whose use leads to the expression (3.3).
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CRITICAL INDICES FOR MODELS WITH LONG-RANGE INTERACTION
M.D. Missarov
The leading eigenvalue and leading eigenfunction of the renormalization-group differential
at a non-Gaussian fixed point are found. Expressions are obtained for the critical indices

of models with long-range interaction.

Introduction

In [1, 2], the Wilson equations were solved for an effective scalar Hamiltonian with free part deter-
mined by the long-range potential U(x)~const/|x|? x—o. This new non~Gaussian branch of fixed points of
Wilson’s renormalization group is separated from the Gaussian branch of fixed points at the point a=%.d, and
if d is not a multipie of 4 it describes the critical behavior of models with long-range interaction. The
Hamiltonian has a nice representation which uses the procedure of analytic renormalization:

H=In(A.R. lexp(u(e)@*): -ap-n),

where by ¢* we denote the Hamiltonian
(P*= J.o"ﬁ (x) dix= J.G (k1) co.o(k)8(k A+ ...+ k.) ¥k,

I...!lsa-g 18 the transition to Wick polynomials with respect to the Gaussian field with propagator —A(1—x)
(k) =—|k|**(1—xa(k)), x=(k) is the characteristic function of the ball {k: |k|<R}, u(e)=u.e+u,e’+... is a formal
numerical series in €, and A.R. denotes a variant of analytic renormalization. This Hamiltonian can be
expressed in the form of a formal power series H=H,‘teH,+e*H,+..., where e=a—%/.d, d is the dimension of
space.
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In this paper, we calculate the first two eigenfunctions (and their eigenvalues) of the differential of
the renormalization group. Knowledge of the first eigenvalue makes it possible to find a closed expression
for the critical index v (in the form of a formal power series in ) in the dimensions d = 1, 2, 3. In our
theory, the index 7 is obvious and equal to 2 — {d/2 + &}, The remaining indices can be found from the
relations of scaling theory (see [3-5]),

In the first and second orders of perturbation theory, the critical indices for models with long-range
interaction were obtained by Fisher, Ma, and Nickel [6], Suzuki [7], Suzuki, Yamasaki, and Igarashi [8], and
Ma [9].

In this paper, we study the critical indices for the non-Gaussian branch of fixed points of Wilson's
renormalization group obtained in {1,2]. For the many definitions, the notation, and formulations of the
theorems we refer the reader to [1,2]. The most necessary information will be recalled during the
exposition,

1, Differential of the Renormalization Group

at a Fixed Point

Let HO=¢H,"+e’H,"+ ... be a formal smooth Hamiltonian: H,6#36>. Then the action of the operator
of the smoothed renormalization group (see [1]) on H™ can be represented in the form

%x(,:) (H")=In:exp REOHO —A@,~n= XD ROHO NI (1.1)
Here, :...:_su;—n denotes the Wick operation with respect to 2 Gaussian measure with correlation function
8 (kytke) (—A (=) (k)),
A (=) (k) =| k[ *=(x (k/A) — (K)), (1.2)
where y(k)eC> (RY), (k) =x(|k]|),
=0, 1ki=A,,
x(k) | >0, <1, R.>|k|>R,,
=1, Ro?[ki,

R, > Ro > 0 are numbers, and a=%,d+e. The symbol ¢ means that only connected diagrams are taken.
Finally, the scaling operator % acts on the m-particle Hamiltonian

= | hlk,. . k)80t k) o(ky) ... o(kn) dk
1k¢| <R
in accordance with the formula
@ H=pemmirs § pGe/n, ) 8kt . L k) o (k) . o(k.) dk, 1.3)
1kg|<AR
and is extended by linearity to the complete space of formal Hamiltonians.
We denote by Dmu)%% the differential of the nonlinear renormalization-group transformation % “

at the point H:

Doy BNH = Z ‘“)H(‘” L BOHO, BOH: S0 (1.4)

n=1
The differential at the point H=0 is given by
DAY H=R"H : s, -
We shall denote D#®, by D,. Note that (1.4) can be rewritten in the form
Dyo%y H=D, (e"" H)e~", (1.5

To conclude this section, we give some information on analytic renormalization, since it will be
frequently used in what follows. Namely, we shall be interested in the <p4d theory with propagator
[k{**(1—yx(k)) in the neighborhood of the points e=a,=%.d. Suppose we are given an arbitrary graph G in
the ¢4 theory and F, is the corresponding Feynman amplitude. The latter is a meromorphic function of
e=a—"/,d. The renormalized amplitude is determined in accordance with the formula
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.....

.
ARFe= Y. Fou oy o)) (1.6)
V(H )NV (H = o

and is an analytic function of # in a neighborhood of the origin. Here, the summation is over all possible

sets {H,, ..., H,} of pairwise nonintersecting (in the vertices) subgraphs such that V(H)U.. . UV{H,) =V (G),
W@

where V(H)} is the set of vertices of the graph H. O(H)= Z a (—g—) are certain polynomials Gwithout
n=1

free terms) in 1/¢ of degree | V(H)I — 1 associated with each graph, and O(H) depends only on H and

not on G. An exception is the trivial subgraph of H with one vertex, for which Q(H) = 1. We recall that d

is not a multiple of 4,

THEOREM 1. (See [10,11,12]) (additivity formula for Feynman amplitudes). With each connected
graph H of the ¢4 theory one can associate a polynomial
[V(H)[~1

o= §m (2

n=1
such that the renormalized amplitude A.R.F, is an analytic function of & in some neighborhood of the
origin.

We point out some additional properties of the polynomials O(H)., O{(H) = 0 if: 1) H is one-
particle-reducible or 2) the number of external lines of H is not equal to 4.

Suppose
m—qi
iy (@
= = = — > .
Oi=1, On 20(3) Z(e) Yo, me2, a.7
GEFn, ne=i GESm

where &, is the set of all the 1-particle-irreducible graphs of the gu4d theory that can be constructed from
the given m vertices f{with four external lines),

We introduce the formal series

o

p(u)=e {2 ~0n—';u” }/{g —GZ%;TLL”“’} =; eatt™, (1.8)

n=1

It was shown in [1-2] that if the dimension d is not a multiple of 4 then a,=%,d is a bifurcation
value (see [2]), and the effective Hamiltonian is a renormalized projection Hamiltonian:

H=A.R.: exp(u(2)9*(0)) :—ag—n 1.9

where u(e)=Z u;ie’ can be found from the equation

p@)=0, ¢*(0)={ 80kt +h)o(k). .olk)dk, A(1—) B)=lkl*(1—(K)). 1.10)

In other words, the Hamiltonian (1.7) with coupling constant determined by (1.10) is a fixed point of

3
the renormalization transformation j?(?,’ e for any A = 1, It is this fixed point that will interest us in what
XAs

follows.

2. The Differential and Analytic Renormalization

A candidate for an even eigenfunction is the expression

AR ig?exp(u(e) gt : Saiimay 2.1

Here, ¢'= [8(k,+k)o(k)o(k,)dk. In the determination of expressions of the type (2.1), we eancounter diagrams
spanned by a certain number of vertices with four external lines and just one vertex with two external lines.
In order to make direct use of the theorem on the additivity of analytic renormalization in the (pé theory, we
shall assume that at the vertex with two external lines there is a loop. This loop changes ¢*= {6 (ktk;) o (k)
o(k,)dk by the factor c(e), which is an analytic function of e: c(e)={A(1—y) (k)dk. This integral converges
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at large @, and at the point a=°/,d+¢ we consider its analytic coutinuation, which, as is well known, is
c(e)=[Aydk. This factor is unimportant for determination of the eigenfunction.

LEMMA 1. Suppose

- .
W(R)=Z Onﬁ,
n==1

7, (1) = 205”3—:, 0.7 = Z 0(%),

" 38
where ¥.° is the set of all graphs spanned by the m four-leg diagrams and one two-leg diagram. Then
AR @ exp(ug!) Sa—n=7"3(u): ¢" exp(# (u) §*)  “acimny.

Equation (2.4) is understood in the sense of equality of the formal series in u.

The proof of this lemma is similar to the proof of the theorem in [2] (see also [12]).

LEMMA 2. The Wick polynomials :9*(¢*)" —su-x are eigenfunctions of the differential Dy:

Do i@ (@4) ™1 —aqimy =AY 10N (@) M _ainy.
This lemma can be proved by direct verification.
LEMMA 3. Suppose H'”=AR. exp(ug’):°,,_,,- Then

‘9% exp (W (u) M*q*) :—A(1~X)'
AR exp(ue®) ioagey

DuoRs (AR, 2 @ exp(ug*) : 2agiy,) =AY, (1)

The equality is understood in the sense of equality of the formal series in u.
Proof. Note that

A.R. :¢"exp (ug’) :—Z(i—x)A- R. rexp(uag*) ‘cag—n=A.R. 19 exp (ug*) :_an.

Indeed,
e d 4 ¢
A R. 9" exp (') ' cap-n= EA- R. texp (ug*+v9?) —a—u lomo=
d R.oig? D
ZmAR.: exp(u(pa_!_vcpz) :—A(i—x)]t=0= AR P eXP(u(P!l) AL B
dv A R exp(u9*) i_ag—y
Therefore

Di(A R, exp(ug*)  SaenA. R 1exp(804) \_ag-y) _
AR texp (@) t—agi—y

DH(a).%xf:) (A. R. :@? exp (") * Zagioyy) =

D, (A R. :(pz eXP(ucPA) :—A(1—1))
A R. iexp (ugh) ‘oag

By Lemmas 1 and 2,
Di(AR. 16" exp(ug*): —aqis) =Da (P2 (m) 1exp (W (1) §) 9% —agsr) =A77% (1) 0% exp (MW () 9): _aiony-

This proves Lemma 3.

2.2)

2.3

2.4)

2.5)

@2.6)

In what follows, we shall use as parameter of the renormalization group the variable v: A=exp{1/2}.

THEOREM 2. Suppose p(u) is given by (1.8). Let H=A.R.:exp(ug‘):®,, .. Then

a e d
DH(D).%X(’;\( A.R. @ exp(ug*) :Zag—x) ={exp [21 (—2 +a)] 7. (u) }X

d 1
{exp (Tp —) (——A. R. texp (0@") 9% ~a¢1-x) )}/ {A.R.: exp(ugh) icag—n)-
du 7. (u)
Proof, Indeed,
had (BMW) n . i
texp (W (w) e 9") @ map-n= Z T )P —a(x)

ni
n=t
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Ag in [2], we use the identity (exp(et) ¥’ (u))"=exp(tpd/du}#"(u). Then

d Z“" e d 1
: exp (W(u)e“cpb)wzz‘:exp (Tp du) nl : ((P4)H(PZ :_A(iAX)zexp (Tp du) ( Va (u) AR :exp(u(PA)(PZ:—A“_X)) ’
H 2

n=1
which proves the theorem.

Consgider the expression

o

77w v\ 00 0 R
mw{ (71—1)'u }/{Zon’ u}_-;::)cn u”,

a=1 ==

Here, the coefficieats 0% are polynomials in 1/¢, and therefore, in general, the coefficients ¢/¥) are also
polynomials in 1/¢,

We consider the product of two formal series in u:

m(u)rp(u)%i—”)-) - (2 e ) (E e u) =§; ra®, (2.8)

n=1 n=1

In general, the coefficients r, are also polynomials in 1/e. A remarkable circumstance is that
the coefficients 7, do not depend on € and are constants.

THEOREM 3. The quantities r,, n =1,2,,,., are constants that do not depend on ¢.

Proof. We ghall prove this by induction on n in the same way as Theorem 2.5 is proved in [2].
It is readily seen that ri=—c,c®=—"/;, so that the basis of the induction is established.

Suppose the coefficients ri,...,m.— are analytic in ¢ (i.e., are constants). h,=A.R. lexp(u¢")
9°:° ,1_y 1s analytic in € in the neighborhood of the origin (see Theorems 2.2-2.4 in [1,2]). The differential
of the renormalization group is also analytic in ¢, and therefore the expression

D ﬁ(—%d-{—s) 9 4y, C
a0 B(TH) AR g exp (ugh): Sagy
is analytic in ¢ in the neighborhood of the origin. From this fact we derive the analyticity of ¢,. By
Theorem 1,

c T /d g d
DH(o)tZ’;'f)em (A. R @ exp (ug?): Zag-y) ={exp [——2— (7 + €>J Vs (u) exp (Tp E;) X

1
<m A.R.: exp (ug!) p* —A(1—x)>} / {A. R:exp (ug*) : _sa-p}
We shall be interested in the series

d 1
7, (u)exp (Tp:i—;) (7(—u)_A R. :¢*exp{(ugp*) :_A“_,_,},
2

which is obviously analytic in € in the neighborhood of the origin.

We consider the following operators, which act on the space of formal power series a(u)= Za_,»uf':

=0

D=p(u)d/du, T=7,(u). We introduce a new notation for the coefficients of the series 7. {(u):

7 (u)= i bau.

n=0

The matrix of the operator D has triangular form: D=(d;){;_,, d5=j¢i~i+;, Where we assume that c, are
equal to 0 for k = 0. The matrix of the operator T alsc has triangular form: T=(t,-5);’;-=0, ty=b._; where
b, = 0 for k < 1. Clearly, T-' is an operator of multiplication by (7, (u))-

We denote by D, (exp(tD))a, T4, (I'*), the minors of the matrices D,exp(xD), T, T, situated at the
intersection of the first n + 1 rows and n + 1 columns. Because all the above matrices are triangular, we
have the relations (exp tD).=exp(tD,), (I.) '=(7"*),. The analyticity of all the elements of the matrix exp(rD)
in 7 also follows obviously from the triangular nature of the matrix D. From the triangular form there
also follow the relations T'e*? T t=¢"?"", T, T, '=(e"""""),. The operator §=TDT-! is given by the formula
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d
s=7.) (p(w) ) s (1) p () +p ()

1

722(”/)
We calculate the dependence of the matrix of exp(rS,) on r,, n =2 (note that exp(7S,) does not depend on
r, for k > n). The matrix of the operator S, has the form Sa=(58") 1 3=0r ) =jsi—sptri;, Where we assume
r, =0 for k=0, 8, depends on r, only in one element — at the intersection of the first column and the

n-th row. Suppose F,= (f”)”_o, where fre=1, =0 for all the remaining indices. Then §,=(r,+0)F,+8. =
rFot8,"”, where the matrix S does not depend on r,. We show by mductlon that a similar analytic expression
is also valid for the matrix S, ”‘ St=o,r . F.+E®, where the matrix E<"’~(e¢J Yismo 1S triangular and does not
depend onr,. It is readily verlfled that FuS."=rFy, F.F,=0, EMF, —-e(k) F.. Tn addition, if E=(ey) .y F=
(Fa) mrmoy EF—(gm)m_o are triangular matrices, then gn,=emufan. Hence, SHi—(a,r.F,+ E®) (roFutSa") =
(owre e VB, + EWS = oy Fy + E®D) where E¢+V=p®mg 7

,n

(k1)

e'nn "(nci+r0)eﬂn ) (2.9)
e 7%} 1=ahr0+en,ﬂ . 2.10)
This proves the assertion.

The solution of the recursion relations 2.9) and 2.10) with the initial conditions egffn =nc,+ry, ;=1
give the result ax=[{(nc,tr)"—(0+r)* /[ (n—1)e;], 1.e., St={[(nc,Tro)*—(04r)*1/[(n—1) e, 1}raFa+E®, Thus,

. [ (e +ry)* —(O+ro)h] exp (t(ne,+ro) ) — exp(t(0+ry))
Sn)= Wt Ey= Tt Ey, 2.11)
exp (t5s) ZJ ki (n—1)c, T (n—1)e, fle TR
where the matrix E, does not depend on T, ¢, = ¢ and, therefore,
xp (tne) — 1
exp (18,) = exp (rro)—“—p(—riﬂ———— raF ot Ey,
(n—1)e

We now turn to the expression Dam.%(“) o (AR ¢ exp(ug*)! —s4—y), which we denote by h;:

E Z’“’“”AR G (@)™ —agen

n=0

where (gun(T))n" ey =@ (1) =exp(8).

As we have already noted, A.R. :(9')"¢* _au~y is analytic in &, and so is h;. This last means that

all the coefficients h; for uj, j = 0,1, ..., are analytic in €. The coefficient of u” is
Zl Ll AR 9" (0)™ f-a-n- 2.12)
m!
m=0
All the elements g¢.n(t), except g (1), can be expressed in terms of ry,..., r.oi, and, therefore,

they are analytic in € by the induction hypothesis. Further, in accordance with (2.11),

exp(tne
qno(T) = exp (tro) blwme) — rn+qm' (1),
(n—1)e
where the element ¢.."(t) can also be expressed solely in terms of r,...,r,_;, and, therefore, is analytic

in &, Thus, from the analyticity of the coefficient (2.12) there follows analyticity of the term

exp(tne)—1
(n—1)e

Therefore, the coefficient T, is analytic in &, which is what we wanted to prove. This proves Theorem 2.

exp (tro) TN U

3. Spectrum of the Differential of the Renormalization Group

We can now prove the following theorem.,

THEOREM 3. A.R.:p*exp(u(e)e*):® gt is an eigenfunction of the differential of the renormalization
group at the fixed point H{"=AR.exp(u(e)¢'):%, ,, with eigenvalue

exp[—;— (_lz_i_ +8+2n2 (u(e)i)] E}yd/2+e+2n;(2)). (3. 1)
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Here, u(e) is the coupling constant of the effective Hamiltonian.

Proof. Indeed,

DH(O)ﬁa(ca,)er/éA R.:exp (u(2) ¢') 9% Zag-p = BXP{ 2 (”)} I

exp (10 ) (i A B % exp (0 009" -0

A BR.rexp (u(e) o)t iaay

T d >} e A R.:@?exp(u(e) ot iag—n
: A R.cexp (u(8) 9%): —aa-n

exp[ 2 < +e+ 20 (u (8))]A. R.:exp (u (8) ") ©° Zaa-)-

Here, we have used the circumstance that p{(u) and 7 (u) are formal power series in u with
coefficients analytic in ¢ f{actually, they do not even depend on ¢), and u(e)} is a formal power series in &,
the relation p(u(e)) = 0 holding. The theorem is proved.

Remark. One can show that the second even eigenfunction of the differential of the renormalization
group (which "bifurcates™ from the eigenfunction :@*:_s4—y of the differential of the renormalization group at
the Gaussian fixed point) is given by the formula A.R.:q*exp (u(e)o*): iy and the corresponding eigenvalue is
exp [T(p/(u(e))—e) ]=a*"")=2, Note that the first order in & of (p’(u(e)) — &) is equal to —2¢, i.e., the
second eigenvalue is already smaller than 1, which agrees with the general dynamical picture.

The question of the leading eigenfunctions will be considered in a separate paper,

4. Critical Indices

We now return to the old parameter A of the renormalization group. Then the leading eigenvalue
can be rewritten in the form 2,=A******» The eigenfunction A.R.:g’exp (u(e)9’):°,,,, "bifurcates" from the
quadratic eigenfunction :¢*:_s—y for the differential of the renormalization group at the Gaussian fixed point,
and, as is well known, it is the leading eigenvalue A, that determines the values of the critical indices (see
{3,50). We recall also that d = 1, 2, 3, For d > 4, new quadratic eigenfunctions appear, and in this case
the critical indices have a more complicated construction.

The index v is given by the formula
v=1/(d/2+e+21,). (4.1)

The index n, which determines the order of decrease of the correlation function, is given by definition in our
model and is equal to
n=2—{(d/2+e). 4.2)

The remaining indices «, 8, and y can be found from v and 7 in accordance with scaling theory
(see [3,5,13]). In particular,

= (%+a)/(~‘;—+a+2nz) =1+%—8§+ (%)% (291(—‘12—) —1) et | (4.3)

where %(x) =z ($(1) =29 (x/2) ¥ (z)), ¢(z)=I"(z) /T (z).

In [6], arguments based on the Callan—Symanzik equations were used to obtain the first two orders
in €, and they agree with the first two orders in 4. 3).

1t is interesting to make a comparison with the results of Yukhnovskii {14], Ifwe setd =3, ¢ = 1
then the value of the index 7, as in [14], will be 0. For X = 2, calculation of the first eigenvalue to the
second order in € gives the result A,=2%*u~282 In [14], numerlcal calculation for A, gave 2.947. The
values for the critical index v are, respectively, 0.66 and 0. 64,

I thank P. M. Blekher for helpful discussions.
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LOW-FREQUENCY ASYMPTOTIC BEHAVIOR OF THE GREEN’S
FUNCTIONS OF DEGENERATE BOSE SYSTEMS (KINETIC APPROXIMATION)

V.P. Skrypnik and V.8. Shechelokov

On the basis of Bogolyubov’s idea of a reduction in the description of nonequilibrium states,
a closed system of equations is obtained for investigating the behavior of a spatially
inhomogeneous degenerate system of Bose particles with weak interaction in the presence

of an external alternating field, The connection between the low-frequency asymptotic
behavior of the Green’s functions and the kinetic characteristics of the system is established.

1. Introduction

In the present paper, we obtain equations of motion for the statistical operator of a spatially inhomo-
geneous degenerate system of identical Bose particles with weak interaction in the presence of an external
field. We use the idea of Bogolyubov concerning the reduced description of nonequilibrium states [1] and the
ergodic relations of the general theory of relaxation processes formulated in [2,3]. The obtained equations
are convenient for constructing perturbation theory in the low frequency of an external field, and also in the
small spatial gradients and the small parameter of the effective interaction between the bosons. The entire
treatment is in a model with condensate [4, 5], Further, using the connection between the Green’s functions
and the variational derivatives [6], we find a closed system of integrodifferential equations for the quantities
that determine the asymptotic behavior of the Green’s functions in terms of the linearized collision integral
of the quasiparticles,

2. MBasic Parameters and Relations

In {5], Peletminskii and Sokolovskii considered the kinetics of a spatially inhomogeneous Bose system
with weak interaction in a model with condensate. Here, we generalize the results of [5] to the case when
the degenerate Bose system is in an inhomogeneous external field. The Hamiltonian of such a system has the

form
H(t)=H+H: (). @.1)
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