
whose use  leads  to the expres s ion  (3.3). 
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New 

CRITICAL INDICES FOR MODELS WITH LONG-RANGE INTERACTION 

M . D .  M i s s a r o v  

The leading e igenvalue  and leading eigenfunction of the r e n o r m a l i z a t i o n - g r o u p  dif ferent ia l  
at a non-Gauss ian  fixed point a r e  found. E x p r e s s i o n s  a r e  obtained for  the c r i t i ca l  indices 
of mode l s  with long- range  in te rac t ion .  

I n t r o d u c t i o n  

In [1, 2], the Wilson equations were  solved for  an effect ive  s c a l a r  Hamil tonian with f ree  par t  d e t e r -  
mined by the long- range  potent ial  U(x)-const / Ixl  ~, x-+oo. This  new non-Gauss ian  branch  of fixed points of 
Wilson. 's r e n o r m a l i z a t i o n  group is sepa ra ted  f r o m  the Gauss ian  branch  of fixed points at the point a=3/zd, and 
if d is not a mul t ip le  of 4 it d e s c r i b e s  the c r i t i ca l  behav io r  of models  with long- range  in terac t ion .  The 
Hamil tonian has  a nice r e p r e s e n t a t i o n  which u se s  the p rocedure  of analyt ic  r eno rma l i za t ion :  

H=ln  (A.R. :exp (u (e) ~ )  : -A(~-~)) ~ 

where  by (z 4 we denote the Hamil tonian 

ddx= ( k , ) .  o(k,)6 (k,+...  + k0 

: . . .  : 2a(i-~) is the t rans i t ion  to Wick polynomials  with r e s p e c t  to the Gauss ian  field with p ropaga to r  - h  ( t - k )  
(k )=- [k ]d-a ( t -zR(k) ) , ) r  is the c h a r a c t e r i s t i c  function of the ball  {k: lk] <R}, a(e)=a~e+u2e~+.. ,  is a f o rma l  
numer i ca l  s e r i e s  in ~, and A . R .  denotes a va r ian t  of analyt ic  r eno rma l i za t i on .  This  Hamil tonian can be 
e x p r e s s e d  in the f o r m  of a f o r m a l  power  s e r i e s  H=Ho+eH~+e~H,+..., where  e=a--~/~d, d is the d imension of 
space .  

Moscow State Univers i ty .  T rans l a t ed  f r o m  T e o r e t i c h e s k a y a  i Ma tema t i cheskaya  Fizika,  Vol.46.  
No.2 ,  pp.232-241,  F e b r u a r y ,  1981. Original  a r t i c l e  submit ted F e b r u a r y 2 6 ,  1980. 
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In this paper,  we calculate the f i rs t  two eigenfunctions (and their  eigenvalues) of the differential of 
the renormal iza t ion  group.  Knowledge of the f i rs t  eigenvalue makes it possible to find a closed express ion 
for the cr i t ica l  index ~ (in the fo rm of a fo rmal  power se r ies  in e) in the dimensions d = 1, 2, 3. In our 
theory,  the index V is obvious and equal to 2 - (d/2 + e).  The remaining  indices can be found f rom the 
re la t ions  of scaling theory  (see [3-5]). 

In the f i rs t  and second o rde r s  of per turbat ion theory,  the c r i t ica l  indices for models with long-range 
interaction were obtained by Fisher ,  Ma, and Nickel [6], Suzuki [7], Suzuki, Yamasaki,  and Igarashi  iS], and 
Ma [9]. 

In this paper,  we study the cr i t ica l  indices for the non-Gaussian branch of fixed points of Wilson 's  
renormal iza t ion  group obtained in [1,2]. For  the many definitions, the notation, and formulat ions of the 
theorems we re fe r  the r eade r  to [1, 2]. The most  n e c e s s a r y  information will be recal led during the 
exposition. 

1.  D i f f e r e n t i a l  o f  t h e  R e n o r m a l i z a t i o n  G r o u p  

a t  a F i x e d  P o i n t  

Let H(~ ~ e 2 (o) + H2 + . . .  be a formal  smooth Hamiltonian: ] t o ~ - 3 ~ ' .  Then the action of the opera tor  
of the smoothed renormal iza t ion  g roup  (see [1]) on H (~ can be represen ted  in the form 

~(~) (H (~ = In : exp ~s(")H (~ : -A(, ~-z)-- : exp ~(=)H (~ : ~-,(,~-,). ~,~ - (1.1) 

Here, : . . .  : _~,~-,) denotes the Wick operation with respec t  to a Gaussian measure  with cor re la t ion  function 
i5 (k,+k~) (-A (7~x-Z) (k)), 

A (X~--Z) (k) : I k 1~-~(7,(k/;~) --X (k)), (1.2) 

where x(k)6C~ (W), x (k)=x( Ik l ) ,  
=0, tkl~>R~, 

x(k) >0, <1, R,>IkI>Ro, 
----~, Ro~>lkl, 

R~ > R 0 > O are  numbers ,  and a=212d+8. The symbol e means that only connected d iagrams are  taken. 
Finally, the scaling opera tor  ~(~) acts  on the m-pa r t i c l e  Hamiltonian 

H=  ~ h(k~,. . . ,k~)5(k~+.. .+k~)(~(k,) . . .a(k~)dk 
Ikd<R 

in accordance with the formula 

(a)  t " /  ~ y n / Z - - m d + d .  ~ .  = ~ h ( k J ~ , . . ,  kJ~.)5(k,+. . .+k~)o(k~). . .a(k,~)dk,  (1.3) 

and is extended by l inear i ty  to the complete  space of formal  Hamiltonians.  

We denote by D , ( , ) ~  ) the differential  of the nonlinear r enormal iza t ion-group  t ransformat ion  ~(~) Z,A 

at the point H(~ 
oo 

o ~  ~5(a) , ~ n ~[~)H(0), ~(~)~,(0) x(a) H.  r (1.4) �9 . . , J ~  n , J~ . - A ( x ~ - X ) "  

n=l 

The differential at the point H(~ is given by 

D ~ <") rr_  .~(a) H O,~,~Xfl .t* - -  .~'t4. : - - A ( X ~ - - X }  

We shall denote D0~)~ by D 1. Note that (1.4) can be rewri t ten  in the fo rm 

n,~o)~j2 H=D~(e  H(~ H)e  -rr(',. 

To conclude this section, we give some information on analytic renormal iza t ion ,  since it will be 
frequently used in what follows. Namely, we shall be interested in the ~4 d theory  with propagator  
lkle-~(i--x(k)) in the neighborhood of the points a=ao=3/2d. Suppose we are  given an a r b i t r a r y  graph G in 
the ~v~ theory  and F c is the cor responding  Feynman amplitude. The lat ter  is a meromorphic  function of 
e=a--3/2d. The renormal i zed  amplitude is determined in accordance  with the formula  

(1.5) 
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G 
.A. Pt. F G ~  ~ ~GIiH ...... Hr ~ H 0 (If. j) ( 2 .  6 )  

{H~ ..... Hr}cG J~l 
V(H i) ~ V(H])=O 

and is an analytic function of s in a neighborhood of the origin.  Here, the summation is over  all possible 
sets {H . . . . . .  H~} of pairwise nonintersect ing (in the ver t ices)  subgraphs such that V(H~)0... UV(H~)=V(G), 

" ' "  ( 5 ) "  
where V(H) is the set of ver t ices  of the graph H. 0 ( / / ) =  E a ~  are  certain polynomials (without 

free t e r m s ) i n  1/~ of degree I V(H)I - 1 associated with each graph, and O(H) depends only on H and 
not on G. An exeeption is the trivial  subgraph of H with one vertex,  for which O(H) - 1. We recal l  that d 
is not a multiple of 4. 

THEOREM 1. (See [10, 11, 12]) (additivity formula for Feynman amplitudes).  With each connected 
graph H of the ~ theory one can associa te  a polynomial 

such that the renormal ized  amplitude A.I~. F c is an analytie function of s in some neighborhood of the 
origin.  

We point out some additional proper t ies  of the polynomials O(H).  O(H) -= 0 if: 1)H is one-  
par t ic le- reducible  or  2) the number of external lines of H is not equal to 4. 

Suppose 

6~0 ~r n = i  ~G~rn 

4 where ~ is the set of all the 1 -par t i c le - i r reduc ib le  graphs of the ~ d theory that can be constructed f rom 
the given m ver t ices  (with four external  lines). 

We introduce the formal  ser ies  

}I{s o.  ~., (~-~)! 
n = i  n = t  n = i  

It was shown in [1-2] that if the dimension d is not a multiple of 4 then ao=~/~d is ab i fu rca t ion  
value (see [2J), and the effective Hamiltonian is a renormal ized  projection Hamiltonian: 

where u(e)=~-~ ass ~ 

c 

H=A. R. : exp (a(8)q3*(o)):-Ac~-~), 

can be found from the equation 

tl. 9) 

p(a)=0, q3'(~)=~ 6(kl+.. .  +k~)a(k,)... o(k~)dk, A(l-%) (k)~lkl~-~(~-%(k)). (1.10) 

In other words,  the Hamiltonian (1.7) with coupling constant determined by (1.10) is a fixed point of 

the renormal iza t ion  t ransformat ion  ~(-~a+~) for any ?~ >- 1. It is this fixed point that will in teres t  us in what 

follows. 

2. T h e  D i f f e r e n t i a l  and A n a l y t i c  R e n o r m a l i z a t i o n  

A candidate for an even eigenfunetion is the expression 

A.R. :q~ exp (/~ (s) q3 *) : -~K,-~>, (2. ~) 

Here, q~2= f5(k,+k2)o(k,)a(k~)dk. In the determinat ion of express ions  of the type (2.1), we encounter d iagrams 
spanned by a cer ta in  number of ver t ices  with four external lines and just one vertex with two external l ines.  

4 In order  to make direct  use of the theorem on the additivity of analytic renormal tza t ion  in the cp d theory,  we 
shall assume that at the ver tex with two external lines there is a loop. This loop changes q02= ~5(k~+k~)G(ki) 
o(k~)dk by the factor  c ( s ) ,  which is an analytic function of 8 : c ( s )= j~A( t - ; 0  (k)dk. This integral  converges  
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at l a rge  a, and at the point a=~/:d+s we c o n s i d e r  i ts analyt ic  cont inuat ion,  which, as is well known, is 
c (e) = j'5%dk. This  fac to r  is un impor t an t  fo r  d e t e r m i n a t i o n  of the e igenfunct ion.  

LEMMA 1. Suppose 

L b~ 
Yr (~) = O~ ~ ! '  (2.2) 

n ~ l )  ~9~ 9m ~ 

where  ~ . ?  is the set  of all  g r aphs  spanned by the m f o u r - l e g  d i a g r a m s  and one two- leg  d i a g r a m .  Then  

A. R.: q~ exp (uq)') :_~(,_~)=~ (u) : q)~ exp (]r (a) ~ )  : r (2.4) 

Equation (2.4) is unders tood  in the sense  of equa l i ty  of the f o r m a l  s e r i e s  in u. 

The p roof  of this  l e m m a  is s i m i l a r  to the p roof  of the t h e o r e m  in [2] (see also [12]). 

LEMMA 2. The Wick po lynomia l s  :q)~(qr -~(~-z) a r e  e igenfunct ions  of the d i f fe ren t ia l  D),: 

D~ :e ~ (~') ~: _~(~_~ =)~/~+'+~"~ :e ~ (~)  ~: _~(~_~). (2.5) 

This  l e m m a  can be proved  by d i r ec t  ve r i f i ca t i on .  

LEMMA 3. Suppose H(~ :exp(u@):ca(~_x). Then 

�9 z exp(Yf(u)~q~ ~) :-~(~-~> 
Dn(o),~zx (A.R. : ~Zexp(u~p') "~ ~ ~/~+~v/" ~,,~ "q~ (2.6) , " - - A ( t - - X ) ]  ~ 1 ~  ~ 2  \ ~ ] "  

A. It. : exp (uq) ~) :-~(,-~1 

The equal i ty  is unders tood  in the sense  of equa l i ty  of the fo rma l  s e r i e s  in u. 

P r o o f .  Note that  

A. R. :(pz exp (~@) :-~(i_x)A. R. :exp (aqo ~) :_~o_~)~A. It. :qo ~ exp (aq):) :_~(~_~). 

Indeed,  

T h e r e f o r e  

d ' 2 �9 c 
A. 19. :q~ exp (aq) ~) :-~o-~)= ~v A" R. :exp (uq)~§ .-~o-~)l~=0= 

d 
--~vln A. R. : exp (u~o~+vq0 ~) :-~:,-~)1,=o= 

A. R. :q0 z exp (a~0 *) :-ar 

A. It. : exp (u(~ ~) :_~(~_~) 

D,(,)~(~) (A. R. :q0~ exp (u(p ~) :-~A(,-x))- D~(A. R. :@ exp (uq) ~) :_~(~_~)A. t/ :exp (uq) ~) :_~(~_x)) _ 
A. R. :exp (aqr 

D~(A. R. :(p2 exp (acp~): ~(~_z)) 

A. R. :exp (uqr 

By L e m m a s  1 and 2, 

D~ (A.tl. :q~ exp (aq)~) : -~o-x)) =:D~ (~'z (a) :exp (7/f (a) (pC) q)~: -A(~ x)) = ~/z+~'2 (a) :q~2 exp (~/~;e/~ (a) qr -A(i-x). 

This proves Lemma 3. 

[n what follows, we shall use as parameter of the renormalization group the variable x: )~=exp(x/2). 

THEOREM 2. Suppose p(u) is given by (1.8). Let H(~)~A.R. :exp(uq~4):c_~O_x ). Then 

D~(o)~(,~ (A. R. :q0 2 exp (a@):--*A(t-x))~ {exp [@- (--d 2 + e ) ]  F 'z(a)} X 

P r o o f .  Indeed, 

: exp(?rF(u)e~P~)~:-~~ n ~ ' :  (q)~) ~q)~:-~o-~r 
n=l  

(2.7) 
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As in [2], we use  the ident i ty  (exp(e'Q~IZ(u))'=exp(~pd/du)~(u). Then 

:exp (uq~') qT:_~(,_~)) , 

which p r o v e s  the t h e o r e m .  

Cons ide r  the e x p r e s s i o n  

~ / ( a )  _ { ~  O~ (~) 

~_(~) (n-t)! 
~ n  ~ a  (2) n 

the coefficients 0~) are polynomials in 1/~, and therefore, in general, the coefficients c~ ) are also 

b~n) ~ rnlz n. 

A remarkable c i r c u m s t a n c e  is that 

(2. S) 

Here ,  
polynomials in i/~. 

We consider the product of two formal series in u: 

~)~(u)=-P(u) 7z~' (u) ( ~  ) ( ~  (~) "f  ~ (u) c ,H '  c~ 

n~l n~[ 

In g e n e r a l ,  the coef f i c ien t s  r n a r e  a l so  po lynomia l s  in 1/~.  
the coefficients r do not depend on ~ and are constants. 

THEOREM 3. The quantities r~, n = I, 2 . . . .  , are constants that do not depend on ~. 

Proof. We shall prove this by induction on n in the same way as Theorem 2.5 is proved in [2]. 
It is readily seen that r,=-c,C(o2)=-'/,, so that the basis of the induction is established. 

Suppose the coefficients r, . . . .  , r~,_~ are analytic in ~ (i.e.,  are constants), h2------A.R. :exp(acV ~) 
q~2.c._~(~_• is analytic in e in the neighborhood of the origin (see Theorems 2.2-2.4 in [1,2]). The differential 

of the renormalization group is also analytic in ~, and therefore the expression 

3 

D,(o).X~( ~ ) A.R.  : ~o 2 exp (u(p~): c~x(x_x) 

is ana ly t ic  in e in the ne ighborhood  of the o r ig in .  F r o m  this  fact  we de r ive  the ana ly t i e i ty  of  c n. ~ y  
T h e o r e m  1, 

H(0) x,~/~(A. R. : ~ e x p  (u~):-~(~-z))--{exp [-~-(-~ - + ~}1 ~ ( u ) e x p ( ' p  ~-~u) • 

(~---~) A. R. : exp (uq~a) cP~: -A(1-z)}} / {A. R : exp (u~) : -~(~-z)}. 

We shall  be i n t e r e s t ed  in the s e r i e s  

i~2(~)exp T9~-~ ~2(u) A.R. exp(u~p'):-~(l_.],  

which is obv ious ly  ana ly t ic  in e in the ne ighborhood  of  the o r ig in .  

We c o n s i d e r  the fol lowing o p e r a t o r s ,  which ac t  on the space  of f o r m a l  power  s e r i e s  a(a) = Ea~uJ: 
~=0 

D=p(~)d/du, T=~2(a). We in t roduce  a new notat ion for  the coef f i c ien t s  of the s e r i e s  ~2(u):  

n ~ 0  

The m a t r i x  of  the o p e r a t o r  D has  t r i a n g u l a r  f o r m :  D=(d~j)~..j=0 , d~j=]c~_~+,, where  we a s s u m e  that c k a r e  
equal  to 0 fo r  k < 0. The  m a t r i x  of  the o p e r a t o r  T a l so  has  t r i a n g u l a r  f o r m :  r=(t~)~5=o, t,~=b~_~, where  
b~ = 0 for  k < 1. C lea r Iy ,  T -~ is an o p e r a t o r  of  mul t ip l i ea t ion  by  (.~'2(~))-t 

We denote by D~, (exp(-~D))~, T~, (T-~)~ the m i n o r s  of  the m a t r i c e s  D, exp(xD), T, r -~, s i tuated at the 
i n t e r s e c t i o n  of  the f i r s t  n + 1 r o w s  and n + 1 c o l u m n s .  B e c a u s e  all  the above m a t r i c e s  a r e  t r i a n g u l a r ,  we 
have the r e l a t i o n s  (exp xD).=exp('rD,~), (T~)- '=(T- ' )~ .  The ana ly t i c i t y  of  all  the e l emen t s  of the m a t r i x  e x p ( r D )  
in r a l so  fol lows obv ious ly  f r o m  the t r i a n g u l a r  na tu re  of the m a t r i x  D. F r o m  the t r i a n g u l a r  f o r m  the re  
a l so  follow the r e l a t i o n s  Te'~TT'=e ~rDT-', T~e~D.T. -~=(e~r~'').. The o p e r a t o r  S=TDT -~ is given by the f o r m u l a  
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( ,S'=Zz~ (u) p(~) y~(~) =n~(u)p(~)+o(u) d 

We ca lcu la te  the dependence  of  the m a t r i x  of exp ( rS  ) on r ,  n >- 2 (note that  exp( 'rS ) does  not depend on 
r k for  k > n) .  The m a t r i x  of  the o p e r a t o r  S has  the f o r m  S ,= ( s~  ~)~,~0, s(,~)=]s~_~+,+r~_~, where  we a s s u m e  
rk  = 0 for  k <- 0. S depends  on r only  in one e l emen t  - at  the i n t e r s ec t i on  of the f i r s t  co lumn and the 
n - th  row.  Suppose F.=([~)~,~= 0, where  / .o=t,  /~=0 for  all  the r e m a i n i n g  ind ices .  Then S . = (  . 0 ) F . + ~ .  = 
r.F.+S./ ' ,  where  the m a t r i x  S:' does  not depend on r n.  We show by induct ion that  a s i m i l a r  ana!y t ic  e x p r e s s i o n  
is a l so  val id fo r  the m a t r i x  S.~: S.~=aF.F.+E r where  the m a t r i x  E (~---" ~ re.  )~,~-0 is t r i a n g u l a r  and does  not 
depend on ~ .  It is r e a d i l y  ve r i f i ed  that  ~ . .  =roe. ,  F.F.=O, Er In addi t ion,  if E=(e~)  ~=~, F----- 
(/~)~:~=0, EF----(g~J~a=o a r e  t r i a n g u l a r  m a t r i c e s ,  then g.~.=e../... Hence,  S~+~=(a~r.F.+E(~)(r~F.+S. ") = 
(a~ro+e(),~)r.F. + E(~)S. " = u~+,r.F. + E r where  E(~+'=E(")S. ", 

(k+i) / r \ (g) e.,. -~ ~ncccro) e . . . .  (2.9) 
__ (b,) 

o:~ ~=~z~ro~-e ..... (2.10) 

This  p roves  the a s s e r t i o n .  

The solut ion of  the r e c u r s i o n  r e l a t i o n s  (2 9) and (2.10) with the init ial  condi t ions  e (~ =nc,+r0, a , = l  
give the r e s u l t  a~=[(nc~+rQ~-(O+ro)~]/[(n-l)cd,  i . e . ,  S,~={[(nc ,+ro)"- (O+ro)" l / [ (n- l )c~]}r , f ,+E% Thus ,  

6 ~ [ (nc~+r0) ~ - (0+r0) ~] exp (~ (nc, +ro) ) - exp (z (0+r0)) 
e x p  (~s.) z',~=0' k[ (n--t) c~ r~F~+Eo = ( n - t )  c~ r~F~+Eo, (2.11) 

whe re  the ma t r i x  E 0 does not depend on r c 1 = ~ and, t h e r e f o r e ,  

e xp(~S~) = exp('~r0) e x p ( z n e ) -  1 r~F~+Eo, 
( n - t ) e  

t We now turn  to the e x p r e s s i o n  D~,0)~ (~x,~m (A.R. :q~ exp(uq0')' _~,_~)), which we denote by h~: 

h ' - -  Z u  ~ %~(X)A.l~. q~ 
- m - - - T - .  : (~)~ :-'~'-~' 

where  (q.~(x))~[~,~=0 =P(~)=exp(xS) .  
? 

As we have a l r e a d y  noted,  A.R. :((p')~q~t -~(,-~) is ana ly t ic  in ~, and so is  h 2. Th i s  l a s t  means  that  
? 

all  the coef f i c ien t s  h 2 for  uJ, j = 0, 1, . . . ,  a r e  ana ly t i c  in ~. The coef f ic ien t  of u ~ is 

~-aq""('~---~)A. R. :(p~ ((p')'~ :-~(,-x). (2.12) 
rn! 

t a ~ 0  

ALl the e l e m e n t s  q,~.,(x), except  q.0(x), can be e x p r e s s e d  in t e r m s  of r . . . . . .  r . . . .  and, t h e r e f o r e ,  
they  a r e  ana ly t ic  in ~ by the induct ion h y p o t h e s i s .  F u r t h e r ,  in a c c o r d a n c e  with (2.11), 

q~0(x) exp(~r0), exp(~ne) -  i 
( n •  

where  the e l emen t  q~'(~) can a l so  be e x p r e s s e d  so l e ly  in t e r m s  of r~ . . . . .  r._~, and, t h e r e f o r e ,  is analyt ic  
in ~. Thus ,  f r o m  the ana ly t i c t t y  of  the coef f i c i en t  (2.12) t h e r e  fol lows ana ly t i c i t y  of the t e r m  

exp (~r0) exp ( x n e ) -  t r~A. R. :@:-A(~-~). 
( n - l ) e  

T h e r e f o r e ,  the coef f ic ien t  r n is ana ly t ic  in ~, which is what  we wanted to p rove .  This  p r o v e s  T h e o r e m  2. 

3 .  S p e c t r u m  o f  t h e  D i f f e r e n t i a l  o f  t h e  R e n o r m a l i z a t i o n  G r o u p  

We can now prove  the fol lowing t h e o r e m .  

THEOREM 3. A.R. :q~ exp(a(e)q0 ~) :!~O_x) is an e igenfunct ion  of the d i f fe ren t ia l  of the r e n o r m a l i z a t i o n  
g roup  at the fixed point  H(,~ :exp(a(e)cp~) : lair-x)  with e igenvalue  

exp - ~  +e+2~12 (a(e) = . (3.1) 
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Here, u(~) is the coupling constant of the effective Hamiltonian. 

Proof. Indeed, 

c "~ ' d  

exp ~rp )~ -  A. 13. : ~p2 exp (u (a) q)~) : -A(I-~)) , �9 / d A. It. : q~2 exp (u (a) (p~) :-a(1-a) 

A. R. : exp (u (e) q~) : -~(~-x) A.R.  : exp (u (e) (p~) : _~(~_~) 

exp 

Here ,  we have used the c i r c u m s t a n c e  that  p (u )  and v 2(u) a r e  f o r m a l  power  s e r i e s  in u with 
coef f i c ien t s  ana ly t ic  in v (actually,  they  do not even depend on *), and u (~ )  is a f o rma l  power  s e r i e s  in ~-:, 
the r e l a t ion  ~ ( u ( ~ ) )  = 0 holding.  The t h e o r e m  is p roved .  

R e m a r k .  One can show that the second even e igenfunct ion  of  the d i f ferent ia l  of the r e n o r m a l i z a t i o n  
g roup  (which "b i fu r c a t e s "  f r o m  the e igenfunct ion :q~:_~(~_~) of  the d i f fe ren t ia l  of  the r e n o r m a l i z a t i o n  g roup  a~ 
the Gauss ian  fixed point) is given by the f o r m u l a  A.R.:~ ~ exp (a(e)q~'):2a(~-~) and the c o r r e s p o n d i n g  e igenvalue  is 
e x p [ z ( p ' ( u ( e ) ) - e ) ] ~  ~(~'(~))-~). Note that  the f i r s t  o r d e r  in e of ( p ' ( u ( e ) )  - e) is equal t o - 2 e ,  i . e . ,  the 
second e igenvalue  is a l r e a d y  s m a l l e r  than 1, which a g r e e s  with the gene ra l  dynamica l  p i c tu re .  

The ques t ion  of  the leading e igenfunct ions  will  be c o n s i d e r e d  in a s e p a r a t e  pape r .  

4. Critical Indices 

We now return to the old parameter k of the renormalization group. Then the leading eigenvalue 
can be rewritten in the form ~.~=kd/2+'+~% The eigenfunction A.R.:q~2exp (~(e)~):c~(~_~) "bifurcates" from the 

quadratic eigenfunction :qD2:_A(,-~) for the differential of the renormalization group at the Gaussian fixed point, 
and, as is well known, it is the leading eigenvalue k 2 that determines the values of the critical indices (see 
[3, 51). We recall also that d = I, 2, 3. For d > 4, new quadratic eigenfunetions appear, and in this case 
the critical indices have a more complicated construction. 

The index u is given by the formula 

v=i/(d/2§ ) . (4.1) 

The index v, which d e t e r m i n e s  the o r d e r  of  d e c r e a s e  of the c o r r e l a t i o n  function, is given by defini t ion in our' 
model and is equal to 

~1 =2--  (d/2+e). (4.2) 

The r e m a i n i n g  indices  ~, ~, and 3/ can be found f r o m  ~ and ~ in a c c o r d a n c e  with sca l ing  t h e o r y  
(see [3, 5, 13]). In pa r t i c u l a r ,  

~ = ( d + e ) / ( d + e + 2 , ] ~ ) = l + 4  a { 2 ~ ' 2  ( 2 ~ ( - - d ~ +  \ d  / 9 -~)-~)8~+..., (4.3) 

where  ~ (x) =x  (~ (t) - 2 5  (x/2) +~  (x)), , (x) = F '  (x) tF (x). 

In [61, a r g u m e n t s  based  on the C a l l a n - S y m a n z i k  equat ions  w e r e  used  to obtain the f i r s t  two o r d e r s  
in z, and they a g r e e  with the f i r s t  two o r d e r s  in (4.3). 

It is i n t e r e s t i ng  to make  a c o m p a r i s o n  with the r e s u l t s  of Yukhnovski i  [14]. If we set  d = 3, ~ = ~, 
then the value of the index ~, as  in [14], will  be 0. For  X = 2, ca lcu la t ion  of  the f i r s t  e igenvalue  to the 
second o r d e r  in ~ g ives  the r e s u l t  ~.~=2~+2'~2.82. In [14], a n u m e r i c a l  ca lcu la t ion  for  ~2 gave 2. 947. The 
va lues  for  the c r i t i c a l  index ~ a re ,  r e s p e c t i v e l y ,  0 .66 and 0 .64 ,  

I thank P.  M. B lekhe r  for  helpful  d i s c u s s i o n s .  
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LOW-FREQUENCY ASYMPTOTIC BEHAVIOR OF THE GREEN'S 

FUNCTIONS OF DEGENERATE BOSE SYSTEMS (KINETIC APPROXIMATION) 

V . P .  S k r y p n i k  and V . S .  S h c h e l o k o v  

On the basis  of Bogolyubov's  idea of a reduction in the descript ion of nonequilibrium states,  
a closed sys tem of equations is obtained for investigating the behavior of a spatially 
inhomogeneous degenerate  sys tem of Bose par t ic les  with weak interaction in the presence 
of an external al ternating field. The connection between the low-frequency asymptotic 
behavior of the Green ' s  functions and the kinetic charac te r i s t i c s  of the sys tem is established. 

1.  I n t r o d u c t i o n  

In the present  paper,  we obtain equations of motion for the statist ical  operator  of a spatially inhomo- 
geneous degenerate sys tem of identical Bose par t ic les  with weak interaction in the presence of an external 
field. We use the idea of Bogolyubov concerning the reduced descript ion of nonequilibrium states [1] and the 
ergodic relat ions of the general  theory of relaxation p rocesses  formulated in [2, 3]. The obtained equations 
are  convenient for construct ing perturbation theory  in the low frequency of an external field, and also in the 
small  spatial gradients  and the smal l  pa rame te r  of the effective interaction between the bosons.  The entire 
t rea tment  is in a model with condensate [4, 5]. Further ,  using the connection between the Green ' s  functions 
and the variat ional  derivat ives [6], we find a closed sys tem of integrodifferential  equations for the quantities 
that determine the asymptot ic  behavior of the Green ' s  functions in t e rms  of the l inearized collision integral 

of the quas ipar t ic les .  

2 .  B a s i c  P a r a m e t e r s  a n d  R e l a t i o n s  

In [5], Peletminski i  and Sokolovskii considered the kinetics of a spatially inhomogeneous Bose system 
with weak interaction in a model with condensate.  Here, we general ize  the resul ts  of [5] to the case when 
the degenerate  Bose sys tem is in an inhomogeneous external field. The Hamiltonian of such a system has the 

form 
H (t) =H+ H~ (t). (2.1) 
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