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S o m e  Exact  Sampl ing Distributions for Variogram 

Est imators  ~ 

Bruce M. Davis 2 and Leon E. Borgman 3 

For equally spaced observations from a one-dimensional, stationary, Gaussian random function, the 
characteristic function of  the usual variogram estimator ~kfor a fixed lag k is derived. Because the 
characteristic function and the probability density func.tion form a Fourier integral pair, it is possible 
to tabulate the sampling distribution of  a function of  a o~ using either analytic or numerical methods. 
An example of  one such tabulation is given for an underlying model that is simple transitive. KEY 
WORDS: geostatistics, variogram estimation, sampling distributions. 

INTRODUCTION 

The variogram is the function used to estimate and model the intercorrelation 
structure of a regionalized variable. On the basis of estimates of the variogram 
made at different lags and orientations (the variogram being a function of a 
vector argument), a model is chosen for the underlying variogram of the 
random function assumed to have produced the observed data. A few articles 
concerning the choice of the model on the basis of observed data have 
appeared in the literature (e.g., David, 1975; Sabourin, 1975). 

The exact sampling distribution for the estimator of the variogram at 
some lag k may be useful in a model selection procedure or for any of several 
other reasons. 

In general, deriving the sampling distribution of an estimator may be 
quite difficult; however, if three assumptions are imposed, the problem may be 
greatly simplified. These assumptions are (1) The randon function is normal, 
(2) The random function is a covariance stationary, second-order process, (3) 
The random function exists in one dimension only. 

In the sections that follow, the theoretical basis for the derivation of the 
sampling distribution of a function of the variogram estimator is developed, 
and the algorithm used to produce tables of the distribution of the statistic is 
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briefly described. A set of  tables for one such distribution appears in the 
Appendix. 

T H E  R A N D O M  F U N C T I O N  

Let  V(x) be a normal, second-order, covariance stationary random process in 
one dimension observed at equally spaced points x = n A  for n = 1, 2 . . . . .  N + k .  

Let v, =v(nA) ,  v =(v l ,  v2 . . . .  , v u + k ) '  and let p =(# ,  # , . . . ,  #)" where E[vn] = #  
for all n and # is a N + k  vector. The covariance matrix 

C =  E [ ( v -  # ) ( v -  #'] (1) 

= E[vv'] - ##" (2) 

Now define 

Vn-- Un +k 
IV, = where a 2 is known (3) 

(2No2)~ ' 

I f  the variogram of V(x) at a lag of kA is denoted 7k, then consider 
N 

YN, k = ~ W 2 , (4) 
n=l  

1 N 
- , . ~  ~ y, ( v , - v ,+~)  2 (5) 

Zl¥O" n= 1 

=gk/O: (6) 

where Yk is the estimator for the variogram at lag kx ,  7k. 

T H E  CHARACTERISTIC  F U N C T I O N  

One way of obtaining the probability law for ~k/a 2 would be to find its 
characteristic function and then take the inverse Fourier transform of that 
function to find the associated probability density function. 

To such an end, let A be a matrix of  dimensions n x ( N +  k) with A0- = 1 for 
j = i, Aij = - 1 fo r j  = i +  k, and A0.= 0 otherwise. I f  Wis the vector (W~, W? . . . . .  
W,)', then it follows that ~I~ : 

W =  [1/(2NaZ)~]Av ~. -~(7) 

From (3) and the definition of v, 

E[ IV,] = E [ ( v , -  v, + k)/(2Na2)q = 0 (8) 

The covariance matrix for W is 

c ,  =E[ww']  (9) 
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From (2) 

= ( 1/2Na 2) E [A vv'A '] (10) 

=(1/2Naa)AE[vv']A ' (11) 

C* = (1/2Na 2) A[ C +/~kt']A' (12) 

The characteristic function for ~da 2 is 

Of~/,~2(u)=E exp iu ~ W 2 (13) 
L k n =  1 ) J  

= E[exp{iu W' W}] (14) 

Since the process V(x) is normal, W is multivariate normal with mean vector 

/~w=0 (15) 

and covariance matrix C* as given in (12). 
Theorem 1. If V(x) is a normal, second-order, covariance stationary 

random process 

(~%/a2(u)  = (I C*l) @ "(I C*-1__ 2iuI]) 

Proof. If V(x) satisfies the conditions of the theorem, W is N-variate 
normal with a mean vector as given in (15) and a covariance matrix as given in 
(12). Therefore, from (14) 

49%/d(u) = E [exp{iu W' W}] 
= Se i"w'w" ((27t) N" 1 C* I)-~e-(~)w'c*-'"OdW 
= 5((2r0N'/C* I)-~e -~(w'tc*-~-2iuIlw)dW 
=dC* ])-k( I C * - 1 - 2 i u I 1 ) 7  ~ Q.E.D. 

T H E  P R O B A B I L I T Y  D E N S I T Y  F U N C T I O N  

It is well known (see for instance, Loeve, 1960, page 185 and 188) that the 
characteristic function and the probability density function form a Fourier 
integral pair, that is, if f (x) denotes the density function and qS(u) denotes the 
characteristic function of  a random variable X 

O(u) = E [e '~x] (16) 

= ~ ei~Xflx) dx (17) 

and - ~ 

f (x) = E [e -iux] (18)  

=(1/2~) ~ e-iUx(a(u) du (19) 
- - O O  
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Generally, the form of~b~k/d(u ) causes (19) to be analytically intractable. 
No analytic expression of the probability density function for 7k/a 2 is generally 
available. However, numerical procedures are available so that the density 
function may be tabulated. 

Using the procedure discussed in Borgman (1977), the characteristic 
function, (9~k/~2(u) may be computed for values mAu, m =0, 1, 2 . . . .  , N* - 1 
where N* is a large number and Au is an increment on the u-axis. The inverse 
Fourier transform of the digitized values of (9%/~2(u) may be obtained by use of 
the Finite Fourier Transform (FFT) algorithm (Rao, 1975) to get a discrete 
version of the density function 

J~k/o2(y) (20) 

By summation then, a discrete version of the cumulative distribution 
function 

F~k/~2(y ) (21) 

may also be found. From Borgman (1977), if the side condition 

(Ax)(Au) = 2reiN* 

is imposed the numerical analogs to (17) and (19) are 
N*--I : '  

~)m = AX 2 fJ ei2~jm/N* (22 )  

j=0 
Au N* - 1 

fJ= ~ . .~=o ¢Pm e-i2~jm/U* (23) 

For the application (23) is the expression of interest. To approximate the 
probability densityJ~/~2(y), the series in terms ofj~ is 

f i -  ~f(O)/2, if j =  0 (24) 
: -  [f(/'Ay), i f j  > 0 

for 0 ~< i ~< N* -- 1. The discrete approximation to the distribution function (21) 
is j 

Fj= y.~Ay (25) 
i - 0  

where 

Fj = P[ Y < (j + 0.5)Ay] = F~/~2((j + O. 5)Ay) (26) 

A computer program was developed that computes (/)m for 0 ~< m ~< N* - 1 
given the simple transitive model 

k ,~fal k] k < h0, where a is a parameter and h0 is the range (27) 7( ) = ( a 2 =  1.0 k>_ho, 
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for the underlying variogram. 
This means that the values v,, are observations from a random function 

having true variogram as specified by (27). 
The program uses subroutine FFT2 (Borgman, 1977) to solve for J) and 

Fj. The output of the program is in the Fj tables in the appendix. 

A CHECK O N  THE TABLES 

To check the algorithm which generated the tables of the appendix, a simple 
example was produced. For this example the values of the parameters were 

N=2,  k = l ,  o-2=1.0 

{211 'k '  tk '<2.0 
(kAx) = I k I_> 2.0 (28) 

where A = 1.0. With this variogram the matrix C of (3) became 

( 1 . 0 0 . 5 0 . 0 )  
C=  0.5 1.0 0.5 (29) 

\0.0 0.5 1.0 
The matrix A was 

(,101) 
A =  0 1 -  

Hence, the covariance matrix C* was 

C,=(¼0 0¼) (31) 

From (31), W~ and W~ were independent, and the characteristic function 
(p~k/~2(u) was 

q57~/o2(u) = (1 - liu)-I (32) 

This characteristic function was recognized as that of 1/4 of a x-square 
random variable with two degrees of freedom. It was, therefore, possible to 
check the values obtained by the computer program against 1/4 times the 
values in the z-square table with two degrees of freedom. The tabulated values 
(Snedecor and Cochran, 1967) times 1/4 gave the values listed in Table 1. The 
values obtained from the program using N* = 4096 and f =  0.25 were listed in 
Table 2. The values of the two tables agree quite closely. 

AREAS FOR FURTHER STUDY 

Tabulations of Fj using other models for the underlying variogram may be of 
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T a b l e  1. 1 2 ~{2,P S u c h  T h a t  
2 ± 2 P(Z2/4 < 4x2 , p) = p  

P ~P 

0.005 0.003 
0.01 0.005 
0.025 0,014 
0.05 0.025 
0,10 0.053 
0.90 1.153 
0.95 1.498 
0,975 1.845 
0.99 2.303 
0.995 2.650 

T a b l e  2. YLl~, Such  T h a t  

P(Y2,1 <Y2,l,e) = P  

p y2,1 ,p 

0.005 0.003 
0.01 0.005 
0.025 0.013 
0.05 0.025 
0.10 0.053 
0.90 1.151 
0.95 1.499 
0.975 1.847 
0.99 2.309 
0.995 2.661 

some use. The process  would  procee  d as deve loped  in the text. Fur the r ,  it may  
be possible  to derive exact  sampl ing  d is t r ibu t ions  o f  va r iog ram es t imators  for  
two-  and  th ree-d imens iona l  processes  by the use o f  a mul t id imens iona l  F F T  
a lgor i thm.  These would  be areas  for  fur ther  research as all possibi l i t ies  o f  
ana ly t ica l  and  numer ica l  in t ractabi l i t ies  have not  been investigated.  

A C K N O W L E D G M E N T  

The reviewer made  several  comment s  tha t  improved  the presenta t ion .  The 
au thors  would  like to express their  gra t i tude  to this indiv idual  and  to Cheryl  
Car ro l l  for  assis tance in p repa r ing  the manuscr ip t .  
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APPENDIX 

Explanation of the Tables 

The tables of this appendix are a tabulation of the sampling distribution of the 
statistic 

N 
Y~,~= ~ w.  ~ 

derived in the paper. The underlying model assumed is a simple transitive 
model with range h0 and sill a2= 1.0, that is 

~a[kl Ik[<ho 
~(k)=[G2= 1.0 Ikl_>h0 

The tables give Y,,k,ho,p where P(Y,,k<y,,k,hop)=p for N=2,5(5) 25, 
k =  l(1){ho-1},ho=2.0 and other values less than 10.0, and p=0.01,  0.025, 
0.05, 0.10, 0.90, 0.95, 0.975, 0.99. 

The values of N and ho are listed at the head of each table. The values o fp  
are listed horizontally under the values of N and h0, and the values of  k are 
listed down the left-hand side of the table. 

An Example of Table Use 

To find ylo,3,5,0~95 using the tables, enter the table headed "Zone of In- 
fluence = 5, N =  10," go down the column labeled Kto  the value 3. Read across 
the row K= 3 and under the column p :  0.95 to find y~0,3,5,o.95 = 3.952. 
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N 

Sampling dis tr ibut ion  o f  YNk = 2 W~n 
n : l  

P 
The tabulated value = Y(N,K,P), the zone of 

influence ---- 2.0, N =  2 

P 0 .01  0.025 0.05 0.10 0.90 0.95 0.975 0.99 

t 

0.005 0.013 0.025 0.053 1.151 1.499 1.847 2.309 

The tabulated value = Y(N,K,P), the zone of 
influence=2.0, N = 5  

P 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

0.008 0.020 0.043 0.119 3.915 3.960 3.980 3.992 

The tabulated value = Y(N,K,P), the zone of 
influence=3.0, N = 5  

P 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

~ P 

31 

0.005 0.014 0.028 0.074 3.943 3.973 3.986 3.995 
0.010 0.026 0.064 0.223 3.888 3.948 3.975 3.990 

The tabulated value ---Y(N,K,P), the zone of 
influence =4.0, N =  5 

0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

0.004 0.010 0.022 0.053 3.957 3.979 3.990 3.996 
0.008 0.020 0.045 0.200 3.918 3.961 3.980 3.992 
0.011 0.029 0.079 0.277 3.880 3.994 3.974 3.989 

The tabulated value = Y(N,K,P), the zone of 
influence=2.0, N =  10 

~ P 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

K 
0.008 0.020 0.039 0.080 3.914 3.960 3.980 3.992 
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The tabulated value = Y(N,K,P), the zone of 
influence=3.0, N =  10 

0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

651 

t 
P 

3 

0.005 0.013 0.025 0.054 3.945 3.974 3.987 3..995 
0.011 0.026 0.053 0.114 3.890 3.947 3.975 3.990 

The tabulated value = Y(N,K,P), the zone of 
influence=4,0, N =  10 

0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

0.004 0.010 0.020 0.040 3.959 3.980 3.990 3.996 
0.008 0.020 0.039 0.081 3.916 3.961 3.980 3.992 
0.012 0.028 0.059 0.136 3.876 3.941 3.972 3.989 

The tabulated value = Y(N,K,P), the zone of 
influence=5.0, N =  10 

~ P 0.01 0.025 0.05 0.10 0.90 

0.003 0.008 0.016 0.031 3.968 
0.006 0.016 0.032 0.067 3.935 
0.009 0.023 0.047 0.100 3.983 
0.012 0.030 0.063 0.165 3.870 

0.95 0.975 0.99 

3.984 3.992" 3.997 
3.969 3.984 3.994 
3.952 3.977 3.991 
3.938 3.971 3.988 

The tabulated value = Y(N,K,P), the zone of 
influence=2.0, N =  15 

1K•P 
0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

0.007 0.018 0.036 0.072 3.921 3.963 3.982 3.993 

The tabulated value = Y(N,K,P), the zone of 
influence = 3.0, N =  15 

~__j 
P 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

K 
0.005 0.012 0.023 0.048 3.949 3.976 3.988 3.995 
0.010 0.024 0.051 0.106 3.898 3.951 3.976 3.990 



652 Bruce M. Davis and Leon E. Borgman 

The tabulated value = Y(N,K,P), the zone of 
influence = 5.0, N =  15 

3 

P 0 .01  0.025 0.05 0.10 0.90 0.95 0.975 0.99 

K 
1 
2 
3 
4 
5 
6 
7 

0.003 0.007 0.014 0.028 3.971 3.986 3.993 3.997 
0.006 0.015 0.030 0.063 3.939 3.971 3.985 3.994 
0.009 0.023 0.048 0.104 3.905 3.954 3.978 3.991 

The tabulated value = Y(N,K,P), the zone of 
influence =8.0, N =  15 

P 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

0.003 0.004 0.009 0.018 3.982 3.991 3.996 3.998 
0.004 0.009 0.019 0.038 3.961 3.981 3.991 3.996 
0.006 0.015 0.029 0.063 3.940 3.972 3.986 3.994 
0.007 0.019 0.037 0.080 3.920 3.963 3.981 3.993 
0.009 0.023 0.048 0.103 3.888 3.951 3.977 3.991 
0.011 0.028 0.059 0.146 3.879 3.944 3.973 3.989 
0.013 0.032 0.066 0.154 3.858 3.936 3.969 3.987 

The tabulated value = Y(N,K,P), the zone of 
influence = 3.0, N =  20 

P 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

~ P 

0.007 0.017 0.033 0.066 3.927 3.996 3.983 3.993 

The tabulated value = Y(N,K,P), the zone of 
influence = 3.0, N =  20 

0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

0.004 0.011 0.022 0.044 3.954 3.979 3.989 3.996 
0.009 0.023 0.047 0.099 3.904 3.954 3.977 3.99l 

The tabulated value = Y(N,K,P), the zone of 
influence = 5.0, N =  20 

P 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

0.003 0.007 0.013 0.026 3.974 3.987 3.994 3.997 
0.006 0.014 0.028 0.058 3.943 3.973 3.986 3.994 
0.009 0:023 0.045 0.097 3.909 3.956 3.979 3.991 
0.012 0.029 0.060 0.124 3.872 3.940 3.971 3.988 
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The tabulated value = Y(N,K,P), the zone of 
influence = 8.0, N = 2 0  

P 0 .01  0.025 0.05 0.10 0.90 0.95 0.975 0.99 

K 

2 
3 
4 
5 
6 
7 

K 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1K_~ P 

0.003 0.004 0.008 0.016 3.983 3.992 3.996 3.998 
0.003 0.009 0.018 0.035 3.964 3.982 3.991 3.997 
0.006 0.014 0.027 0.059 3.994 3.973 3.986 3.995 
0.007 0.018 0.036 0.077 3.921 3.963 3.982 3.993 
0.010 0.023 0.049 0.110 3.901 3.953 3.977 3.991 
0.011 0.027 0.057 0.125 3.880 3.944 3.973 3.989 
0.013 0.032 0.065 0.140 3.855 3.934 3.968 3.987 

The tabulated value = Y(N,K,P), the zone of 
influence= 10.0, N = 2 0  

P 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

0.002 0.003 0.006 0.013 3.987 3.994 3.997 3.999 
0.003 0.007 0.014 0.027 3.972 3.986 3.993 3.997 
0.004 0.011 0.022 0.045 3.955 3.979 3.989 3.996 
0.006 0.015 0.030 0.064 3.938 3.971 3.985 3.994 
0.007 0.018 0.037 0.079 3.921 3.963 3.982 3.993 
0.009 0.023 0.045 0.097 3.895 3.953 3.978 3.991 
0.010 0.026 0.055 0.128 3.888 3.948 3.975 3.990 
0.012 0.029 0.061 0.140 3.871 3.940 3.972 3.988 
0.013 0.032 0.067 0.148 3.854 3.934 3.968 3.987 

The tabulated value = Y(N,K,P), the zone of 
influence =2.0, N = 2 5  

0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

0.006 0.016 0.031 0.063 3.936 3.969 3.985 3.994 

The tabulated value = Y(N,KoP), the zone of 
influence = 3.0, N =  25 

_ P 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

0.004 0.010 0.020 0.040 3.957 3.979 3.990 3.996 
0.009 0.023 0.045 0.093 3.911 3.956 3.979 3.991 


