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Summary 

After having pointed out weaknesses in traditional approaches to exploration 
in a preceding paper, it will now be shown what can be gained by using statistical 
methods in practical application to exploration. In particular, statistical data collec- 
tion for joint surveys will be presented including methods for error reduction. 
Extensive treatment will be given to subjective assessment of uncertainty, a meth- 
odology that is well suited to engineering geology; its use in describing tunnel 
geology is given as a practical example. Finally, it will be shown how these methods 
of rational uncertainty description are employed to plan exploration in an optimum 
manner, with an example in exploration planning for underground gas storage caverns. 

I. Introduction 

Uncertainty about geologic conditions and geotechnical parameters is 
perhaps the most distinctive characteristic of engineering geology compared 
to other engineering fields. This is evidenced by the central role of "engineer- 
ing judgement", adaptable design approaches, and other procedures for deal- 
ing with uncertainty or hedging against it. The profession has developed 
many qualitative strategies, and the intent of this paper is to show that 
most can be improved by rational analysis. Rational analysis of uncertainty 
usually involves probability theory and statistics. These analyses are not 
meant to replace present approaches - -  particularly engineering judgement - -  
but to add systematic consideration which is essential to engineering de- 
cisions. 

In a preceding paper (E ins te in  et al., 1982) sources of uncertainty 
and their consequences were described, followed by a description of tradi- 
tional approaches for analyzing uncertainty and of their deficiences. A short 
summary of these deficiencies will be given below. This will be followed 
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by the main body of the text, in which improved methods in application 
to exploration are summarized and illustrated with practical examples. In 
part II, to be published later, methods used in design and construction will 
be discussed. 

II. Traditional Approaches for Analyzing Uncertainty in Engineering 
Geology and Their Deficiencies 

Since this topic has been discussed extensively in the preceding paper 
(E ins te in  et al., 1982), it shall only be recalled to the extent necessary to 
serve as an introduction to the following section. 

Exploration is on the one hand affected by uncertainty, on the other 
hand it includes specific procedures to deal with uncertainty. Traditional 
approaches are however often unsatisfactory: 

- -  Current exploration practice is seldom founded on a systematic approach. 
Particularly quantitative analysis for exploration planning is exceeding- 
ly rare. 

- -  Exploration reliability is quantified only to the extent of manufacturers' 
literature and limited experience with some methods. How factors af- 
fecting reliability of a particular method can be tied together, and how 
they can be incorporated in reliability expressions for an exploration 
approach is often an open question. Hypotheses on site geology or con- 
ditions are seldom compared and tested rationally. 

- -  While the precision of individual experiments can often be established, 
the precision of estimates of in situ properties - -  and more importantly, 
the range of properties - -  cannot be assessed with deterministic, often 
qualitative approaches. 

- -  Finally, economics of exploration is a continuing matter of dispute. 
Current programs are typically based on a percent of total project cost 
(e. g., 3% for large embankment dams). These numbers do however not 
indicate whether a program was overdesigned, components should have 
been planned differently, or if adding or omitting components would 
have been economically advantageous. 

The following section will give the reader some idea on statistical 
methods that can reduce if not eliminate the aforementioned limitations. 

IlL Statistical Methods in Exploration 

The use of statistical methods in geological exploration involves difficult 
philosophical issues about the primary products of exploration, how obser- 
vations are organized and explained, and how predictions or interpolations 
are made. These have been discussed previously in detail (Baecher ,  1977), 
and are not further considered here. Instead, this section concentrates on 
three specific examples of data collection, subjective assessment, and explo- 
ration planning. 
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I l ia  S t a t i s t i c a l  D a t a  C o l l e c t i o n :  J o i n t  Su rveys  

For many decades, the collection of geometric data on rock mass joint- 
ing has been recognized as a problem of statistical sampling, and beginning 
in the mid-1960's, a number of workers have devoted effort to developing 
sound survey procedures and to interpreting the voluminous empirical data 
available. 

In common joint surveys, three geometric properties are of interest. 
These might be recorded in a number of equivalent measures, but involve: 

- -  D e n s i t y  - -  Spacings, numbers per rock volume or outcrop area. 
- -  S i z e  - -  Trace lengths, areas, radii. 
- -  P l a n e a r  O r i e n t a t i o n  - -  Strike and dip, direction cosines of pole, azi- 

muth and dip. 

It is important to recognize that these properties manifest in observed 
data in interdependent ways. The measures commonly used to describe joint 
survey data are, in fact, only facets of more fundamental description. 

E m p i r i c a l  R e s u l t s  

Typical results f o r  s p a c i n g  d i s t r i b u t i o n s  are shown in Fig. 1, plotted 
against best fitting exponential functions, F ( s ) = l - e x p  {-2s},  in which s 
is joint spacing along a sampling line and 2 is a parameter. The cumulative 
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Fig. 1. Joint spacing distributions plotted against best fitting exponential functions 

density functions ( c d f )  were fit using the estimator ~l=g 1, in which ~ = 
sample average spacing. Common statistical tests were used to test good- 
ness-of-fit. In only 8% of the spacing distributions analyzed did the Expo- 
nential Model fail to satisfy goodness-of-fit criteria at the 5% confidence 
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level. In all, some 25 data sets were evaluated for spacing, each having a 
sample size between 500 and 1000. The Exponentiality observed is con- 
sistent with other published results (e. g., P r i e s t  and H u d s o n ,  1976) and is 
a strong verification for the Exponential Model  of joint spacing. 

An interesting observation is that,  while average spacing varies with 
orientation of the sampling line, Exponentiality does not. This can be seen 
in Fig. 2, in which mean spacing and coefficient of variation (Coy = stan- 
dard deviation/mean) along six non-coplanar directions are shown. For 
Exponentiality Coy =1.0. Relationships among average spacings can be ac- 
curately calculated simply from trigonometric considerations. 

Trace length distributions do not  exhibit the exceedingly consistent 
behavior that  spacings do; however, in 82% of the samples, trace lengths 
satisfied 5% goodness-of-fit tests for logNormality. Decreasing to 1% error 
allowed certain of these to pass (Table 1). 

Table 1. Results o[ Goodness-o[-Fit Tests [or Trace Length Distributions 

Site Exponential Gamma Lognormal 

Site A, top . . . . . . .  fail fail fail 
Site A, bottom . . . .  fail fail fail 
Site A, sides . . . . . .  fail fail pass* 
Site A, sides . . . . . .  fail fail pass* 
Greene Co., 

trench A . . . . . . .  fail fail pass 
Greene Co., 

trench B . . . . . . .  fail fail pass 
Greene Co., 

trench C . . . . . . .  fail fail pass 
Greene Co., 

trench T . . . . . . .  fail pass pass 
Site B . . . . . . . . . . . .  fail fail pass 
Blue Hills . . . . . . . .  fail fail pass 
Pine Hills . . . . . . . .  fail fail pass 

* All significance levels set at 5%, except where indicated by (*) which were set at 1%. 

It is of interest to note that  visual classification of trace length distri- 
butions at times can be misleading, and that  clustering procedures for group- 
ing data into histograms can mask important  distributional information in 
a sample. Trace length data  from Site B are shown in Fig. 3 against log- 
Normal  and Gamma pdf's, fit by Maximum likelihood estimations. By 
visual inspection both the logNormal and Gamma pdf's provide reasonably 
good fits to the data. However,  X 2 and K-S tests show only the logNormal 
to provide an acceptable fit at 5%. 

If the data  of Fig. 3 were clustered in five foot intervals, the histogram 
of Fig. 4 would result. Presuming that  short trace lengths are under repre- 
sented in the sample, either by design (i. e., sample truncation) or uninten- 
tionally (i. e., through sample bias), the conclusion might be adopted er- 
roneously that  the density function (pd[) is Exponential. 
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Whereas, considerable success was enjoyed in fitting analytical pd['s 
to spacing and trace length data, the opposite was true of orientation data. 
The conclusion is interesting, in part because more statistical work has been 
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T a b l e  2. Distributional Forms [or Orientation Data 

N a m e  F o r m  

in  w h i c h :  J = 

X 

0 =  

# =  

4 =  

U n i f o r m  [ (0, 4~) 0c s in  

F i s h e r  [ (J) oc e x p  {x=J./~} 

E l l i p t i c a l  [ (J) oc e x p  {tr ~=jL~} 

B i n g h a m  F (J) oc e x p  {tr ~_l~JJ~,u} 

N o r m a l  [ (0. 4) oc e x p  { - 1 / 2  ( x - # ) ~  ~ ( x - / ~ )  

{l, m ,  n},  t h e  v e c t o r  o f  d i r e c t i o n  c o s i n e s ,  

{0, ~}, 
s p h e r i c a l  c o o r d i n a t e ,  

d i s p e r s i o n  m a t r i x  o r  c o n s t a n t ,  

m e a n  v e c t o r  o f  d i r e c t i o n  c o s i n e s  o r  c o o r d i n a t e ,  

c o v a r i a n c e  m a t r i x ,  

s p h e r i c a l  c o o r d i n a t e .  

T a b l e  3. Goodness-o[-Fit [or Orientation Data 

J o i n t  se t  F i s h e r  B i - v a r i a t e  B i n g h a m  P a s s  Z2- tes t  

1 A  - 558.7 - 4 2 0 . 3  - 4 8 0 . 0  N O N E  

1B - 80 .0  - 8 .0  N O N E  

1 C  - 2 9 4 . 8  - 144 .0  - 107 .0  N O N E  

2 A  - 127 .1  - 31 .5  - 47 .0  N O N E  

2 B  - 71 .5  - 60 .1  - 2 8 2 . 0  N O N E  

2 C  - 4 4 2 . 2  - 3 2 2 . 9  - 2 8 3 . 0  N O N E  

2 D  - 1 3 1 . 0  - 90 .7  - 3 2 6 . 0  N O N E  

2 E  - 29 ,0  N O N E  

2F  - 89 .4  - 68 .5  - 51 .0  N O N E  

3 A  - 125 .0  - 1 2 2 . 0  - 1 1 4 , 0  A L L  

3B - 2 0 . 0  N O N E  

3 C  - 20 .0  - 20 .0  - 91 .0  N O N E  

4 - 5 6 7 . 6  - 5 5 4 . 8  - 5 1 7 . 0  N O N E  

5 A  - 4 4 4 . 5  - 2 8 7 . 7  - 2 7 2 . 0  N O N E  

5B - 2 3 6 . 1  - 141 .7  - 1 4 9 . 0  B I N G H A M  

6 A  - 7 9 . 4  - 57 .0  - 37 .0  N O N E  

6B - 62 .3  - 27 .0  - 27 .0  A L L  

7 A  - 3 8 3 . 6  - 2 9 8 . 9  - 2 8 0 . 0  N O N E  

7 B  - 2 5 1 . 8  - 9 1 . 4  - 1 4 0 . 0  N O N E  

7 C  - 5 7 4 . 7  - 5 7 4 . 8  - 555.0 N O N E  

7 D  - 119.9 - 4 5 . 4  - 4 1 . 0  B I N G H A M ,  BIV. ,  F. 

8 - 2 9 4 . 8  - 1 4 4 . 0  - 107 .0  N O N E  

T o t a l  b e s t  F i t s :  7 .0  13 .0  

N o t e :  B e s t  F i t  is h i g h e s t  l o g - l i k e l i h o o d .  
N o r m a l  D i s t r i b u t i o n  w a s  f i t  o n  d i r e c t i o n  c o s i n e s  a n d  r e s u l t s  a r e  t h e r e f o r e  n o t  
c o m p a r a b l e .  M a g n i t u d e  o f  l o g - l i k e l i h o o d  is r e l a t e d  t o  n u m b e r  o f  o b s e r v a t i o n s ,  
so  i t  is n o t  p o s s i b l e  t o  c o m p a r e  v a l u e s  b e t w e e n  d i f f e r e n t  se ts .  A r n o l d  D i s t r i b u -  
t i o n  r e s u l t s  a r e  i n d i s t i n g u i s h a b l e  f r o m  F i s h e r  r e s u l t s .  
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performed on the description of joint plane orientation than perhaps on all 
other rock mass properties taken together. Attempts to correct field data for 
implicit biases in sampling plans make the situation, if anything, worse. 

The primary distributional forms used in the study are shown in Table 2. 
The Fisher, Bingham, elliptical and uniform are defined on the unit sphere; 
the bivariate Normal and bivariate logNormal are defined on the plane. 
Maximum likelihood estimators were used to fit the distributions. Results 
of goodness-of-fit tests are shown in Table 3. Only the most ideal pole 
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Fig. S. Joint orientation distributions 
a) Distribution can be approximated by parametric distributional form 

b) Distribution cannot be approximated parametrically 

distributions, like that of Fig. 5a, can be well approximated by analytical 
forms. Typical distributions, like that of Fig. 5b, are more erratic than 
allowed by the limited flexibility of standard analytical forms. 

A problem in fitting distributional forms to orientation data is how to 
separate subparallel sets of joints from one another. A number of algorithms 
are available for numerically clustering orientation data, but most suffer 
drawbacks and experience suggests that visual clustering may lead to better 
results ( E i n s t e i n  et al., 1980). 
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These procedures, whether visual or numerical, partition the projective 
hemisphere into non-overlapping regions and treat the poles within each 
region as corresponding to an individual set of joints. This truncates the 
tails of most analytical forms that could be fit, severely complicating param- 
eter estimation and limiting the conclusions drawn from goodness-of-fit 
testing. Using a mixed distribution procedure, in which the overall pd[ is 
set equal to a sum of pdf's, is in principle a good approach, but again leads 
to difficult estimation problems. Non-parametric techniques can be used as 
a last resort, but allows few general conclusions on distributional form to 
be drawn. 

Sampling Errors 

Errors in sampling arise from three sources: sampling error, estimation 
("statistical") error, and measurement error. Sampling error is caused by 
plans that are not representative, estimation error is caused by statistical 
fluctuations from one sample to another, measurement error is caused by 
inaccuracies in the way individual elements are measured. 

Errors and Biases in Sampling for Joint Size (Length) 

- -  Proportional Length Bias 

Presuming that outcrops or excavations are statistically independent of 
the joint populations to be sampled, the probability of joints intersecting a 
sampled surface is proportional to their size. The sampled population there- 
fore contains traces of a disproportionate number of large joints, and does 
not accurately represent the population of joints within the rock mass. 
Outcrop geometry and location do depend on jointing, of course, but are 
influenced primarily by joints parallel to the outcrop surface which appear 
with low frequency in the sampled population. 

Using intersections with an arbitrary scan-line as the sampling procedure, 
a second geometric bias is produced. Longer trace lengths have proportionally 
larger probability of interesting the line and therefore of being sampled 
(Baecher ,  1978, C r u d e n ,  1977, P r i e s t  and H u d s o n ,  1981). Thus, for 
inferring the size of trace lengths on the outcrop, the sample is linearly 
biased. For inferring the size of joints within the rock mass, the sample is 
quadratically biased. 

The effect of a linear bias is shown schematically in Fig. 6. The prob- 
ability of a trace length l appearing in the sample is the product of the 
probability of it appearing on the outcrop, [ (1) dl, and the conditional prob- 
ability of it intersecting the sampling line if it does appear on the outcrop, Id, 

fs (1) d =Id/(1) dl, (3.1.) 

in which f (l) = the pd /o f  trace lengths in outcrop, and/~ = a normalizing 
constant, which can be shown to equal the reciprocal of the mean of l on 
the outcrop (Pr ies t  and H u d s o n ,  1981). Any higher order bias introduces 
the conditional probability I~I n, in which k, equals the reciprocal of the n-th 
central moment  of [ (I). 
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An interesting property of the linear (or higher order) bias is that it 
serves as a filter that transforms many common distributions f (l) into ap- 
proximately logNormal forms. In the sense of common goodness-of-fit tests 

~P,D.F. 

TRACE LENGTH 

Fig. 6. Simple length bias in sampling trace lengths 
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(After Baecher  and Lanney,  1978) 

these transformed pdf's are indistinguishable from logNormal pdf's at real- 
istic sample sizes. This is demonstrated in Fig. 7 in which linearly biased 
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Exponential and logNormal f (l)'s are tested against best fit logNormals and 
shown to satisfy K-S criteria at the 5% level. Since size biases are common 
in geological sampling, it is interesting to speculate that the common obser- 
vation of logNormal pd['s for geometric properties is primarily an artifact 
of sampling procedures. 

- -  Censoring Bias 

The trace length data of Fig. 8 were collected as area samples (i. e., 
every joint within a very large sampling field was measured) at the ground 
surface ("top of rock") and on the floor of a 20 m deep excavation ("bottom"). 
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Fig. 8. Effec t  of  c enso r ing  bias  o n  jo in t  l eng th  d i s t r i b u t i o n  

The joint populations are for present purposes essentially identical, and yet 
the bottom of rock sample has a lower mode and a much thinner upper 
tail. The reason is that many of the traces observed in the excavation run 
off into the rock walls, and cannot be observed in their entirety. Since this 
censoring occurs with proportionally higher probability to longer traces, 
the sample is biased toward shorter lengths and the extreme upper tail dis- 
appears completely. 

Censoring is a well known sampling problem in life testing and other 
fields of statistics. For the traditional problem in which the point of censor- 
ing is constant (i. e., all traces longer than Ic are censored and shorter than Ic 
are observed completely) a large literature of both frequentist and Baye- 
sian methods has been developed. Primarily, this literature deals with 
Exponential distributions (Epste in ,  1959, K e n d a l l  et al., 1967), but re- 
sults also exist for other forms (Fisher,  1931, Ha ld ,  1949). The question 
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of fixed-point censoring for joint surveys has been considered by C r u d e n  
(1977), B a e c h e r  and L a n n e y  (1978) and P r i e s t  and H u d s o n  (1981). 

Unless the sampling program for joint surveys is constrained such that 
joints longer than a fixed length lc are not measured even if they in fact 
could be, the problem of censoring becomes more difficult. In particular, 
the point of censoring is itself a random variable. The observations recorded 
are (1) a set of completely observable traces, I x={lx, 1, . . . ,  lx, r}; and (2) a 
set of traces for which only one or neither end is observable,/~ = {l~, 1 . . . .  ,I~, t}. 

The likelihood of (/x,/~) is, 
O3 

L (_/x, !z]O)= [I [ (Ix,~lO). 1I o[ [ (/z,j]O) dl (3.2) 
/=1 j~ l  l~,y 

in which O = the parameters of the trace length pdf (corrected for other 
biases). The second term in the right hand side is the probability that a 
censored trace would be longer than that observed. Clearly, closed form 
maximization of Eq. (3.2) with respect to O is only possible for pdf's having 
analytical cumulative distributions (cd[). Therefore, while analytical results 
for censored Exponential sampling are available, only numerical solutions 
are available for Normal and logNormal sampling. For Exponential sampling 
the ML estimator of 2 is 

~ML r (3.3) 
- -  Y,'lx.i+Xlz,~ 

and the posterior pdf on 2 in a Bayesian sense and starting from a non- 
informative prior is Gamma (Baecher ,  1980). The sampling variance of 
2LM in the Exponential case is, 

2~ 
v [~ML] ~ ~ (3.4) 

and for other parent pdf's V [~;~uL] can be found by numerical approximation. 

- -  Truncation Bias 

In collecting joint data a decision is usually made not to record traces 
shorter than some cut-off length. This decision is made either out of ex- 
pediency or because short traces are difficult to distinguish, as for example 
in photographs. Several workers have noted that this form of truncation 
introduces bias into the sampling plan, increasing the sample mean 
(Baeche r  et al., 1978, C r u d e n ,  1977, P r i e s t  and H u d s o n ,  1981). 

Fig. 9 shows the bias in the sample mean resulting from truncating at 
a given fraction of the mean trace length, for an Exponential pdf of trace 
length. This bias is smaller for distributions, like the logNormal, with zero 
density at the origin. The figure clearly shows that the effect of truncation 
bias on estimates of central tendency of the trace length pdf is small, unless 
the chosen truncation level is large (e. g., > 10% of the mean). For most 
purposes this bias can be safely ignored. 

4 Rock Mechanics, VoL I6/1 
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Errors and Biases in Sampling for Joint Orientation 

- -  Sampling Error: Weighted Sampling Plans 

In joint surveys, differences in the probability of being sampled are caused 
by geometric relationships (e. g., relative orientations of joints and outcrops), 
and non-geometric relationships (e. g., difference in the degree of joint 
weathering). Only geometric biases are considered here. Non-geometric dif- 
ferences tend more to be questions of geology alone, and not statistics. 

3 
z 
,,< 
i , i  

~ 2  
h i  

I I I I 
0.25 0.5 0.75 1.0 

TRUNCATION LENGTH/MEAN 

Fig. 9. Bias in sample mean due to truncation of short trace lengths 

Geometric relations which cause joints to have low probabilities of being 
sampled were brought to the attention of the literature by R. T e r z a g h i  
(1965), although Sander  et al. (1954) and others had earlier considered 
related problems with thin sections. 

/ x/Z/y/ 

Fig. 10. Probability of joints intersecting an outcrop 

To be sampled a joint must be a member of the sampled population. 
It must intersect an outcrop, a boring, or an excavation from which samples 
might be drawn. Joints which do not, cannot be measured. Assuming that 
the sampling plan by which the joints are sampled from outcrops and borings 
is self-weighting (in the sense that bias on the outcrop is corrected), the 
probability of an orientation entering the sample is proportional to the 
probability of it intersecting an outcrop or boring. Consider the two-dimen- 
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sional situation of Fig. 10. The probability of a joint of a given orientation 
intersecting the ground surface in an interval d L is 

d L sin 
/'~L = d (3.5) 

In words, given d, joints that are flatter with respect to the surface appear 
less frequently in the sample than joints that are steeper. In order to be a 
probability sample this difference must be accounted for by weighting. Since 
the ratio of probability must be constant, if w~ is the weighting factor for 
joints at angle ~, 

w~ oc 1/sin ~. (3.6) 

The use of computers allows consideration of more precise methods: 
methods in which the sample is considered as a whole and in which closer 
approximations can be made. This can be clone by evaluating the probability 
of a given orientation appearing in the total sample (i. e., in any of the 
outcrops or borings) and applying weights accordingly. The probability of a 
joint of a given orientation occurring in outcrops i is proportional to B~ sin a~, 
where Be is some dimension of the outcrop and a~ is the angle the orienta- 
tion makes with the normal to the plane that best models the outcrop. 
Since a single joint may be sampled in more than one outcrop or boring 
(i. e., sampling "with replacement") the probability of the orientation being 
measured in the entire set of outcrops sampled is proportional to 

Pr (given orientation being 
seen in the entire sample (3.7) 
of outcrops) oc 2? B~ sin ~/. 

Similar consideration for boreholes leads to 

Pr (given orientation being 
seen in the entire sample (3.8) 
of borings) oc Z' Lj cos & 

where Lj is the length of the jt~ boring and f13 is the angle the joint makes 
with the jtt~ bore hole axis. The probability of a given orientation appearing 
in the entire sample is 

Pr (given orientation 
in entire sample) oc ZB~ sin ~ + XLj cos fit (3.9) 

and the weighting factor, being proportional to the reciprocal of the prob- 
ability, is, I 

W (given orientation Z) oc X B, sin ~+ X Lj cos flj (3.10) 

- -  Estimation Error 

Two approaches to estimation errors in joint surveys can be taken: 
analytical and empirical. The analytical approach is based simply on the 
sampling variance of statistical estimators for the various analytical forms 
or non-parametric descriptors. For example, for a spherical root mean 
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square variation of about 10 ~ a sample size of n = 100 leads to a standard 
error on the spherical mean of about I ~ n =200 reduced this to 45'. 

The purely empirical approach is based on observed changes in pole 
diagrams as sample sizes increase (e. g., L a r s s o n ,  1952). Some results of 
simulations in which data sets of size n=25,  50, 75, 100, 125 and 150 were 

5Q 125 

Fig. 11. Typical changes in pole diagram as number of poles sampled increases, poles 
randomly sampled from population of size 725 

randomly sampled from surveys of much larger size (N=725) are shown in 
Fig. 11. Apparently, sample sizes of about n=100 yield acceptably precise 
orientation diagrams. 

- -  Measurement Error 

Measurement errors are caused by inaccuracies in either the instruments 
of measurement or the reading of instruments. They are of two types, ran- 
dom and systematic. Random errors are unpredictable both in magnitude 
and direction. The treatment of random errors usually assumes magnitude 
to be Normally distributed with mean zero. This allows confidence limits 
to be placed on the measurements themselves. Random errors are usually 
much smaller than sampling or estimation errors, and can often be neglected, 

Although random errors in joint orientation measurements arise from 
a host of sources, several general comments can be made about them. 
Random error in the strike direction is greater for "flat" dipping than "steep" 
dipping joints. The sensitivity of the direction of the line of intersection of 
two planes to error in the orientation of one or both is a function of the 
angle. The smaller the angle, the more sensitive. Since flatter joints form 
a smaller angle with the horizontal, they are more sensitive to errors in 
leveling the geologic compass. 

Random error in the dip is greater for steeper joints than for flatter 
joints. This comes primarily from two sources other than reading and round- 
off errors: inaccuracy in leveling the pendulum inclinometer, and inaccuracy 
in aligning the geologic compass parallel to the dip direction. While the first 
is independent of the dip, the second is not. The scale of roughness to 
compass size also contributes to random measurement error. 

While attempts could be made to determine measurement error analyti- 
cally, the simplest and most reliable way is to simply perform several mea- 
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surements on a single joint, and empirically determine the dispersion of 
values. This was done in the laboratory, using two fixed planes and having 
several people measure the strikes and dips with a geologic compass. The 
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results are only intended to be illustrative. The variance in the dip measure- 
ments was about the same for both planes but the variance in the strike 
measurements was almost twice as great for the flat plane as for the steep 
plane (Fig. 12). 
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Systematic errors are errors whose mean value is different from zero. 
Measurement values of a quantity will, therefore, be almost consistently 
high or consistently low. Systematic errors, like random errors, are inevit- 
able; however, unlike random errors, they are not reduced by large sample 
sizes. The only strategy against systematic errors is to hold them to a "reason- 
able" level. One can never know whether systematic errors have been suf- 
ficiently reduced. One can only carefully consider possible sources of error, 
and search for inconsistencies in sample data. 

Sampling Plans 

The purpose of statistical sampling is that it allows estimates of rock 
mass properties to be made that are optimal in some agreed upon sense, 
and for which estimate precisions can be determined. In order to do this 
the sampling plan must be representative in the sense that (1) every element 
of the sampled population have a non-zero probability of appearing in the 
sample, (2) the relative probability of each element appearing is known, 
and (3) the importance given to observing a particular element be in inverse 
proportion to its probability of appearing in the sample. 

In sampling, three populations are of interest. The target population is 
that collection of elements about which information is desired. For joint 
surveys this might be the population of joints at some depth in a rock mass. 
The sampled population is that collection of elements that are available for 
sampling. For joints surveys this might be the population of joints inter- 
secting outcrops, borings or excavations. The sample is that collection of 
elements whose properties are actually measured. This might be the joints 
whose traces intersect sampling lines or fields. 

Statistical procedures allow quantitative inferences to be made about 
properties of the sampled population from observations on the sample. They 
do not, however, allow formal inferences to be made about properties of 
the target population. Such inferences are based on geology; they have little 
to do with statistics. 

Typical Sampling Plans for Joint Surveys 

Sampling plans for joint surveys must meet two criteria: 

1. They must allow valid statistical inferences to be drawn, whose 
precision can be evaluated (i. e., probability sampling). 

2. They must be economical and easy to implement. 

In most cases the cost of analysis is much less than the cost of field data 
collection, so plans which minimize the sampling effort are to be favored. 

Simple random sampling of joints is almost always infeasible. These 
plans require randomly selecting individual joints around the site and mea- 
suring their orientations. For the same reason, stratified random sampling 
is infeasible unless strata are small (e. g., the size of outcrops). Stratification 
is not an innate property of populations in general; if a population is strat- 
ified into internally homogeneous subpopulations, the strata sizes are a 
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property of the population and not just the sampling plan. Joint populations 
are naturally stratified into joint sets, and joint populations are frequently 
stratified into geographical or lithological subpopulations. Prior stratification 
by these properties will improve the performance of any sampling plan. 

Systematic plans for sampling joints are easier to use than simple or 
stratified random ones because joints to be measured are easily located. 
A plan that specifies every 100th joint, say, is infeasible, but a plan that 
specifies "joints within a 6' circle every 50 feet", say, is not. Problems of 
periodicity in the sampled population might be encountered if stratification 
by lithology does not precede systematic sampling. 

Cluster sampling plans have long been favored for joint surveys because 
the time required to sample several joints at one outcrop is less than the 
travel time between outcrops. In cluster plans several outcrops are selected 
by some random process, and from each selected outcrop a sample is taken. 
Many sampling plans based on clustering could be suggested. The following 
is outlined only as an example. 

Different geological formations at a site frequently have different pat- 
terns of jointing due to differences in rigidity, friction angle, age of jointing, 
and the like. Therefore, the initial step is to stratify the site by major for- 
mations. Since one does not know a priori whether the populations of 
joints are homogeneous from formation to formation, these data sets are 
maintained separately. 

Next, each formation is arbitrarily stratified by superimposing a large 
regular grid, and the data from each quadrate kept separately. The dimensions 
of this grid might be on the order of 1000 feet depending on site dimensions 
and available effort. This stratification allows a "nested analysis" of variance 
and variances in joint population properties to be obtained as a function of 
spatial dimensions. This information is desired because the variance of joint 
properties generally increases as the volume of rock considered increases. 
For a structure only affecting a small volume of rock, estimates made from 
the total joint population overestimate true local variance, and perhaps either 
overestimate or underestimate the local mean. The formation is not stratified 
to improve the overall estimate of population parameters (the usual rea- 
sons for stratification) since each stratum is treated identically, but simply 
to maintain separation of the data sets. 

Within each stratum clusters of joints are selected for sampling. If few 
outcrops exist, all of them are sampled; if not, a random process must be 
used for selection. The orientation and size of all selected outcrops must 
be recorded. 

Several joints intersect each outcrop to be sampled. If their number is 
large, not all of them may be measured and a second-stage sampling plan 
is required. 

Two  second-stage sampling plans which should be avoided, even though 
they are frequently used, are systematic plans (e. g., sampling every tenth 
joint along a line) and plans randomly locating points on the outcrop and 
measuring the closest joint. Systematic plans should be avoided because 
periodicities are likely to exist in the way joints intersect an outcrop, while 
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sampling by measuring the closest joint to a random point should be avoided 
because joints whose individual spacing is large have a higher probability 
of being sampled than ones whose individual spacing is small. 

S n o w  (1966) has suggested sampling a single outcrop by randomly 
locating a line segment and measuring every joint which intersects it. This 
is a satisfactory method in that it is random and does not allow personal 
bias in selection, no matter how tight, small, or hard a joint is to measure. 
However, this procedure leads to large weighting factors and a "blind zone" 
for those joints whose pole is perpendicular to the sampling line. These 
large weighting factors and the blind zone can be reduced by using two 
perpendicular line segments. A better alternative is to place a sampling line 
on the outcrop and measure every joint intersecting a rectangular "window" 
of fixed width centered on the sampling line. 

III.2 S u b j e c t i v e  A s s e s s m e n t  of U n c e r t a i n t y  

Much of the uncertainty in geological exploration can only be expressed 
subjectively. Because of this, fairly well-developed methods of subjective 
probability theory (see, e. g., B a r n e t t ,  1973, for a discussion of philosophy) 
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Fig. 13. Parameter tree and "subtrees" 

can sometimes be used to help quantify these types of uncertainties and to 
help rationalize the way they are treated. 

Subjective assessment of uncertainty in engineering geology is best illus- 
trated with the geologic submodel of the so-called Tunnel Cost Model (TCM) 
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( M o a v e n z a d e h ,  1974, E ins te in  et al., 1977). The TCM will later be used 
in discussing uncertainty in design and construction; several successful prac- 
tical applications have been made. 
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Fig, 14. The sandstone parameter tree 

Within the TCM-geotogic submodel: 

- -  Geology is summarized by geotechnical parameters which can be 
related to design and construction. TaMe 4 lists one possible set of param- 
eters and states. 

- -  Geology is described by a combination of parameter states, all pos- 
sible combinations of which can be developed in a parameter tree (Figs. 13, 14). 
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- -  The parameter tree is used to assign uncertainties. Beginning with 
Fig. 14, subjective estimates are made at each node of the parameter states 
which may occur. Such subjective estimation is usual in geology, although 
typically summarized in verbal description (e. g., "likely condition", "im- 
probable", "predicted with great confidence", etc.). The only difference 
here is to express these probabilities quantitatively. Fig. 15 shows an example 
where one estimates at a particular location that shale is less likely to 
occur than granite, where high R Q D  is expected with a 50% chance, and 
so on. These numbers can be directly estimated by intuition or through 
formal procedures (e. g., StaSl von  H o l s t e i n ,  1974). Using the parameter 

Table 4. Geotechnical Parameters and Parameter Slates 

Parameter Parameter states Major construction 
consequences 

Rock type Shale Wear of cutters or 
Sandstone drill bits 
Limestone/Dolomite (Indication of other 
Schist rock types) 
Granite, Basalt 
Diabase, Intrusive 
Basalt, Gneis, Quartzite 

Jointing RQD High Support requirements, 
Medium RQD rate of advance, 
Low overbreak 

Major defects Fault of Shear Zone Support requirements, 
Clay Seams rate of advance, 

overbreak 
Foliation Highly foliated Support requirements, 

Non-foliated overbreak, boring 
machine rate of advance 

Gas Gas exists Delays, ventilation 
No gas exists requirements 

Water inflow High water inflow Remedial measures like 
Low water inflow grouting 

Compressive Very high Boring machine rates of 
strength High advance, supports 

Medium 
Low 

tree one obtains probabilities of combinations of parameters. In Fig. 20 the 
probabilities are assumed independent, but the procedure can accommodate 
dependence (E ins t e in  et al., 1974). 

- -  The combinations of parameter states and their probabilities are 
not the same throughout the tunnel. Therefore, the profile is segmented 
(Fig. 16) whenever parameter combinations or associated probabilities change. 
It is, of course, possible to include dependence between segments if the 
geology is related. Segmenting a tunnel by geologic conditions and estimat- 
ing their possible occurrence is the standard procedure for tunnel geologists. 
Except for increased quantification, the procedure here is identical. 
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The Roberts Tunnel in Colorado provides a good example of this 
procedure. Specifically, consider the sections where the tunnel intersects the 
William's Range Thrust Fault (Fig. 17). The procedure starts with the con- 

PARAMETER STATES 
AND PROBABILITIES 

COMBINATION OF PROBABILITY OF 
PARAMETER STATES THE COMBINATION 

ROCK RQD 
TYPE ~o~ JO GRAN[TE AND HIGH RQO 0.30 

?sO" 
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1.00 

Fig. 15. Parameter tree and probabilities for independent parameters 
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Fig. 16. Segments with different combinations of parameter states and associated 
probabilities 
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struction of a normal geologic profile using information from outcrops and 
borings. The William's Range Thrust Fault is a bowl shaped feature; on 
the outside is either Pierre shale or a baked shale, inside are metamorphic 
or igneous rocks. There is also evidence of a heavily sheared zone and of 
sound rock (boring DDH6). The profile is next scrutinized and marked where 
the geologist is uncertain. For example, markers 7 and 10 indicate uncertainty 
on the intersection of the fault with the tunnel axis (and thus of the fault 
width), 8 refers to the width of the sheared zone, and 9 represents the un- 
certainty about the width of the sound rock zone. The next step is segmen- 
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tation (Fig. 18) and creation of parameter trees (Figs. 19 and 20). A geologic 
unit as used in this context is a particular rock type, in combination with 
specific other parameter states and their associated probabilities. Figs. 19 
and 20 show examples for the relatively sound units, Granite 1 and 2, and 
the heavily sheared units, Granite 5 and 6. In the segmented profile of 
Fig. 18, worst conditions (i. e., Granite 6) are assigned to segment 44 with 
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a probability of 100%. The adjacent segment is evidently a transition to 
better granite. Dependencies among segments are used at fault intersections. 
These descriptions of geology are the input of the geologic submodel pro- 
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gram, which stores this information and supplies it to the tunnel simulator 
program. The latter then simulates geologic profiles like those in Fig. 21. 
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The three example profiles shown in this figure represent favorable, medium 
and unfavorable conditions. The frequency with which a certain unit is 
simulated in a particular segment corresponds to the input probabilities. 

Later, the Tunnel Cost Model simulates tunnel construction through 
each profile resulting in a time-cost pair for each profile and time-cost dis- 
tributions for a complete run. 

ROCK TYPE 'SH~GR]GR~GRS GR 6 GRI! (;R S GR 4 GR 4 GR I 

F AULT,NG ~ ~\\\\\~ , k k \ \ \ ~  
CLAY SEAMS 

WATER INFLOW k~ XNNNX\\ \\] k k k k k k \  \ \ \ \ \ ~  

FOLIATION k \  N 

GR B GR I 3R3 ~H z ~H2 

,kx 

ROCK TYPE 3R~IGRB SRIGRf GR 6 3RI GR 4 GR 4 GR I GR B GR 4 

FAO'T,NG ~.\~ k~ .k' XX\XXX . k \ \ \ ~  k \ \ \ \ ~  
CL. Y SEA.S ~\ \ \ \ \ \  ,~\\\\~ 

WATER INFLOW l~ ~K~XXXXNK x N \ \ \ \ \ ~  kkkk \  \ 
FOLIATION 

GR I 3RB 3R'~ 3H z 

kx 

ROCK TYPE 

FAULTING 

CLAY SEAMS 

WATER INFLOW 

FOLIATION 

I 
SH=~ SH = . SH~ 3R~ GR 6 GRE GR 4 GR 4 GR I GR 4 GR 4 GR I SH4 SH4 3H; 

\~,k\ x\ \ \ \ \ \ \ \  x~\kkkk\\ k\\\ \ '  x~ ,k\\\\' ,k~ 
,\\ \~ ,k\\\\\ '  ,\\ •  \\~ \ \ \ \ \ '  ,XkkkkX k\\ \~ x\ 

14014,H4~l 44 145.1 46 147  48 49 50 
Fig. 21. Three simulated geologic profiles for Williams range thrust fault (dark bands: 

indicate unfavorable parameter states) 

The TCM has been successfully used on several tunnel projects. How- 
ever, detailing geologic descriptions, incorporating objective information 
(e. g., from boreholes) and estimating location specific probabilities are often 
difficult. Thus an improved model for estimation, the Geologic Prediction 
and Updating Model, has also been developed. This model is easier to use, 
but makes somewhat stronger stochastic assumptions (see, A s h l e y  et al., 
1981). 

III.3 E x p l o r a t i o n  P l a n n i n g  

Sections III.1 and III.2 have shown that it is possible to collect infor- 
mation statistically and to express uncertainties quantitatively. This is the 
basis for formal exploration planning in which technical and economic 
aspects are balanced. 

Exploration reliability and the marginal benefit of detailed information 
are major considerations in Exploration Planning. Here, an application to 
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u n d e r g r o u n d  cons t ruc t i on  is used to  i l lustrate a f o rma l  p lann ing  procedure .  
The  m e t h o d  has also been appl ied to  o ther  types of  geotechnical  projects  
( B a e c h e r ,  1978). Fig. 22 shows  a generic decis ion-analysis  cycle leading to  
a decision on  collect ing m o r e  i n fo rma t ion ;  Tab le  5 describes the steps in 
detail. 

Table 5. Decision Analysis for Tunnel Exploration 

Steps in the analysis of the exploration decision 

Deterministic In exploration for tunnels 

1) Define the decision problem .. Determine if exploration is beneficial; if 
it is, what is the optimal exploration 
program. 

2) Identify the alternatives . . . . . . .  Exploration 
No exploration 

3) Outcomes . . . . . . . . . . . . . . . . . . .  Value of information; Construction 
costs and exploration sites are inter- 
mediate results 

4) Decision and state variables . . .  Exploration cost; 
Exploration reliability; 
Construction method costs geology 

5) Relationships between 
variables and outcomes . . . . . . .  Effect of geology and exploration on 

expected construction cost; 
DecisiOn tree 

6) Value (of outcomes . . . . . . . . .  Expected cost 

Probabilistic 

1) Encode uncertainty m state 
variables . . . . . . . . . . . . . . . . . . . .  Prior probabilities of geologic states 

2) Probabilistic model . . . . . . . . . . .  Effect of geology and exploration on 
expected construction cost; 
Decision tree 

3) Choose among distributions .. e.g., mean of cost-time scattergrams 
4) Probabilistic sensitivity 

analysis . . . . . . . . . . . . . . . . . . . . .  Critical ranges of probabilities, explo- 
ration reliability, and construction 
costs established 

Information 

1) Value of perfect information .. Probabilistic sensitivity analysis 
2) Best information gathering 

scheme . . . . . . . . . . . . . . . . . . . . .  Exploration method and configuration 
(geometry along tunnel) 

In the deterministic phase one enumera t e s  a course  of ac t ion and  out-  
comes  they m a y  lead to  (1--3) .  O u t c o m e s  depend  bo th  on  decision variables 
tha t  can be cont ro l led  and  state variables tha t  c anno t  (4). Variables and  
o u t c o m e s  are re la ted to  each o ther  in a mode l  (5). O u t c o m e s  are c o m p a r e d  
wi th  one  ano the r  t h r o u g h  an objective func t ion  usual ly  involving  cos t  or  
t ime criteria, bu t  wh ich  can also include technical  p e r f o r m a n c e  criteria (6, 7). 
Sensitivity studies (9) m a k e  it possible to  ident i fy  m o s t  i m p o r t a n t  variables.  
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The  probabilistic phase is basically a "revision" of the deterministic 
phase introducing uncertainty of the state variables. Outcomes in the prob- 
abilistic phase are in the form of probabili ty distributions. 

A decision could be made at this point,  but  generally one wants to 
establish whether  further information might be beneficial. This is analyzed 
in the in[ormation phase. If further  information is expected to be beneficial, 
this also results in the optimal level of information to be gathered. Pre- 
posterior analysis is a key element in the information phase. The consequences 

prior __ deterministic probabilistic _ informational t / 
information phase phase phase --~ decision --~ act 

I 

gather 
new information information new information 

gathering 

Deterministic Phase 
1. Define problem and limits of in- 

vestigation 
2. Alternative course of action 
3. Outcomes of each alternative 
4. Select decision and state variables 
5. Relate outcomes and variables 
6. Method of comparing relative 

values of each outcome 
7. Time preference 
8. Dominated alternatives eliminated 
9. Sensitivity of outcome to variables 

Probabilistic Phase 
1. Express uncertainty in variables by 

means of probabilities 
2. Probabilistic model 
3. Establish relative value of proba- 

bilistic outcomes 
4. Probabilistic sensitivity analysis 

In[ormation Phase 
1. Value of perfect information 
2. Evaluate various information col- 

lection schemes 

Fig. 22. The decision analysis cycle 
(after Stafil yon Holstein, 1973) 

of potential  future actions (collecting new information) are assessed before 
the action is taken. Preposterior analysis makes use of Bayes' theorem to 
perform updating, 

P [Bf lA]-  P[AIB~] P [Bj] (3.11) 

P [AIBj ] P [Bj] 
i=1 

Or in words:  

[ Normalizing-I [ Posterior probability l [ Likelihood of the] [ Prior ] -factor - 
[of Bj given the new] = [ new information,[ x ]probability[ x L ] k information, A J L A, given B~ ] L of B~ _[ 

The  likelihood function P [A[Bj] is the probabil i ty that  the particular ob- 
servation A (or "data A") would be made in exploration,  given that the 
true state of nature was Bj. In applying the procedure of Fig. 22 to tunnel 
exploration,  the phases and steps of Table  5 result. 
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The alternatives "exploration" or "no exploration" (step 2) can be de- 
fined for any stage of a geotechnical study. The "exploration" alternative 
includes many exploration strategies which are combinations of methods, 
locations and number of explorations. An exploration method is charac- 
terized by its cost and its reliability. The reliability is the probability that 
the exploration results indicate the true conditions and is represented by 
the likelihood function in Bayes' theorem. 

The value of information (step 3) is the difference between expected 
construction cost without exploration and expected construction cost with 
the particular exploration alternative. The goal of exploration usually is to 
reduce the expected construction cost. However, exploration involves some 
cost also. The objective of the decision analysis is thus to minimize explo- 
ration cost plus expected construction cost, or in other words, to establish 
the maximum value that one is willing to pay for exploration. 

The decision variables are exploration methods which can be described 
by exploration cost and reliability, and construction methods which are 
described by their costs. 

The state variables are the geologic conditions affecting tunnel con- 
struction such as jointing, water inflow, major defects. In this paper a 
simplified description of geologic conditions with the three states, good, 
fair and poor, is used. 

The establishment of relations between variables and outcomes is the 
major problem that needs to be solved in any analysis, and is discussed 
later. At this point, it may suffice to say that geologic conditions, explora- 
tion and construction costs have to be related to each other. The value of 
an outcome in the present case is measured only by expected cost of 
construction. 

In the probabilistic phase, degree of belief probabilities are assigned to 
the geologic states ( E i n s t e i n  and Vick ,  1974). The probabilistic model makes 
use of the deterministic relations and, by introducing uncertainties in the 
form of subjective probabilities, produces distributions of outcomes rather 
than point estimates. One means for relating geology to construction cost 
in a probabilistic manner is the Tunnel Cost Model. 

A sensitivity analysis is performed to evaluate changes in the "best" 
decisions and changes in predicted costs that result from variation in the 
input parameters. In this way, the "sensitivity" of optimal exploration stra- 
tegies to probabilities of geologic conditions and estimates of construction 
sequences can be determined. If the optimal strategies are insensitive to 
minor fluctuations in the variables, one can say that the decisions are 
"robust" and one has more confidence in them. 

In the information phase, the expected value of perfect information 
(EVPI) is calculated to eliminate those tunnel sections for which even perfect 
information (e. g., knowing the true geologic conditions precisely) would 
not be cost effective. Then, in the remaining sections, the expected value of 
alternative imperfect exploration schemes is evaluated. 

This then is the general procedure for exploration decision analysis. 
More specific details are described below. 

5 Rock Mechanics~ Vol. 16/1 
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Details of the Exploration Decision Analysis 

Three facts of the decision analysis approach need further attention, 
the relationships among input variables and outcome, the comparison among 
outcomes, and the sensitivity analyses. These are discussed through an 
example. 

EXPLORATION EXPLORATION CONSTRUCTION TUNNEL 
METHOD RESULTS METHOD GEOLOGY COST ($) 

G . 2  2oo 

S I / J~ - -~ -~ -  500 

Prior 
& -  

7/  s, ~'/ 2 ~  
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~ "  $ 1  . 
o 500 600~-2_ 
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Fig. 23. Exploration decision tree 

The tool for relating variables and outcomes and for comparing dif- 
ferent outcomes is the decision tree (Fig. 23). Using this tree, the expected 
cost of the "no exploration" case is computed by: (1) multiplying the cost 
of any of the construction strategies in a particular geology by the originally 
estimated subjective probability of that geology; (2) summing these "expected 
costs" for each construction strategy (e. g., $1=640); and (3) selecting the 
construction strategy with minimum expected cost ($3 or $2=620). 
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The expected cost for the "exploration" cases are computed similarly 
by: (1) calculating the posterior probability of each state conditioned on 
each possible result of exploration (e. g., if the exploration program indicates 
"fair" conditions, the probabilities of "poor", "fair", and "good" conditions, 
respectively, might be 0.09, 0.78 and 0.13); (2) determining the expected cost 
(i. e., probability times cost of any of the construction strategies in the 
particular geology) for each exploration result (analogous to step 1 above: 
300 x0.09, and so on, and these summed); (3) selecting the minimum-ex- 
pected-cost construction strategy for each exploration result; (4) finally, 
weighing each minimum cost strategy by the probability of the correspond- 
ing exploration result and summing (515 x 0.34 + 603 x 0.46 + 680 x 0.20 =588). 
Adding the cost of the particular type of exploration to this sum yields the 
expected total cost of that exploration strategy (588 plus cost of exploration). 
The expected value of exploration (expected value of sample information, 
EVSI) is the difference between the expected cost of the best strategy (step 4) 
and the expected cost of the "no-exploration" case (i. e., 32 minus cost of 
exploration). (The expected value of perfect information is obtained similarly 
as shown in Fig. 23). The analysis expressing these relations must be per- 
formed for each location of possible exploration. 

Table 6. Reliability Matrix 

Explorat ion result 

Ee EF Ep 

G 
Geologic 
states F 

P 

0.6 0.2 0.2 

0.3 0.6 0.1 

0.2 0.3 0.5 

To calculate EVSI, both exploration reliability and construction costs 
must be known. Exploration reliability is expressed in the form of a relia- 
bility matrix, a matrix of likelihood functions as shown in Table 6. The 
likelihoods or reliabilities are the result of subjective assessment of the per- 
formance of an exploration method in a certain geologic condition (e. g., 
the method in Table 6 has an 0.5 reliability of indicating "poor" conditions 
if the real conditions are "poor"). Exploration reliability includes "mechanical" 
uncertainties of the exploration method (e. g., breaking of intact rock due 
to drilling) and uncertainties in inferences. Reliabilities apply to entire seg- 
merits. Therefore the reliability of a single boring may decrease as the seg- 
ment increases. Reliabilities vary between completely reliable (identity matrixi 
and completely ambiguous (all probabilities equal l /n,  where n = number 
of geologic states). 

The construction costs of a certain construction strategy in certain geo- 
logic conditions can also be represented in matrix form (Table 7). Normaliz- 
ing such that the strategies are ideal for the geologies along ~he diagonal, 
one can form a so-called penalty matrix with 0-penalties along the diagonal 

5* 
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(Table 8). The numerical example in Table 8 is corrected to avoid negative 
numbers. If a strategy is the best for all geologic conditions, a row of 0- 
penalties would occur; for the numerical example, strategy $1 is the best for 
"good" and "fair" geology, strategy $3 for "poor" geology. Reliability and 
penalty numbers are then used to compute EVSI as shown in the decision tree. 

Table 7. Construction Cost Matrix 

Geology 

G F 

e~ g. 

P G F P 

S1 
Construction 
strategy $2 

$3 

C1~ CIe C1v SI 

CeG C~F C~p $2 

Cac Car CaP $3 

200 500 1500 

300 600 1000 

500 600 800 

$1 

$2 

$3 

Table 8. Penalty Matrix 

G F P G F P 

Clg - Clg CIF -- C2F CIp - C3p 

C ~ o -  Cxo C2F-- C2~ C 2 p -  Cap 

C3G,- CIG C3P-  C2F C3P - C3P 

0 P1F P1P $1 

P2v 0 P2P $2 

Pac Par 0 $3 

e. g., from Table7 

G F P 

0 0 700 

100 100 200 

300 100 0 

With this procedure it is thus possible to eliminate sections for which 
further exploration would not be cost effective and then to rank the seg- 
ments in which exploration is beneficial (E ins te in  et al., 1978). 

An interesting extension and application of the exploration analysis for 
underground structures is the exploration analysis method for underground 

Table 9. Estimated Costs of Construction 

G e o l o g y  

Caverns Capa- Cavern Ex- Good Fair Poor Very 
size city volume cellent poor 

MM$ MM$ MM$ MM$ MM$ 

build 25' al 42 caverns 2000 66.806 87.4 131.1 174.8 218.5 262.2 
@ 2000' 2420 'x2370 MMCF MMCF 
build 55 a2 15 caverns 2000 66.806 62.64 93.36 156.6 219.24 281.88 
@ 2000' 1530'x 1500' MMCF MMCF 
build 115' aa 11 caverns 2000 66.805 53.66 107.32 187.81 241.47 321.96 
@ 2000' 1010'x2000' MMCF MMCF 
build 25' a~ 19 caverns 2000 12.464 49.11 98.22 147.33 196.44 245.55 
@5000' 1030'x990'  MMCF MMCF 
build 55' a5 7 caverns 2000 12.464 39.89 79.78 139.62 219.40 279.23 
@ 5000' 600'x540'  MMCF MMCF 
build 115' a6 5 caverns 2000 12.464 36.53 91.33 164.39 237.45 288.77 
@ 5000' 535 'x300'  MMCF MMCF 
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gas storage caverns (E ins t e in  et al., 1977). The hypothetical example in- 
volves a storage facility with a total capacity of 2000 MMCF consisting of 
a number of individual caverns. 

60 4 

t 

~_ 60' 
Fig. 24. Possible cavern cross-section 
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Fig. 25. Results and inferences from first boring 

Three cavern sizes and shapes (Fig. 24) and 2 depths (2000' and 5000') 
are considered. Greater depths make it possible to provide the storage ca- 
pacity with a smaller cavern volume. Construction cost is affected by cavern 
size, depth and total cavern volume as summarized in Table 9. A first boring 
has been completed and its log is plotted in Fig. 25. 
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The log indicates, at a depth of 5000 ft. (1500 m), two sandstone layers 
of 80 ft. (24 m) and 60 ft. (18 m) thickness. These are interbedded with shale 
layers, each 100 ft. (30 m) thick. Jointing appears to be low throughout the 
rock at this depth. From this log one infers, e. g., the seven profiles of 
Fig. 25 as possible states of nature. (Other inferences are possible but con- 
sidered unlikely in this case.). The seven profiles denote differences in major 
structural aspects of the geology. Other variations within each profile, e. g., 
in the degree of jointing anticipated, or in the size and frequency of shale 
lenses, can be superimposed upon the profiles. 

The questions at this point are: 1) whether to drill a second boring, 
and 2) if so, where? Three potential locations are considered, however, any 
number could be. The candidate location are: 

(1) 200' (N60 m) to the right of the first boring; 
(2) 500' (~ 150 m) to the right of the first boring; 
(3) 1000' (N300 m) to the right of the first boring. 

Three reliability matrices will have to be developed, one for each loca- 
tion. They include both physical or mechanical uncertainties in taking the 
boring, and inferential uncertainties in extrapolating boring results. Since 
this latter uncertainty is a function of boring location, reliability matrices 
will be different for different locations. 

As an illustration, Table 10 shows the reliability matrix for the pro- 
posed boring located 500' to the right of the initial boring. 

Table 10 indicates that there is thought to be a general 40% reliability 
that the boring results will indicate the profile correctly. The remaining 
60% in each case is distributed over 6 other profiles. Profiles having features 
similar to the actual profile are assigned higher likelihoods, and vice versa. 
This process is subjective; judgment is required in assigning these reliabilities. 

Because of the limited information obtained from this first boring, the 
seven profiles in Fig. 25 are taken to be equally likely. Their prior proba- 
bilities are therefore: 

P [Profile 1] = 0.15 
P [Profile 2] = 0.15 
P [Profile 3] = 0.15 
P [Profile 4] = 0.15 
P [Profile 5] = 0.15 
P [Profile 6] = 0.15 
P [Profile 7] = 0.10 

X . . . . . . . .  = 1.0 

With a small computer program to conduct preposterior analyses, the 
following results arc obtained for the value of a second boring: 

EVSI 200' rights = $ 0.0 millions 
EVSI 500' rights = $ 1.4 millions 
EVSI1000' rights = $ 6.2 millions 
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The results show that  it is most  beneficial to sink the borehole 1000' to 
the right. In a general sense, borings spaced at greater distances from the 
initial boring shed more light on regional characteristics of the geology. 

Table 10. Example Reliability Matrix 

Boring Indicates Profile @: 

True profile 1 2 3 4 5 6 7 

Profile 1 0.4 0.1 0.15 0.05 0.15 0.05 0.1 
Profile 2 0.15 0.4 0.05 0.15 0.05 0.15 0.05 
Profile 3 0.15 0.05 0.4 0.1 0.15 0.05 0.1 
Profile 4 0.05 0.15 0.05 0.4 0.15 0.15 0.05 
Profile 5 0.15 0.05 0.15 0.05 0.4 0.1 0.1 
Profile 6 0.05 0.15 0.05 0.15 0.i 0.4 0.1 
Profile 7 0.15 0.05 0.15 0.05 0.15 0.05 0.4 

Borings spaced more closely tend to confirm findings in a local area, but 
do not reveal the regional characteristics as well. At this initial point, an 
indication of the regional geology is apparently more valuable than con- 
firmation of results from the first boring. Obviously, these results vary from 
case to case. 

In analogous manner the position of a 3rd boring, 500' to the left or 
to the right of the initial one was examined. This resulted in EVSI of $ 
2.8 millions for the boring located 500' to the left and an EVSI=0 for the 
other. Details of the procedure and the example, as well as other alter- 
natives and sensitivity studies are given in E i n s t e i n  et al. (1977). 

IV. Closing Comments 

It was possible to shove that statistical methods in exploration make 
it possible to formally describe variability in engineering geologic conditions 
and in the data collected, but also to plan exploration approaches. Of 
particular interest are the methods that allow the use of subjective assess- 
ments of uncertainty. 

In part II of this paper, it will be shown how the results of explora- 
tion programs with statistical descriptions can be used in design and con- 
struction. 
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