2 E ( s ) (  5 f 2 - 6 f +  
coil - - N ,  [~ + 2- f~  2 j  

)7 
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0022 - 2"885127/'(2)12N2 [1 +(s) (2f2 2- 4f+ 3) /  

ooli = 2"885 [2"/t'(J)] 2 N I  [1+ (-~) (6f= - 12f+ 7 ) ] ~  /=  3 , - . . ,  k 

2.885 [2yy(]- t)l [27f(])] [(-~) (4f2 - 10f+ 8)1 
~J-~'J = Nj_ ,  2 J = 4 , . . . ,  k 

and so forth. When f=  1 (data uncorrelated), ~ has typical diagonal term co# = 
2.885 [2")'1(/) ]2 ~16"r21~/N'l, and typical off-diagonal term coj_z, j = 2.885 [2%(j - 
I)] [2~'1(/)] (~}/Ni_~. Then coi_t,i/co # = (m} [71(]- l)/%(j)] (Ni/Nj_I) , 
which is 30% smaller than the corresponding expression o l_ l, l/ojj for the Mathe- 
ron estimator. 

The correlation attenuation of the robust estimator (4) means that the ap- 
proximate weighted least-squares estimate ~v, obtained by minimizing 

k I "7(hO')) / 2 
Z Na(]) / 7 - ~ ; )  1j (21) 
]=1 

A 

is statistically more efficient than Rv, obtained by minimizing (15). More effi- 
cient estimators yet can be obtained by iterating (see subsection 2.3). 

2.3 Weighted Least Squares and Generalized Least Squares 

The generalized least-squares estimator obtained by minimizing (7), is sta- 
tistically more efficient than the weighted least-squares estimator from (8). 
Under the asympototics A1, A2 above, both yield consistent estimates. 

We have shown (subsections 2.1,2.2) that minimizing (15) or (21) yields an 
approximate weighted least-squares estimate, although the latter, based on the 
robust estimator (4), is more efficient. Tractability of(15)and (21)make them 
attractive to work with, whereas minimizing (7), with ~ given by (10) and (11) 
or ~2 given by (18), is forbidding; besides, ~ or ~2 themselves depend on variogram 
parameters h. We suggest iteration as a way to resolve this impasse. 

For example, suppose that we use the Matheron estimator (3), and that 
model parameters ~v are obtained by minimizing (15). Then substitute 27(h(j); 
~'v) into (12) and (13) (or, more exactly, into 10and 11) to obtain ~. The next 
stage of the iteration is to minimize (7) using E = E. This new set of estimates of 
~obtained can be used in the same way in (12) and (13), to obtain an updated 
estimate of ~, which is in turn used in the minimization of (7), and so forth. 

Under asymptotics A1, A2, a trivial generalization of Davis and Borgman 
(1982) shows that (2~(h(j)); j=  1 , ' " ,  k} and (25(h(]); ]= 1 , ' - - ,  k} are 
jointly normal. This justifies the iterated generalized least-squares approach, or 
its less efficient cousin, weighted least squares, as being sensible procedures. 
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When the data are not regularly spaced, some of the h(j) 's  may be close together, 
and hence it will make a big difference to the estimators whether (iterated) 
generalized least squares or weighted least squares is used. This is n o t  the case for 
the examples treated in Section 3. 

Although all of the above was derived for the stationary Gaussian distribu- 
tion, in fact all that was needed was (Zt+ h - Z t )  2 = 27(h) • W, where W is a unit 
mean random variable whose variance does not depend on h. That this happens 
on many scales, even those which are not normal, is witnessed by the following ap- 
proximation (g is a continuous function differentiable in a neighborhood of g) 

[ g ( Z t  + h)  - g (Zr ) ]  z = {[# + ( Z t  + h - I2) g ' ( # )  + ' "  "] 

- [u + ( z , -  u ) g ' ( u )  + ' "  

[g'(u)] 2 ( Z t  + h - Z02 

Hence these fitting procedures possess a robustness to a change of scale. 
An important practical consideration is the choice of k. Let H = max {h : 

N h  > 0} denote the largest poss ib le  lag to be considered in the fit. Then Journel 
and Huijbregts (1978, p. 194) have the following "practical rule" 

Fit only up to lags h for which N h > 30, and 0 < k ~ H I 2  (22) 

This guide is useful, although at times other considerations, such as when it is 
known the kriging equations will not make use of the variogram beyond a certain 
lag, need be taken into account. Currently, variogram estimates at large tags tend 
to over-influence the various ad hoc fitting procedures being used. 

In summary then, for a fixed k and variogram estimator 23'*( ') ,  the (ap- 
proximate) weighted least-squares procedure is to minimize with respect to 

k { 7 * ( h ( j ) ) }  2 
Z Nh(j) 1 (23) 
j=, v (hU) ;x )  

The estimator could be either used as an improvement over least squares, or could 
itself be the starting value of an iterative generalized least-squares approach. 

3. VARIOGRAM MODEL FITTING 

In this section we estimate variogram parameters (e.g., sill, nugget effect, 
range, etc.) by minimizing (23). We now give several variogram models that will 
be applied to coal ash and iron ore data. 

3.1 Spherical model 

= / °° + - (½) 

/ Co + C s 

0 < h  ~<a s 
(24) 

h >---as 
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where/ t  = (Co, Cs, as) is the vector of  parameters to be estimated; Co is the nugget 
effect, Co + Cs is the sill, and as is the range. 

3.2 Exponential Model 

7(h; X) = Co + Ce [1 - exp ( -h /ae)]  

where/~ = (Co, Ce, ae) is the vector of  parameters. 

h > 0 (25) 

3.3 Linear Variogram 

7 ( h ; k )  = Co + b lh  h > 0  (26) 

where ~t = (Co, bl) is the vector of  parameters. Other models are found in Journel 
and Huijbregts (1978, p. 61if). 

The sperical model is not linear in its parameters; that is, we cannot write 
,y(h) = X k  for some matrix X, and it is not differentiable in its parameters. It 
increases toward a sill, and so the covariogram given by (2) exists. The exponen- 
tial model is not linear in its parameters, but it is differentiable everywhere. It 
increases toward a sill, and so the covariogram exists. The linear model is linear 
and differentiable in its parameters. It increases without bound, and so no co- 
variogram exists. The combination of  peculiarities of  each model provides a good 
cross-section of  the type of  problems that arise when fitting. 

Probably the most difficult model to fit using the method of  weighted least- 
squares (i.e., by minimizing 23) is the spherical model of (24). We give some com- 
putational details for this case; let 

f ( h ;  Co, Cs, as) = h=l ~ Nh leo  + es[(3)  (h/as) - 1 (h/as)3] 

+ Z Nh 
h= [as]+ 1 k C o + e s  

For a s fixed, in particular a s = l, l integer, a minimum with respect to Co, Cs can 
be found by setting af /aeo  = 0, and 3f/Oc s = 0. And for as E (l, l + 1) , f i s  differ- 
entiable with respect to a s. Therefore the minimization can be done progressively. 
At the lth "node point," minimizing values of  Co and c s can be obtained and the 
appropriate f evaluated. Then by differentiation, we see if a stationary point of 
f occurs when a s E (l, l + 1). If  not,  proceed to the (l + 1)st node point and repeat. 
Minimizing (23) for exponential and linear models is relatively straightforward. 

Two data sets are used to illustrate the weighted  leas t -squares f i t t ingproce-  

dure. The first set is coal-ash measurements obtained from Gomez and Hazen 
(1970, Tables 19 and 20) for the Robena Mine Property in Greene County, 
Pennsylvania; a mostly conventional geostatistical analysis can be found in Bux- 
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ton (1982). Resistant techniques for graphing and summarizing these data, and 
detecting and allowing for nonstat ionary,  are developed in Cressie (1984). This 

should also be used as a source for the spatial locations of the original and resi- 
dual coal ash values, where "residual values" here are residuals from a drift esti- 
mated by  median polish; details are in Cressie (1984). The various analyses have 
shown the E-W direction to possess trend, but the N-S direction to be relatively 

stationary. We fit a model  to robust variogram estimator (4). 
Variogram estimators for coal ash (Table 1), together with the number of 

pairs used in estimating them, is given. Est imated values plot ted with the best 
fit superimposed are shown in (Fig. 1). The "practical rule" (22)can  be applied 
to coal ash originals (Fig. la) ,  which means a fit up to and including lag 10. Little 
parameter change occurs when the maximum lag is extended to 16 (Fig. l b). 
The same configuration can be applied to the residual data (Fig. lc) .  

The second data set is an iron ore deposit in Australia. An analysis similar 
to that described in Cressie (1984) showed approximate stat ionarity in the E-W 

Table 1. Coal Ash Data a 

Originals Residuals 

h 2,~(h) (2,~(h)) N h 2~,(h) (2~(h)) h 

1 1.86 (2.40) 186 1.50 (2.07) 1 
2 2.04 (2.53) 171 1.62 (2.20) 2 
3 1.84 (2.70) 155 1.59 (2.31) 3 
4 2.30 (3.00) 145 1.71 (2.49) 4 
5 1.92 (2.62) 134 1.65 (2.16) 5 
6 1.99 (2.43) 123 1.54 (1.84) 6 
7 2.14 (2.42)'- 111 1.35 (2.07) 7 
8 1.65 (2.32) 102 1.46 (1.90) 8 
9 2.27 (2.80) 94 1.63 (2.33) 9 

10 2.20 (2.87) 87 1.57 (2.35) 10 
11 2.20 (2.88) 77 1.51 (2.32) 11 
12 2.12 (2.65) 67 1.62 (2.11) 12 
13 1.82 (2.19) 57 1.20 (1.83) 13 
14 1.59 (3.08) 48 0.90 (1.96) 14 
15 2.44 (3.65) 40 1.38 (3.14) 15 
16 1.70 (1.83) 32 0.89 (1.42) 16 
17 1.24 (1.56) 25 0.91 (0.88) 17 
18 1.79 (1.84) 17 0.85 (1.48) 18 
19 3.45 (1.97) 10 0.40 (0.90) 19 
20 3.72 (5.17) 4 1.38 (1.50) 20 

aN-S direction; originals and residuals (from median polish). Entries 
show robust variogram estimator (4) (classical variogram estimator 
3 is in parentheses), and number of pairs N h involved in the lag h 
estimation. 
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direction, but a definite trend in the N-S direction. Also, geometric anisotropy 
was evident (Journel and Huijbregts, 1978, p. 177), but we will not be concerned 
here with this because we only fit variograms in the E-W direction. 

Variogram estimators for iron ore (Table 2), together with number of  pairs 
used in estimating them, are given. Estimated values using (4) are plotted with 
the best fit superimposed (Fig. 2). A straight line fit on data only up to lag 7 
(Fig. 2a) was considered all that was necessary as kriging would not involve 
points at greater distances (screen effect), and weighted least-squares fitting in 
the straight line case would automatically mean that greater lags would contribute 
almost nothing to the weighted sum of squares. The residual variogram estimate, 
however, shows spherical structure beyond lag 7, and so estimates up to lag 11 
were used in the weighted least-squares fit (Fig. 2b). For confidentiality reasons, 
the iron ore data set cannot be shown in its entirety, but a plan of  the spatial 
locations of  the sample (and of  course, of  the median polish residuals) (Fig. 3) 
is given. 

In summary then, using the method of  weighted least-squares, we have 
been able to estimate variogram values in the following situations: 

Table 2. Iron Ore Data 

Originals Residuals 

h 2~(h) [2~(h)] N h 2~(h) [ 2~(h)] h 

1 13.10 (14.39) 103 11.50 (11.96) 1 
2 14.81 (18.43) 94 11.89 (13.69) 2 
3 14.66 (16.93) 85 11.29 (13.46) 3 
4 17.31 (18.67) 77 13.08 (14.05) 4 
5 26.50 (23.67) 69 17.38 (16.35) 5 
6 19.14 (18.54) 61 14.74 (13.39) 6 
7 27.31 (24.66) 53 18.49 (21.96) 7 
8 41.65 (33.33) 45 17.86 (23.13) 8 
9 36.00 (34.26) 38 16.97 (19.88) 9 

10 27.16 (30.15) 31 12.90 (16.64) 10 
11 37.37 (39.67) 25 16.31 (19.60) 11 
12 39.89 (37.05) 19 15.32 (17.02) 12 
13 48.08 (39.03) 13 22.18 (25.49) 13 
14 53.18 (48.78) 7 37.90 (25.66) 14 
15 165.29 (96.22) 4 19.02 (15.81) 15 
16 203.52 (145.44) 2 9.40 (8.80) 16 

aE-W direction; originals and residuals (from median polish). Entries show robust 
variogram estimator (4) (classical variogram estimator 3 is in parentheses), and 
number of pairsN h involved in the tag h estimator. 
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Fig. 2. (a) Iron ore data; E-W direction; originals. Weighted least-squares fit of straight line 
variogram to estimated variogram (marked with ×), up to lag 7. (b) Iron ore data; E-W direc- 
tion; residuals from median polish. Weighted least-squares fit of spherical variogram to esti- 
mated variogram (marked with ×), up to lag 11. 

Coal ash originals, N-S:  

Co = 0.89,  

Coal ash residuals, N-S:  

Co + c s  = 0.77,  

Iron ore originals, E-W: 

Spherical model  (24) 

c s = 0.14,  a s = 4.31 

Spherical model  (24) 

a s  = 0 (pure nugget effect) 

Linear model  (26) 

Co = 5.17, b / = 1 . 1 1  

Iron ore residuals, E-W: Spherical model  (24) 

Co = 4.83,  cs = 3.59,  as = 8.73. 
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Fig. 2. Continued 

We also tried exponential (see 25) fitting, and in each case the spherical fit im- 
proved the weighted sums of squares by a few percent. 

Before the final model is chosen, one has to take into account variograms 
in other directions, possible anisotropies, and so forth. These adjustments are 
usually made however, in light of a first sensible fitting of a model to estimated 
variogram values. This is why a statistically based approach to variogram estima- 
tion must be of interest to the practicing geostatistican. 

4. CONCLUDING REMARKS 

The variable (Z t+  h - Z t )  2 is v e l T  skewed, and 1~ (Z t i  - Z t. + h)2 /A~h remains 
skewed (although less so), whereas Z [Zt i  + h - Z t i ] l / 2 / N h  has'less of a skewness 
problem. Weighted least squares, which is Gaussian-based, may not be all that 
appropriate for small N h. Some other criterion which takes into account the in- 
herent positiveness and skewness of the estimator would be needed when, say, 
max { N h ; h  >t 1} < 30. 
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In conclusion then, we have tried to formalize the method of  variogram 
model fitt ing by  setting out three possible approaches. 

(i) Least squares (see 6). This, and "eyeball ing," are probably the methods 
most used today.  David (1977, p. 522) does talk about weighting each 
variogram estimator according to the number of  points involved in estima- 

t ion,  but  does not  say how. 
(ii) Weighted least squares (see 23). This has the desirable feature that  weight- 

ing is directly proport ional  to the number of  observations Nh, and is larger 
for smaller lags. 

(iii) Generalized least squares (see 7). A way to handle the forbidding expres- 

sions for E, through iteration, is given (Subsection 2.3). 

Weighted least squares is the true compromise between simplicity and sta- 
tistical efficiency. A fit based on the robust estimator (4) needs less compromise 
than the Matheron estimator (3). We do n o t  recommend blind use of  this method,  
but rather recommend it as a way of  homing in on a satisfactory model that atso 
takes into account such things as anisotropies and geological considerations. 
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