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The Generation of Multidimensional Autoregressive 
Series by the Herringbone Method 1 

W. E. Sharp  2 and Leo  A.  A r o i a n  3 

The generation o f  isotropic artificial series in two or three dimensions by the autoregressive 
process is o f  considerable interest for the purpose o f  modeling environmental properties 
such as ore grade or reservoir porosity. The relations needed to produce bilateral symmetry 
using the one-sided autoregressive recursion equations have been attained on the square ner 
and on the isometric lattice by an alternation procedure. In the case o f  the square ner, the 
one-sided autoregressive {ARJ process is alternated between the two diagonals o f  the ner, 
while in three dimensions, the alternation takes place among the four body diagonals o f  the 
isometric cell. 

KEY WORDS: autoregressive processes, multidimensional time series, spatial models, 
herringbone method. 

INTRODUCTION 

The simulation of such geological properties as elevation, ore grade, porosity, or 
sedimentary facies is becoming increasingly important for the prediction of ur- 
ban development, ore reserve estimation, oll field recovery, or exploration 
potential. A critical factor in any simulation is a quantitative knowledge of the 
variability, and the incorporation of this variability into the simulation. The 
variability can be measured by the use of covariograms (Dijkstra, 1976) or by 
the use of semivariograms (Jowett, 1955, p. 161). For the geologists these will 
usually be constructed by making one or more traverses to form one-dimensional 
views of the observed space series. A comparison among commonly observed 
covariograms and semivariograms shows that a wide variety can be described in 
terms of a limited number of autoregressive (AR) and moving average (MA) 
models adapted from statistical time series analysis (Sharp, 1982). If  simple 
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multidimensional simulations could be developed that would incorporate the 
variance determined from linear traverses, then multidimensional simulations 
could become routine for the purposes of prediction and modeling. 

Although procedures for the simulation of one-dimensional patterns have 
been well known for some time, increased interest has arisen in multidimensional 
simulations as the result of the advances being made in space series analysis (Cliff 
and Ord, 1981; Ripley, 1981). A great deal of this effort has been directed to- 
ward description and parameter estimation of the proposed models (Whittle, 
1954; Besag, 1974; Tjöstheim, 1981; and Haggett et al., 1977). Relatively few 
descriptions of actual simulations are available. These may be termed: the near- 
est-neighbor, joint-probability model, the turning-band method, and the uni- 
lateral autoregressive. 

The nearest-neighbor, joint-probability model (Martin, 1974) starts with a 
sequence of random normal deviates as in the form of a table or array. This is 
put into a two-sided, nearest-neighbor filter (Smith and Freeze, 1979, p. 1546) 
to form a set of simultaneous joint probabilities which will match the required 
autocorrelation. The determination of the simulated values requires the inversion 
of a p × p matrix. For small two-dimensional simulations this is not difficult but 
becomes increasingly more time consuming as the desired number of points to 
be simulated increases. The turning-band method (Matheron, 1973, p. 461) con- 
sists of constructing artificial series with known autocorrelation along several 
lines spaced at equal angles (Journel, 1974, p. 676-677). The required spatial 
values are determined as a linear combination of the values projected from these 
lines to the desired point. The quality of the simulation depends on the number 
of linear combinations used. The unilateral AR method (Schwarzacher, 1980) 
has been used to simulate stratigraphically bounded layers. If a stratigraphic sec- 
tion is specified, as on the left side of a diagram, then the individual laminae are 
simulated by a series of parallel one-dimensional series migrating from left to 
right (Schwarzacher, 1980, p. 224,232). 

THE SPATIAL AUTOREGRESSIVE MODELS 

It has recently been shown that the first-order AR process in one dimension 
can be converted to use on a square net by taking linear combinations of the AR 
processes along the orthogonal axes (Aroian and Sharp, 1985) and the process 
would follow the relationship 

Zi, ] = (p"(zi_l ,  ] + z i , ] - a )  + ai, j 

where zi ,  j are the values of the geological parameter at the lattice coordinates i 
and j, ~" is a weighting parameter, and ai , i  is a random impluse drawn from a 
normal distribution with zero mean and variance oä :N (0, aä). For series on a 
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square lattice 0 ~< qS" ~< 1 and 

a ä / 4  = 1 - q~"(P,o + P o , )  

where Oz 2 is the variance of  the observed series of  z values, Plo and Pol are the 
autocorrelations at lag 1 along the I and J axes, respectively. The analogous first- 
order AR process in three dimensions for an isometric lattice is given by 

Zi, j,k =~)"'(Zi-l,j,k +Zi,/-1, k +zi, j ,k-1)+ai, j ,k  

In this case for the series to be stationary 0 < qS'" < ½, and the variance ratio 

4/4 = 1 - ~m(ÆlO 0 4- 0010 + PO01). 

A practical computer simulation can be performed by letting the I axis 
represent rows of  an array, the J axis representing columns, and (in three dimen- 
sions) the K axis representing successive layers. To start a simulation on a square 
riet, initial values may be generated along the top row, i = 1, and along the left 
most column, j = 1, by use of  the one-dimensional AR process. The remainder 
of  the array is filled by starting with the second row and computing each line 
from left to right using the recursive relationship for a square net. Ttüs is repeated 
row for row until the square array is fflled (Fig. 1). For three dimensions, it 
would first be necessary to create a one-dimensional series along each of  the 
three orthogonal axes and then to form a basal sheet using the procedure of  the 
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Fig. 1. A unilateral sequential procedure for generating a two- 
dimensional first-order autoregressive process along the NW- 
SE diagonal 
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Fig. 2. A contour map of a two-dimensional 
artificial series obtained by a first-order auto- 
regressive process generated unilateraUy along 
the NW-SE diagonal. 

simulation for a square net. Once this has been completed, the recursive relation- 
ships for an isometric lattice may be used to fill in progressively the three-dimen- 
sional array, one layer at a time, by starting at the bottom and progressing 
upwards. 

When this procedure is in fact performed, it is found that the artificial series 
is stratified along the NW-SE diagonal of the net (Fig. 2). That is, the artificial 
series is nicely autocorrelated along the NW-SE diagonal but is uncorrelated 
along the NE-SW diagonal. This was not initially expected, but it is now clear 
from the equations that a correlated series can only be formed in the direction 
in which the equations are recursively applied. 

HERRINGBONE METHOD 

The difficulty with the procedure described above is the stratified diagonal 
nature of the artificial series generated. Yet ideally the correlations along both 
diagonals should be equal. After some trial and error attempts to resolve this 
difficulty, it was realized that the desired symmetry could be attained through a 
process analogous to lattice row twinning; that is, by alternating the series. For 
example, if any row of a square net is generated by proceeding from left to right 
(Fig. 1), then the next row is generated by reversing the pattern and proceeding 
from right to left; successive rows are generated by reversing direction at the end 
of each row in the configuration of a herringbone. 

For the square net, the procedure would be as follows. At the starting point 
(i = 1, / = 1), a draw is made at random from the designated normal distribution, 
N(O, oä). From there, the first row (alternately this could be done columnwise) 
is generated recursively by using the ordinary one-dimensional AR process 

z l , /=  ~bzl,/-1 +al,j 
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for the values of  / = 2 to r (Fig. 3a). After reaching the end of  the row, the pro- 
cedure returns along the second row moving from right to left (Fig. 3b). This is 
initiated by calculating the last point on the second row (i = 2, / = r) with the 
one-dimensional relation that is 

Z2, r = ~ßZl, r + a2,r 

The remainder of  the second row is completed by proceeding from right to left 
using the general equation for the square lattice which starts at the hext to last 
point, by calculating the re]ationship 

Z2,r+ 1-/ = ~b"(Zl, r+ 1-j + Z2, r+2- j )  + a2,r+ 1-/ 

for values of  j from 2 to r (Fig. 3b). The third row is initiated by again using the 
one-dimensional relationship such that 

z3,1 = q)z2,1 +a3,1 

and is completed by proceeding from left to right (Fig. 3c) using the general 
equation for the square lattice which starts at the second point by calculating 
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Fig. 3. An alternating sequential procedure for generating a 
first-order autoregressive process along the first three rows 
of anet. 
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the relationship 

z3,  j = cB"(z2, j + z3,j_x) + a3, j  

for values of j from 2 to r. Similarly, for any odd numbered row, the first point 
is initialized by using 

Zi ,  1 = (gZ i_  l, 1 "t- ( / i ,  1 

and then the remaining points on the row are generated moving from left to right 
for successive values o f j  from 2 to r by using the recursive relationship 

Zi, j = ¢"(Zi_ l ,  j + Zi, j - 1 )  + ai, j 

The even numbered rows are initiated at the right end of the row by using 

Zi,  r = ~ßZ i_ l ,  r + a i ,  r 

and then the remaining points are generated by moving from right to left for 
successive values o f / f r o m  2 to r using the recursive relationship 

Zi, r + l_ j =  O ' ' ( z i_ l , r  +l_] + z i , r  + 2_J) + ai ,r  +l_ j 

This process is repeated sequentially in herringbone fashion (Fig. 4) until the 
entire array is completed. 

Typical patterns for artificial series using the two-dimensional spatial first- 
order AR processs (Fig. 5 and 6) generated using the herringbone procedure are 
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Fig. 4. The sequential procedure for generating a first- 
order autoregressive process by the herringbone method 
on a riet. 
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F i g .  5 .  A contour map o f  a two-dimensional  
a r t f f i c i a l  series generated by the herringbone 
method.  Notice that this map is isotropic when 
compared with  F i g .  2 .  
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F i g .  6 .  A contour map o f  a two-dimensional  
artificial series generated by the herringbone 
method but initiated with a different random 
number seed. 
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symmetr ica l  w i th  equal correlation along the rows  and co lumns  as wel l  as be tween  
the N W - S E  and N E - S W  diägonals. 

EXTENSION TO THREE DIMENSIONS 

The spatial first-order AR process in three dimensions for an isotropic lattice 
is obtained as a linear combination of  the one-dimensional AR process in the same 
manner as that for a square riet (Aroian and Sharp, 1985) 

Zi,/ ,  k = O " ( Z i -  1,/, k + Z i , / - 1 ,  k + Zi, / ,  k -  1) + ai , ] ,  k 

As with the formulation in two dimensions, if the generation is carried out al- 
ways in the same direction starting each row from left to right and then moving 
upward one layer at a time, the result will have strong correlations along the 
planar direction defined by the origin and the edge between the front (100) face 
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( o o l )  
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Fig. 7. A sketch showing the planar direction of preferred 
correlation when a first-order spatial AR process is gener- 
ated in a unilateral fashion. Lowest correlations will occur 
in the directions perpendicular to the diagonal plane. 

and right-side face (010) of  the array (Fig. 7). Highest correlations will occur 
between points in that plane or in any parallel plane, while the lowest correlation 
will occur among points in the direction perpendicular to that plane. This strati- 
fication in three dimensions can again be rectified by alternating systematically 
in herringbone fashion among the four body diagonals of  a cube (poles to the 
upper faces of  an,octahedron). 

Even Numbered Layers 

For the isometric lattice the procedure would be as follows. First a bot tom 
layer (an odd numbered layer where k = 1) would be generated using the herring- 
bone method already described for a square net (Fig. 4). The second layer and 
any other even numbered layer will begin with the last row and then proceed 
back toward the first row (Fig. 8). The column from which to start will depend 
on whether q is odd or even. If  q is odd the second layer will be initiated on the 
right side (last column) while if q is even the second layer (any even layer) will 
be initiated on the left side (first column). The second layer is initiated by ob- 
taining a starting point with the one-dimensional process along a vertical edge 

Fig. 8. A perspective drawing showing the orientation 
of the four directions used to generate an alternating 
pattern (herringbone) for an isotropic three-dimen- 
sional AR process. 
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Fig. 9ù The initiation of even numbered layers when 
there are (a) an eren number of rows and (b) an odd 
number of rows. The numbe~ of lines forming the 
arrow indicates whether the series is one-, two-, or 
three-dimensional. 

(Fig. 8) with the relation 

Zq, l , k  = (~Zq, l , k - 1  "b Clq, 1, k 

when q is even and k is even (Fig. 9a) or 

Zq, r, k = ~)Zq, r, k -  1 + aq, r, k 

when q is odd and k is eren (Figs. 8, 9b). The last row of  the second or any eren 

layer is then obtained by  using the relationships for a square net along the front 

face of  the lattice, that is 

Zq,], k = ~" (Zq , ] - l ,  k + Zq,], k- l )  + aq,/ ,  t¢ 

when q is eren and k is even (Fig. 9a) or 

Zq, r+l_/, k=~''(zq,r+2_/, k +Zq, r+l-/ ,k-!)+aq, r+l-/,k 

when q is odd and k is even (Fig. 9b) for ] ranging from 2 to r. 

For  the next to the last row of  the second or any even layer, the starting 
point  is initialized by applying the relationship for a square net along the side 
faces of  the lattice, that  is when q - 1 is odd along the right face 

1! 
Z q _ l , r , k  = ~  (Zq, r , k  + Z q - l , r , k - 1 ) + a q - l , r , k  

or when q - 1 is even along the left face (Fig. 8) 

tl 
Zq_l ,1 ,  k = ~) (Zq, l , k  + Z q - l , l , k - 1 )  + a q - l , t , k  

The remaining points on the next to last row are computed using the full spatial 
AR recursion relationships for the isometric lattice. That is 

Z q _ l , r + l _ ] ,  k = Om(Zq, r + l _ ] , k  + Z q - i , r + 2 - ] , k  + Z q - l , r + l - ] , k - 1 )  

+ E l q - l , r + l - ] , k  
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r - 1  r 

Fig. 10. The completion of  any even num- 
bered layer. 

when q - 1 is odd (Fig. 9a) or 

Zq-l,j ,  k = (9'"(Zq,j, k + Zq-l ,]- l ,  k + Zq-l,j,  k - l )  + a q - l , j ,  k 

(Fig. 9b, Fig. 8) when q - 1 is even for ] ranging from 2 to r. For the remainder of  
the sheet the required relationships are determined by whether the row is odd 
or even. For the even rows, the first point in the row is initialized using 

zi, 1, k = q~"(zi+x,1, k + zi,  l , k _ l )  +ai ,  l , k  

and the remaining points are obtained from 

Zi,],k =~9"'(Zi+l,],k + Zi,j-1, k + zi, j ,k -1)  + ai,],k 

for j ranging from 2 to r. For the odd rows, the last point on the row is initilized 
using 

Zi, r, k = ~"(Zi+l ,r ,  k + Zi, r, k - l )  + ai, r, k 

and the remaining points are obtained from 

Zi, r+l-] ,k  =~)''(2i+l,r+l-j,k +Zi, r+2-j,Æ +Zi, r+l-] ,k-1)+ai ,  r+l-],k 

for j ranging from 2 to r (Fig. 10). 
If  the above procedure has been carried out correctly, then the last point 

calculated will be at the origin of  the layer with i = 1 ,]  = 1, and k = s, where s is 
even. 

Odd Numbered Layers 

For the odd numbered layers the first point is initialized using the one- 
dimensional series along the vertical edge containing the K axis (Fig. 8), that is 

z i , / ,k  =(ozi,j,k-1 +ai,],k 

The first row is then obtained by using the relationships for a square net along 
the back face of  the lattice (Figs. 8, 11), that is 
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Fig. 11. The initiation of an odd numbered 
layer for a first-order AR process in three 
dimensions. 
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Z1,], k = (gtt(Zl,] -1, k + ZI,j, k - l )  + a l , ] ,  k 

for j ranging from 2 to r. 
The initial point on the second row and similarly for any other even num- 

bered row is obtained using the two-dimensional process along the face on the 
right of  the lattice (Figs. 8, 11) so that 

zi, r,k = ~ " ( z i - 1 , ,  k +Zi, r,k-1)+ai,. , l« 

Then the remaining points on any odd numbered row are obtained using the 
three-dimensional process 

Zi, r + l - j , k  =~Y" (Z i - l , r+ l - j , k  +Zi, r+2-] , k  +Zi, r + l - j , k - l ) + a i ,  r + l - j , k  

fo r j  ranging from 2 to r (Fig. 8, 11). 
The initial point on any odd row except the first is obtained using the two- 

dimensional process along the left face of  the tattice such that 

zi,~,k = ~"(zi-l,~,~ + zi,~,k-~) +ai,~,x 

Then the remaining points on any odd numbered row are obtained using the 
three-dimensional process 

zi,/,k + c/)'"(zi_l,/, k +Zi,j_l,k +zi, / ,k-1)+ai,],k 

for ]" ranging from 2 to r (Fig. 8, 11). This alternation is continued until the 
sheet is finished. 

Example 

By applying the herringbone method to successive layers, an extensive array 
can be obtained which behaves as an isotropic AR process in three dimensions. 
As an illustration, an artificial series 81 × 101 X 10 was generated using the recur- 
sive relation described in detail above. Then every third layer was plotted (Fig. 
12) to illustrate how the series progressively changes in all three dimensions. 
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Fig. 12. A contour map of a three-dirnen- 
sional artificial series generated by the herring- 
bone method. Four sections are shown at a 
spacing three units apart to illustrate how the 
series changes in three dimensions. 

SUMMARY 

The generation of  an artificial AR series in two and three dimensions having 
isotropic symmetry  has been induced from a one-sided recursive process by an 
alternation procedure called the herringbone method.  This procedure in two 
dimensions consists of  alternating between the two diagonals of  a square from 
row to row and in three dimensions consists of  alternating among the four body 
diagonals of  a cube from row to row and layer to layer. The recursive relation- 
ships are both  simple and fast and permit  the generation of  very large arräys with 
minimal computer  time. 
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