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Summary 

In this paper, multilayered feedforward neural networks 
trained with the error-back-propagation (EBP) algorithm 
have been employed for predicting the seasonal monsoon 
rainfall over India. Three network models that use, 
respectively, 2, 3 and 10 input parameters which are known 
to significantly influence the Indian summer monsoon 
rainfall (ISMR) have been constructed and optimized. The 
results obtained thereby are rigorously compared with those 
from the statistical models. The predictions of network 
models indicate that they can serve as a potent tool for 
ISMR prediction. 

1. Introduction and Motivation 

Being a nation with an agriculture-based econ- 
omy, the southwest monsoon which arrives with 
a remarkable regularity is an important natural 
phenomenon for India. Due to its linkage with 
the global climatic conditions, the southwest 
monsoon has received considerable international 
attention in recent years. One of the major 
scientific issues in meteorology pertains to long- 
range forecasting of the Indian summer monsoon 
rainfall (ISMR) which is vital for India econom- 
ically and socially. Blanford was the first to 
attempt a forecast of the monsoon based on the 
Himalayan snow cover extent and thickness 
(Blanford, 1884). Later, Sir Gilbert Walker 

(1908, 1910, 1933) attempted the development 
of an objective method for forecasting ISMR. 
Since 1979, as a part of the detailed global 
climatic observation and the MONEX program, 
several studies addressing the issue of ISMR 
prediction have been performed and they resulted 
in the increased understanding of the phenom- 
enon. These studies are based mainly on the 
statistical models and have empirically related 
the ISMR with various predictors (parameters) 
(Thapliyal, 1981, 1982; Shukla and Paolino, 
1983; Mooley et al., 1986; Shukla and Mooley, 
1987). Since the physical processes involved are 
complex and the character and the strengths of 
the interactions amongst them are not clearly 
known, the ISMR prediction is a challenging 
task. Consequently, only partial success has been 
achieved in ISMR prediction. 

Most systems encountered in the real-world 
are nonlinear and simple linear or linearized 
models cannot capture the essence of the under- 
lying phenomena. Notwithstanding this, the 
usage of linear or linearized models continues 
for want of better methodologies to deal with the 
nonlinear systems. The task of ISMR prediction 
falls into this category and is traditionally carried 
out using a variety of linear regression models 
(Bhalme et al., 1986; Gowariker et al., 1989, 1991; 
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Mooley and Shukla, 1987; Parthasarathy et al., 
1988; Prasad, 1992; Shukla, 1987; Thapliyal, 
1990; Verma, 1982). 

Prediction essentially involves determining the 
functional relationship(s) between the input-out- 
put variables of a system. Once such relationship 
is established from the available input-output 
data, it can be used to estimate the outputs 
corresponding to the new inputs for which output 
values are not available. The traditional method 
of empirical modelling is to assume some form 
of a fitting function with unknown parameters 
and subsequently employ the regression or 
optimization techniques for their estimation. 
The ARMA (Auto Regressive Moving Average) 
type models (Tong, 1990) fall into this category. 
Here, a polynomial expansion is performed to 
render the model linear-in-the-parameters. How- 
ever, in this approach, it becomes necessary to 
apriori determine the structure of the empirical 
model or which terms to include so that the 
problem reduces to one of estimating the 
parameters using a least-squares criterion. In 
recent years, a new mathematical tool in the form 
of artificial neural networks (ANNs) has become 
available for performing nonlinear function 
approximation, pattern recognition, data com- 
pression, noise reduction etc. In the ensuing 
paragraphs ANNs are discussed in brief. 

2. Artificial Neural Networks 

Artificial neural networks were originally pro- 
posed to mathematically model the brain func- 
tions such as learning, pattern recognition, 
classification, and generalization. In the last 
decade, ANNs have been used in almost all the 
branches of science, engineering, and technology 
including atmospheric sciences for performing 
the above mentioned tasks. Although used for a 
wide variety of applications, the real power of 
ANNs, particularly that of the feedforward 
multilayered neural networks, lies in performing 
nonlinear function approximation and classifica- 
tion. The feedforward neural networks (FFNNs) 
have been used, for example, in satellite data 
retrieval and interpretation of satellite imagery 
(Peak and Tag, 1992, 1994; Zhang and Scofield, 
1994), process identification and control (Chen 
and Billings, 1992), fault detection and diagnosis 
(Venkatasubramanian et al., 1990) etc. The 

FFNNs have the ability to approximate any 
nonlinear functional relationship between a set of 
input-output variables and it has triggered 
numerous applications including those in the 
nonlinear identification and prediction of weather 
systems (Elsner and Tsonis, 1992; Peak and Tag, 
1989; Tang et al., 1994; Derr and Slutz, 1994; 
McCann, 1992; Thomson, 1996). Grieger and 
Latif (1994) investigated the dynamics of the E1 
Nino phenomenon using neural networks. Minns 
and Hall (1996) used FFNNs in hydrology as 
rainfall-runoff models. It is to be noted that 
unlike the traditional linear or nonlinear regres- 
sion techniques, the FFNNs do not require an 
explicit functional form for performing input- 
output mapping. In this sense they can be viewed 
as "black-box" models. 

To impart into an FFNN, the above mentioned 
capabilities, the neural network is made to learn 
the relationship between the input-output data via 
a procedure called network training. The set of 
such input-output patterns is known as the 
training set. The most popular FFNN training 
algorithm is the error-back-propagation (EBP) 
proposed by Rumelhart et al. (1986a, b) and 
Werbos (1974). The detailed description of the 
EBP technique can be found in many places 
(e.g., Bishop, 1994; Haykin, 1994; Zupan and 
Gasteiger, 1993; Freeman and Skapura, 1991; 
Beale and Jackson, 1990; Hecht-Nielsen, 1990; 
Muller and Reinhardt, 1990; Wasserman, 1989; 
Yoh-Han Pao, 1989; Lippmann, 1987); however, 
for the sake of completeness, the methodology is 
very briefly described below. 

The EBP algorithm is based on a gradient 
descent technique known as the generalized delta 
rule (GDR) which minimizes the average- 
squared-error between the actual and network 
predicted outputs by moving down the error 
surface (Schalkoff, 1992; Parker, 1982). An EBP 
network consists of at least three layers of 
neurons (also called as processing elements or 
nodes), namely, an input layer, an output layer 
and a middle layer (known as hidden layer). Each 
neuron in a layer is fully connected to all the 
neurons of the consecutive layer and the strength 
of the connection is known as weight. At the 
beginning of network training, the weights are 
randomly initialized. Figure 1 shows a typical 
three-layer feedforward neural network. The 
input layer neurons do not perform any computa- 
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Fig. 1. A three layer feedforward neural network 

tions and merely distribute the input values over 
all the neurons in the hidden layer. Each node in 
the hidden layer first computes the weighted-sum 
of its inputs which is passed through a nonlinear 
transfer function to arrive at the output. The 
common choice of the nonlinear transfer function 
is either the logistic sigmoid or hyperbolic 
tangent (tanh). The nonlinear function approx- 
imation ability of the EBP networks is due to the 
nonlinear transfer function used for computing 
the outputs of the hidden units. It is to be noted 
that the use of a nonlinear transfer function for 
the output layer nodes is optional. The output 
values of the hidden layer neurons serve as the 
inputs to the next (output) layer neurons. Since 
each neuron in a layer passes its output to every 
neuron in the next layer, the network is called a 
feedforward network. The output of the output 
layer nodes forms the network output. Subse- 
quently, the network outputs are compared with 
the target (desired) values, and the error, termed 
as the prediction error, is evaluated. This error is 
used to correct, according to the GDR strategy, 
the connection weights between the hidden and 
output layers and, subsequently, those between 
the hidden and input layers. The changes in the 
weights are made by presenting the input-output 
patterns of the training data repeatedly until a 
prespecified error criterion is fulfilled. At this 
point the weights are said to be converged. 

It is not enough that the EBP network predicts 
well only the outputs corresponding to the 
training set inputs. It is necessary that the trained 
network also predicts the outputs corresponding 

to the new (or novel) inputs which are not part of 
the training set. The network ability of accurately 
predicting the outputs of the novel input vectors 
is known as the generalization ability and is vital 
for the satisfactory function approximation 
performance by the network. To ensure that the 
network possesses good generalization capabil- 
ity, the available data is divided into two parts 
known as the training set and test set. The 
training set is used for network learning and the 
test set to simultaneously evaluate the general- 
ization ability of the network. 

The EBP algorithm sometimes suffers from 
problems such as slow convergence and entrap- 
ment into a local minimum of the error surface. 
According to one strategy (Rumelhart et al., 
1986a) inclusion of the momentum term in the 
weight-adjustment (learning) equation speeds up 
the network training and also helps in avoiding a 
local minimum. While training the EBP network 
a precaution must be exercised to avoid what 
is known as overfitting phenomenon. Overfitt- 
ing takes place if: (i) the network is trained over 
very large number of training iterations, and (ii) 
the hidden layer contains more-than-necessary 
number of neurons. The ill-effect of overfitting 
is that the network learns minute details (e.g., 
noise) in the training data at the cost of learn- 
ing the smooth trend therein. Consequently, the 
network fails to generalize and makes erroneous 
predictions for the new inputs. To ensure that the 
network generalizes best and is not overfitted, 
following methodology is usually adopted: (i) 
stop the network training as soon as the root- 
mean-squared (RMS) error with respect to the 
test set reaches a minimum, (ii) explore the error 
surface rigorously so as to reach the deepest 
possible error minimum or the global minimum, 
(iii) study the effect of the number of hidden 
units on the network's generalization ability. The 
by-product of this strategy aimed at avoiding 
overfitting is, in the process, the problem of 
determining the optimal network structure is 
solved; which is essentially one of fixing the 
minimum number of hidden nodes required for 
addressing a specific mapping or classification 
task (Tambe et al., 1996). Several strategies to 
improve performance of the EBP learning 
algorithm have been proposed which are 
reviewed by Xu et al. (1992) and Huang and 
Huang (1991). 
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Elsner and Tsonis (1992) have reviewed the 
applications of artificial neural networks to the 
prediction problems arising in meteorology and 
have given examples of time series forecasting 
(also see Tsonis and Eisner, 1988, 1989). Navone 
and Ceccatto (1994) have shown that forecasting 
of the Indian monsoon can be performed via 
ANNs. Goswami and Srividya (1996) have 
conducted ANN-assisted ISMR prediction 
employing the ISMR time series of 120 years. 
This approach is similar to the classical stochas- 
tic time series analysis employed by Basu and 
Andharia (1992) wherein previous values of 
ISMR are used to predict its future value. In 
the present paper, the FFNNs trained using the 
EBP algorithm have been used for approximating 
the nonlinear relationship between the ISMR 
predictors and the ISMR. Specifically, three EBP 
networks that use two, three and ten input 
parameters (predictors) respectively, have been 
constructed, trained and optimized. In the follow- 
ing paragraphs, the construction of the data sets 
used for training and testing the networks is 
described followed by a discussion on the signifi- 
cance of the input parameters. The three network 
models hereafter are referred to as model-I (two 
parameters), model-II (three parameters), and 
model-III (ten parameters), respectively. 

To serve as a significant parameter for the 
model development, its correlation with the 
predictand (in our case ISMR) needs to be 
stable. Parthasarathy (1984) and Hastenrath 
(1987) have shown that to obtain a stable 
correlation coefficient between the Indian rainfall 
and regional/global circulation parameters, the 
data span needs to be of at least 20 to 30 years. 
The data used to construct the training and test 
sets for neural network modelling were obtained 
from various sources and are highly reliable. In 
this study, a total of 12 predictors have been 
used. 

It is to be noted that we are constrained by the 
unavailability of all the twelve predictor data for 
equal length of time. The data of two parameters 
are available for 56 years (1939-1994), three 
parameters for 38 years (1957-1994), and ten 
parameters for 25 years (1963-1987). Due to this 
variability, the training and test sets had to be 
separately defined for each network model. It is 
essential from the generalization viewpoint that 
the training and test sets are properly chosen. 
Specifically, both the data sets should be sampled 
in such a way so as to be the true representatives 
of the entire input-output state space. In the 
following, the importance of significant predic- 
tors is discussed. 

3. Data Organization 

The selection of suitable input parameters for the 
prediction of ISMR is of critical importance and 
the early attempts were made by Blanford and 
Walker. Walker (1908, 1910) selected four 
parameters to develop a multiregression model 
for forecasting ISMR. Several attempts have 
been made since then to identify the suitable 
global and regional predictors for ISMR predic- 
tion (Hastenrath, 1986, 1987, 1995; Bhalme et 
al., 1986; Shukla, 1987; Parthasarathy et al., 
1988, 1993; and Shukla and Mooley, 1987). Most 
of these are monthly/seasonal averages of the 
surface and upper-air parameters corresponding 
to the winter and premonsoon periods. These are 
identified on the basis of their significant linear 
correlations with the ISMR. Based on their 
spatial domain, the predictors can be classified 
into four major groups as: (i) Indian region; (ii) 
Indian ocean region; (iii) E1 Nino; and (iv) 
global/hemispheric conditions. 

3.1 All India Summer Monsoon Rainfall 

All India (India taken as a single unit) summer 
monsoon (June-September) rainfall data for the 
period 1939-1994, prepared by area-weighting 
306 well-distributed (over the entire country) 
rain-guages has been taken from Parthasarathy 
et al. (1992, 1994). A detailed discussion of 
preparing these data and their magnitudes can be 
found in Mooley and Parthasarathy (1984) and 
Parthasarathy et al. (1987, 1992). 

3.2 Southern Oscillation Indicator 

The seesaw oscillation in the sea level pressure 
between the Indian ocean and the east Pacific 
ocean over the near-equatorial latitudes is termed 
as southern oscillation. Shukla and Paolino 
(1983), Parthasarathy and Pant (1985), and 
Shukla and Mooley (1987) showed that the 
seasonal tendency parameter MAM (March to 
May) minus DJF (December to February) of the 
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(Tahiti-Darwin) southern oscillation index (SOD 
is a useful parameter for predicting the monsoon 
rainfall. During the deficient summer monsoon 
rainfall years over India, the SOI has been found 
to be negative (higher sea level pressure at 
Darwin and lower at Tahiti). The April minus 
January sea level pressure at Darwin (DSLP) is 
also considered as an indicator of the southern 
oscillation. 

3.3 Surface Air Temperature 

It has been identified that the pre-monsoon 
(March to May) thermal structure over India is 
a good indicator for the ensuing monsoon 
rainfall. Parthasarathy et al. (1990) showed that 
the mean surface temperatures at the west central 
India (WC1) stations during March, April and 
May have a high significant correlation (0.6) with 
the monsoon rainfall for the period 1951-1980. 
Mooley and Paolino (1988) have shown that the 
minimum temperature in May over the western 
Indian region may be considered as one of the 
predictors in the seasonal monsoon rainfall 
forecast. Krishnakumar et al. (1995) examined 
the spatial patterns of correlation coefficients of 
ISMR with the maximum and minimum tem- 
peratures at 121 stations in India and found that 
the minimum temperatures are more useful as 
predictors than the maximum ones. The correla- 
tion coefficient of WC1 May minimum tempera- 
ture (averaged over 10 stations) with ISMR for 
the period 1963-1987 is 0.649. 

3.4 Location of 500 hPa Ridge over India 

The north-south seasonal migration of the sub- 
tropical ridge provides a good indicator for the 
seasonal monsoon prediction. The ridge is 
located in the southernmost part during winter, 
and as the season advances, it gradually shifts 
northwards. Banerjee et al. (1978) first suggested 
a relationship between the monsoon activity and 
the ridge location. Mooley et al. (1986) have 
examined in detail the relationship and its 
stability between the 500 hPa ridge location 
along 75 degree east during April and the ISMR 
as well as the subdivisional monsoon rainfall for 
the period 1939-1984. Krishnakumar et al. 
(1992) found that the difference between the 
ridge locations during March and April shows a 
correlation coefficient of 0.73 with ISMR. 

3.5 Bombay pressure Tendency 

Bombay pressure, which is associated with the 
tropical circulation as well as the southern 
oscillation (Wright, 1975), is one of the leading 
predictors of the ISMR. Parthasarathy et al. 
(1991) showed that the seasonal mean sea level 
pressure tendency (MAM-DJF) for Bombay 
shows a significant correlation coefficient of 
-0 .7  with the monsoon rainfall from the year 
1951 onwards. This relationship is dominant only 
when the ENSO variance in Bombay pressure is 
high. 

The set of parameters used in this study are: 
(1) Darwin sea level pressure (MAM-DJF) 
tendency (DWPM-D); (2) Tahiti-Darwin sea 
level pressure tendency (T-DPM-D); (3) Agalega 
sea level pressure tendency (AGPM-D); (4) 
Bombay sea level pressure tendency (BBPM- 
D); (5) Adelaide sea level pressure tendency 
(ADPM-D); (6) West Central India (WCI 10 
station average) May minimum temperature 
(WCTN MAY); (7) Jodhpur mean temperature 
(May) (JDETMEA); (8) Jodhpur pressure (May) 
(JDRPMAY); (9) Meridional wind index 200 hPa 
(May) (MWI200M); (10) April 500 hPa ridge 
location (Ridge 500); (11) De Bilt surface 
temperature (Jan.) (DEBT); and (12) Darwin 
sea level pressure (April-Jan.) (DSLP). 

4. Results and Discussion 

Based on the past studies and the analysis of the 
data from 1939-1984, Shukla and Mooley (1987) 
concluded that the two predictors, namely, the 
difference between the April and January sea 
level pressure at Darwin (DSLP) and the location 
of the 500 mb ridge during April along 75 E, 
show the most significant relationship with 
ISMR. Thus, these two predictors for the period 
1939-1994 were chosen as the two inputs in 
network modeM. A total of 56 patterns (vectors) 
were divided into the training and test sets 
consisting of 49 and 7 patterns, respectively. 
Table 1 lists the values of the two predictors 
along with the respective ISMR. The patterns in 
the test set are marked with an asterisk. All the 
three models were trained using the error-back- 
propagation (EBP) algorithm. The stepwise 
training procedure that uses the momentum term 
in the learning rule, and the logistic sigmoid 
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Table 1. Data for Model-I 

C. Venkatesan et al. 

Year Ridge DSLP All India Year Ridge DSLP All India 
Rainfall (ram) Rainfai1 (mm) 

1939 14.0 4.4 789.7 1967 17.5 5.6 860.1 
1940 15.3 5.0 853.5 "1968 12.5 5.7 754.6 
1941 11.2 2.8 728.4 1969 17.3 5.2 831.0 
1942 17.5 1.8 957.9 1970 15.8 1.8 939.8 

"1943 16.0 2.5 868.4 1971 16.8 2.2 886.8 
1944 14,5 3.0 920.6 1972 11.0 4.8 652.9 
1945 16.7 3.8 911.1 1973 16.8 1.7 913.4 
1946 17.3 4.1 903.8 1974 13.5 4.8 748.1 
1947 18.0 2.1 945.6 1975 17.5 1.3 962.9 
1948 14,5 1.7 874.0 * 1976 17.0 4.8 856.8 
1949 17.0 2.8 904.1 1977 14.0 3.4 883.2 
1950 17.0 3.0 877.0 1978 14.0 1.9 909.3 
1951 12.0 4.1 739.1 1979 12.5 3.7 707.8 

�9 1952 13.5 3.6 793.1 1980 15.0 3.8 882.8 
1953 17.0 2.0 923.2 1981 17.0 4.8 852.2 
1954 16.5 2.8 885.6 1982 11.3 3.6 735.4 
1955 15.5 0.6 930.4 1983 14.5 0.3 955.7 
1956 17.5 3.5 983.3 * 1984 14.8 3.0 836.7 
1957 16.0 3.0 788.7 1985 14.7 - 0.2 759.8 
1958 17.0 0.4 889.4 1986 15.0 4.6 743.0 
1959 16.0 2.8 944.1 1987 14.0 4.4 697.3 

"1960 16.7 2.0 839.8 1988 14.5 2.3 961.5 
1961 15.0 1.9 1020.3 1989 16.5 3.1 866,7 
1962 14.8 4.7 809.8 * 1990 15.0 0.1 908.7 
1963 13.5 2.4 857.9 1991 14.5 3.6 785.2 
1964 18.3 1,9 922.6 1992 13.5 0.1 785.5 
1965 14.0 5.0 709.4 1993 14.5 5.6 894.0 
1966 13.5 2.5 739.9 1994 14.0 4.1 938.3 

1995 13.5 2,8 

* The data of the test set. 

t ransfer  funct ion at the h idden and output  layer  
nodes  is descr ibed in Appendix-I .  

The  ne twork  inputs as well  as the outputs 
l isted in Table 1 were  normal ized  so as to lie 
be tween  0 and 1. The  normal iza t ion  was carr ied 
out  by  simple l inear t ransformat ion.  The  ne twork  
archi tecture  in m o d e M  consists o f  two neurons  in 
the input layer  and one neuron  (represent ing the 
ISMR) in the output  layer. The  ne twork  training 
consis ted o f  15,000 i terat ions (sweeps) through 
the training set. A single i teration involves as 
many  forward  and reverse  passes as the number  
o f  input-output  patterns in the training set. In the 
forward  pass, ne twork  outputs are established,  
and based on the predict ion error, in the reverse 
pass the ne twork  weights  are adjusted. Af ter  
each sweep,  the ne twork  outputs for  all the test 

set patterns also were  compu ted  and the RMS 
errors with respect  to the training (Et,~) and the 
test (East) sets were  evaluated.  At  the end o f  
15,000 iterations, the Etst profile as a funct ion o f  
training i terat ion was examined  to locate  its 
minima.  This  p rocedure  is repea ted  several  t imes 
by  assuming a different  set o f  r andom numbers  
for  init ial izing the ne twork  weights.  Note  that in 
these runs (which are t e rmed  as error-surface- 
exploration runs) the n u m b er  o f  h idden  layer  
neurons  is kept  constant .  The  weights  corre-  
sponding to that e r ror-surface-explora t ion  run 
which  yie lds  the lowest  Etst magni tude  are 
cons idered  to be opt imal  for  the chosen number  
o f  h idden nodes.  The  object ive of  the error- 
surface-explora t ion  runs is to reach  the global 
m i n i m u m  or the deepes t  possible local  m i n i m u m  
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on the error surface. To avoid overfitting and 
arrive at the optimal network architecture such 
error-surface-exploration runs were conducted by 
varying the number of hidden layer units 
between one and ten. We conducted 25 error- 
surface-exploration runs for a fixed number of 
hidden units. Figure 2a shows the minimum of 
the Etrn and Et~t obtained during the error- 
surface-exploration runs as a function of the 
number of hidden layer neurons. It can be seen 
that for six hidden units, the magnitude of the test 
set error (Gst) is the smallest. This indicates that 
the optimal network architecture should have six 
neurons in the hidden layer. The optimal weights 
are the weights corresponding to that error- 
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Fig. 2a. RMS errors with respect to Training and Test sets 
as a function of number of hidden layer neurons 

surface-exploration run which for six hidden 
units, yielded lowest Et,c value. The optimal 
weights so obtained are listed in Tables 2a and 
2b. The detailed steps for computing the net- 
work-predicted ISMR value using the weight 
values in Tables 2a and 2b and for Ridge and 
DSLP values of 14.0 and 4.4, respectively, are 
given in Appendix-II. 

The EBP network with the optimal architec- 
ture [2 (no. of input nodes): 6 (no. of hidden 
nodes): 1(no. of output nodes)] and weights 
yielded an RMS error value of 66.83 mm for the 
training set and 24.53 mm for the test set. The 
corresponding correlation coefficients (CC) were 
0.7 and 0.91, respectively. The error in the 
prediction regime is smaller than half of the 
standard deviation of the ISMR series (84.05). 
The rainfall value predicted by the model-I for 
the year 1995 (DSLP = 2.8 and Ridge = 13.5) 
was 835.96 mm which is very close to the actual 
rainfall value (827.1 ram). Note that the predictor 
data for the year 1995 was not included in either 
the training set or the test set. Figures 2b and 2c, 
respectively, show the 3-dimensional plot of the 
actual and model-I fitted data. It can be observed 
that the model has captured the intrinsic relation- 
ship between the two predictors and ISMR. The 
points that show high deviations on either side of 
the average trend are treated by the network as 

qD" 

Fig. 2b. Three dimensional view of the actual rainfall 

1/% 
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_~.~ %- ~ ->. . .  / <  .9 <~- 
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Fig. 2c. Three dimensional view of the modem predicted 
rainfall 
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Table 2a. Optimal Weights for Model-I 

C. Venkatesan et al. 

From Toj thh idden laye r  neuron 

j = l  j = 2  j = 3  j = 4  j = 5  j = 6  

Input neuron 1 -0.294163 -0.435573 0.168131 -1.43422 -1.69509 -0.109301 

Input neuron 2 0.319022 -0.548771 -0.569852 1.16194 1.02023 -0.0324836 

Bias neuron, O u -0.406677 -0.435841 -0.740890 -0.434811 -0.401620 0.379037 

Table 2b. Optimal Weights for Connections Between the 
Hidden Neurons and the Output Neuron 

From To the output neuron 

Hidden neuron 1 -0.484905 

Hidden neuron 2 0.389519 

Hidden neuron 3 0.978241 

Hidden neuron 4 -1.21877 

Hidden neuron 5 - 1.89753 

Hidden neuron 6 0.342731 

Bias neuron, (3 r 0.742981 

noise and thus are filtered. Figure 3 shows the 
comparison between the model-I predicted and 
the observed rainfall values corresponding to the 
training and test sets. 

Dugam et al. (1993) identified the De Bilt 
surface temperature (Jan.) anomaly as a potential 
predictor for ISMR. Hence, this predictor has 
been taken as an input to model-II, in addition to 
the two inputs of model-I. The optimal network 
configuration for model-II was found to be 3:3:1. 
The inputs chosen for this model correspond to 
the period 1957-1994. The RMS error values for 
the training and test sets have been 65.62 mm 
and 33.7 mm, respectively, and the correspond- 
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Fig. 3. Comparison between predicted and observed rainfall 
for 2-parameter model 

ing correlation coefficient values are 0.68 and 
0.96, respectively. The optimized network 
weights for model-II are listed in Tables 4a and 
4b. The model-II predicted rainfall value for the 
year 1995 ( D S L P = 2 . 8 ,  R i d g e =  13.5 and 
DeBilt = 1.6) was 842.04 ram. As can be noted 
even this value is very close to the actual rainfall 
during the year 1995. The comparison between 
the observed and the model-II predicted rainfall 
values for the training and test sets is shown in 
Fig. 4. 

In model-III, ten well-established and stable 
parameters for the period 1963-1987 have been 
used (Table 5). The correlation coefficient of 
these parameters with the ISMR are listed in 
Table 6. After training, the optimal network 
configuration comprising 6 hidden neurons was 
established. The optimum weights for this model 
are listed in Tables 7a and 7b. The RMSE values 
for the training and test sets were 26.97 mm and 
46.55 mm, respectively, and the corresponding 
correlation coefficients were 0.96 and 0.68, 
respectively. Figure 5 shows the comparison 
between the modeMU predicted and observed 
rainfall values. The ISMR prediction perfor- 
mance of models I to III is summarized in 
Table 8. 

We have compared our results with those in 
the well-cited paper by Shukla and Mooley 
(1987) (hereafter referred as SM), in which the 
linear regression technique has been used for 
ISMR prediction. Additionally, we have com- 
pared our results with those of Navone and 
Ceccatto (1994) (hereafter referred as NC) who 
have used two types of neural network models 
for ISMR prediction. The first model by NC has 
2:2:1 structure. The second one is a hybrid model 
in which two (deterministic and stochastic) 
neural networks were linked by connecting the 
output units to a new neuron. NC have 
recomputed the values of the regression coeffi- 
cients using the data by SM and used them as the 



Prediction of All India Summer Monsoon Rainfall Using Error-back-propagation Neural Networks 

Table 3. Data for Model-II 

233 

Year Ridge DSLP De Bilt All India Year Ridge DSLP De Bilt All India 
500 (mb) (Temp) Rain Fall (ram) 500 (rob) (Temp) Rain Fail (ram) 

1957 16.0 3.0 +1.4 788.7 1977 14.0 3.4 +1.3 883.2 
1958 17.0 0.4 -0 .2  889.4 1978 14.0 1.9 +1.3 909.3 
1959 16.0 2.8 -0 .6  944.1 1979 12.5 3.7 -4.9 707.8 
1960 16.7 2.0 +0.5 839.8 1980 15.0 3.8 -1.5 882.8 
1961 15.0 1.9 -0.3 1020.3 1981 17.0 4.8 +1.0 852.2 

"1962 14.8 4.7 +1.8 809.8 "1982 11.3 3.6 -0 .6  735.4 
1963 t3.5 2.4 -6 .9  857.9 1983 14.5 0.3 +4.5 955.7 
1964 18.3 1.9 -1.1 922.6 1984 14.8 3.0 +1.7 836.7 
1965 14.0 5.0 +1.0 709.4 1985 14.7 -0 .2  -4.8 759.8 

"1966 13.5 2.5 -1.3 739.9 "1986 15.0 4.6 -3 .6  743.0 
1967 17.5 5.6 +1.4 860.1 1987 14.0 4.4 -4.7 697.3 
1968 12.5 5.7 +0.3 754.6 1988 14.5 2.3 +3.9 961.5 
1969 17.3 5.2 +1.2 831.0 1989 16.5 3.1 +2.5 866.7 
1970 15.8 1.8 -1.1 939.8 "1990 15.0 0.1 +3.7 908.7 

"1971 16.8 2.2 +0.6 886.8 1991 14.5 3.6 +1.2 785.2 
1972 11.0 4.8 -1 .2  652.9 1992 t3.5 0.1 +0.7 785.5 
1973 16.8 1.7 +1.2 913.4 1993 14.5 5.6 +3.1 894.0 
1974 13.5 4.8 +3.5 748.1 1994 14.0 4.1 +3.2 938.3 
I975 17.5 1.3 +4.5 962.9 1995 13.5 2.8 +1.6 

"1976 17.0 4.8 +2.5 856.8 

* The data of the test set. 

Table 4a. Optimal WeightsforModel-II ~--~-Actua~/Predicted 
From To jth hidden layer neuron 

j = l  j = 2  y = 3  

Input neuron 1 0.298638 -0.0135114 2.01872 
Input neuron 2 0.521381 -0.560152 2.28456 g E 
Input neuron 3 0.202018 1.18764 -- 1.05404 
Bias neuron, O H 0.885472 -0.272585 -1.12101 _= 

Table 4b. Optimal Weights for Connections Between the 
Hidden Neurons and the Output Neuron 

From To the output neuron 

Hidden neuron 1 0.0286994 
Hidden neuron 2 -1.46296 
Hidden neuron 3 2.93218 
Bias neuron (~L - 1.21651 

s tandard  for  c o m p a r i n g  the resul ts  f r o m  the 

n e t w o r k  mode l s .  The  resul ts  ob ta ined  by  S M  and 
N C  are s u m m a r i z e d  in Table  9. N o t e  that  our  

work  differs  f r o m  that  o f  the S M  and N C  in the 
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Fig. 4. Comparison between predicted and obsmwed rain- 
fall for 3-parameter model 

size o f  the data used  for  cons t ruc t ing  the models .  
Specif ical ly,  we  have  used  m o s t  recent  ( 1 9 3 9 -  

1994) two  p a r a m e t e r  data  for  cons t ruc t ing  
m o d e m  (SM and N C  have  used the data be tw een  
1939-1984) .  A no tab le  feature  o f  the pos t -1984  

pred ic to r  data  is that  they show grea ter  var ia-  
bility. As can  be  not iced f r o m  Table  9, the C C  
values  for  the test  sets o f  m o d e m  and m o d e l - I I  

c o m p a r e  f avo rab ly  wi th  bo th  the SM and N C  
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Table 6. Correlation Coefficients Between All India Summer 
Monsoon Rainfall and Different Parameters Used in this 
Study for the Period 1963-1987 

Parameters Correlation 
Coefficients 

Darwin sea level pressure (MAM-DJF) -0.629 
Tahiti-Darwin sea level pressure (MAM-DJF) 0.598 
Agalega sea level pressure (MAM-DJF) -0.575 
Bombay sea level pressure (DJF) -0.589 
Adelaide sea level pressure (MAM-DJF) -0.561 
West Central India (10 station average) 0.649 
May minimum Temperature 
Jodhpur mean Temperature (May) 0.576 
Jodhpur Pressure (May) -0.655 
Meridional wind Index 200 hPa (May) -0.629 
April 500 hPa ridge location 0.679 

models .  Also,  the R M S E  value with respect  to 
the test set (which represents  ne twork ' s  general-  

izat ion capabi l i ty  for  new inputs) o f  mode l - !  is 
m u ch  less than the respect ive  R M S E  values for  
the test sets used by  SM and NC. 

Amongs t  the available number  o f  predictors ,  
some are known  to have lost their  predic t ion 

potent ia l  owing to the weaker  corre la t ion or even 
reversal  of  the corre la t ion sign during certain 
per iods (Parthasarathy et al., 1991, 1993). Fu and 
Fle tcher  (1988) and Ell iot  and Angel l  (1987, 
1988) have showed that the variations in the 
corre la t ion o f  these parameters  are re la ted to the 
changes in t ropical  c i rcula t ion features.  In recent  
years,  especia l ly  after  1980, the corre la t ion 
coefficients  o f  a lmost  all the predictors  with the 
I S M R  have  decreased .  Hence ,  the var iance  
expla ined by  some of  the predictors  also have 

Table 7a. Optimal Weights for Model-III 

From To fh hidden layer neuron 

j = l  j = 2  j = 3  j = 4  j = 5  j = 6  

Input neuron 1 -0.118233 0.758983 -0.259375 -0.758112 -1.38346 -0.540929 
Input neuron 2 -0.383483 3,35506 0.479517 -0.885589 -0.576843 -0.719829 
Input neuron 3 1.02044 -2.79202 0.272786 -0.0900608 0.230365 0.0734147 
Input neuron 4 0.817870 -0.436693 0.763278 -0.211119 -0.777732 0.440674 
Input neuron 5 -0.955722 1.27883 0.301569 -0.579689 0.418510 -0.539417 
Input neuron 6 -0.135996 -0.998858 -0.214136 -0.207407 1.02881 0.300735 
Input neuron 7 0.0018947 -0.349058 -0.176352 -0.549264 0.334104 -0.757369 
Input neuron 8 0.183087 -0.616139 0.0969557 -0.808030 0.883836 -0.992596 
Input neuron 9 -0.290802 -0.488512 0.615908 -0.760707 -1.31930 0.242115 
Input neuron 10 -0.497865 -0.742598 -0.050585 -0.625341 0.414690 -0.924803 
Bias neuron, O ~ 0.772729 0.224651 -0.121918 -0.143438 0.582924 -0.608201 

Table 7b. Optimal Weights for Connections Between the 
Hidden Neurons and the Output Neuron 

From To the output neuron 

Hidden neuron 1 - 1.18713 
Hidden neuron 2 3.29397 
Hidden neuron 3 -0.0304826 
Hidden neuron 4 0.382623 
Hidden neuron 5 - 1.41766 
Hidden neuron 6 0.0354864 
Bias neuron, O L -0.119173 
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Table 8. The RMSE and CC Values Corresponding to the Training and Test sets for the Three Neural Network Models 

modeM model-II model-lI1 

TRN TST TRN TST TRN TST 

RMSE 66.83 24.53 65.62 33.7 26.97 46.55 
CC 0.7 0.91 0.68 0.96 0.96 0.68 

Table 9. The RMSE and CC Values for the SM and NC Models 

SM NC 

2:2:1 Neural Network Hybrid Neural Network 

TRN TST TRN TST TRN TST 

RMSE 50,9 41.5 50.6 33.6 49.0 26.7 
CC 0,76 0.89 0.77 0.94 0.78 0.95 

Table 10, The RMSE and CC Values Corresponding to the linear Regression Models Using the Training and Test sets of the 
Three ANN Models 

Regression modem Regression model-II Regression modeMII 

TRN TST TRN TST TRN TST 

RMSE 61.39 32.85 65.83 35.28 35.29 61.33 
CC 0.715 0.885 0.683 0.967 0.928 0.3 

decreased considerably. For example, the stan- 
dard deviation of DSLP (1.508) and ISMR 
(84.05) for the period 1939-1994 are higher than 
the corresponding standard deviation values for 
the per iod  1939-1984 ( D S L P =  1.372 and 
rainfall = 82.91). This may be one of the reasons 
why we obtained slightly higher RMSE values 
for the training sets of  neural network modeM 
and model-II as compared to those of SM and 
NC. 

As a thumb rule, the number of patterns in the 
training set should be greater than or equal to the 
total number of weights in the EBP network. In 
model-III the number of data points used are 25, 
which is much smalIer as compared to the total 
number of  network connections (73). Thus, there 
is a possibility that the network model-III is an 
overfitted one. This factor might have contrib- 
uted to the higher RMS error observed for the 
test set of  model-III .  Despite  the grossly 
inadequate training data, the model-III ISMR 

predictions are not discouraging. As can be 
observed, the RMSE value for the model-III 
training set is significantly lower (26.97) than 
the RMSE values (50.9, 50.6, and 49.0) corre- 
sponding to the three training sets used by SM 
and NC. The ISMR prediction for 1995 using 
neural network model-III could not be attempted 
since the ten parameter data for the year 1995 
is not available so far. We have also compared 
the neural network results with those obtained 
by performing linear regression analysis for 
the training sets of all the three ANN models. 
After estimating the regression coefficients, the 
same were used to predict the ISMR values 
corresponding to the respective test sets. The 
RMSE and CC values obtained for the three 
linear regression models are listed in Table 10. 
As can be easily verified from the values in 
Tables 8 and 10, all the FFNN models perform 
better as compared to the linear regression 
models. 
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5. Conclusion 

This  s tudy has  demons t r a t ed  that the mul t i -  

l ayered  f e e d f o r w a r d  neural  ne tworks ,  t ra ined 

using the E B P  a lgor i thm,  can  be  e f fec t ive ly  used  

to predic t  the Ind ian  s u m m e r  m o n s o o n  rainfall .  
N e t w o r k s  wi th  s ingle  h idden  l ayer  have  been  

s tudied for  this purpose .  Th ree  ne t work  m o d e l s  

wi th  two,  three  and ten input  pa ramete r s ,  
respect ively ,  have  been  analyzed.  I S M R  predic-  

t ions ba sed  on the neural  ne t work  m ode l s  I and I I  

for  the yea r  1995 have  been  found  to be  near-  

accurate .  Us ing  neural  ne t work  mode l s  I and II, 

we  have  m a d e  the I S M R  pred ic t ions  for  the 

current  yea r  (i.e. 1996) for  which  R idge  = 13.5, 

D S L P  --  3.2 and DeBi l t  = - 2 . 0 9 ,  and the values  

ob t a ined  t he r e by  are 828.7 and  784.9  m m ,  

respect ively .  
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Appendix-I 

Error-back-propagation Algorithm 

The detailed numerical steps to train a three-layer 
feedforward neural network by error-back-propagation 
algorithm are as follows. 

Step 1: Initialize the connection weights to small random 
values so as to lie between - 1  and 1. 
Step 2: Apzply an input pattern (vector) Xq = (Xq> 
Xq2, ..., zqN) to the input layer neurons where q refers to 
the pattern index. 
Step 3: Compute the weighted sum of inputs for individual 
neurons in the hidden layer according to 

N 

Xet~q) = ~-~ %HXqi + OT;j=- I ,M ( a l )  
i=1 

H where N etqj denotes the weighted sum for jth hidden layer 
neuron when qth input pattern has been applied; Wy 
denotes the weight between ith input layer neuron and jth 
hidden layer neuron; Xqi represents the ith element of input 
pattern, Xq; N refers to the number of input layer neurons, 
M refers to the number of hidden units and O~ represents 
the bias weight for jth hidden layer neuron. 

Step 4: Transform the weighted sum using an activation 
function (e.g. Sigmoid activation function) to get the 
outputs of the hidden layer neurons according to: 

1 
i;,5= . :  1 + exp(-Net$)  ;J 1, M (A2) 

where Ig refers to the output of jth hidden layer neuron 
when qth pattern is presented. 
Step 5: Compute the weighted sum of inputs for the indi- 
vidual neurons in the output layer as 

M 

S e ~  k = Z W~jI~ + fgL;k----- I ,P  (A3) 
j = l  

where superscript L refers to the output layer and M denotes 
the number of hidden layer neurons. Wk~ is the connection 
weight between neuron k in the output layer and neuron j in 
the hidden layer, P denotes the number of neurons in the 
output layer and O L represents the bias weight for kth 
output layer neuron 
Step 6: Transform the weighted sum using the same acti- 
vation function as in Step 4 to get the outputs of the output 
layer neurons as follows. 

1 
Iq L = " L ;k = 1,P (a4) 

1 + exp(-Netqk) 

where ILk refers to the output of the k th output layer neu- 
ron. 
Step 7: Obtain the error (SqLk associated with each neuron in 
the output layer as 

8Lk-----(Yak- ILk)IIqLk(1- 1Lk)];k = 1,P (A5) 

where Yqk = desired output of neuron k for pattern q and 
ILk = actual output of the kth output layer neuron. 
Step 8: Compute the error 8~ associated with each neuron 
in the hidden layer by 

P 

<5 5 = ~ 5~kWLjCl~j(1 - I~)], j  = 1,M (A6) 
k = l  

Step 9: Update the weights between output and hidden 
layer as 

W ~ j ( t + l ) =  L L L %(0 + + @qklq: aIW~j(t) (A7) 
- % ( t -  1 ) ] ; j  = t,M 

where training iteration number is represented by t and ~7 
denotes the learning coefficient (0 < ~7 < 1). The third term 
on the right hand side is referred to as momentum term 
where a denotes the momentum coefficient (0 < a < 1). 
The addition of momentum term speeds up the training 
process and also helps to avoid local minima on the error 
surface. 
Step 10: Update the weights between the hidden and input 
layer as given below and using another input vector 
implement steps 2 to 10. 

wjT(t + 1) = % % )  + + <wiT(t)  - w:"(t - 1)j; 

i = 1,N 

(A8) 
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In this procedure, Steps (2-6) and Steps (7-10) correspond 
to the forward and reverse passes respectively. The 
procedure barring Step 1 is repeated for all the input 
patterns a large number of times until the network weights 
are optimized such that the RMS error with respect to the 
test set i.e., 

i~(Yqk--lq L)2 
E,s, = ~V;~P- (A9) 

q=l k=l 

reaches a minimum. Here, Ntst signifies the number of test 
set patterns. Note that the bias neuron always possesses an 
output of "1"  and weights Oy and O~ are adjusted in a 
similar fashion to the hidden and output layer weights. 

Appendix-II  

Procedure for computing the Magnitude of 
Yearly Monsoon Rainfall in (ram) 

Here, we will illustrate the computational procedure for 
computing rainfalI from the known parameter values. 
Consider that the values of Ridge (= 14.) and DSLP 
(=  4.4) are available and the task is to predict the rainfall 
using the weights listed in Tables 2a, b. To that end we may 
proceed as described below: 

h Normalize the RIDGE and DSLP values to get the two 
network inputs xt and x2. Note that in the following 
computations, the subscript representing the pattern index q 
has been dropped. 

( 1 4 -  10.45) 
RIDGE = x~ = (19.215 - 10.45) 

= 0.405020 

DSLP = x 2 -- (4.4 + 0.21) 
(5.985 + 0.21) 

= 0.744148 

where 19.215 and 10.45 are the scaling parameters for the 
Ridge and the corresponding parameters for DSLP are 
5.985 and 0.21, respectively. 
2: Compute the weighted-sums of inputs for the six hidden 
nodes according to Eq. A1 as 

Ne~ = -0.294163 x 0.405020 + 0.319022 • 0.744148 

- 0.406677 

-0.435573 

- 0.435841 

= -0.2884193 

x 0.405020 - 0,548771 x 0.744148 

= -1.0206236 

N e ~ =  0.168131 x 0.405020 - 0.569852 x 0.744148 

- 0.740890 = -1.0968478 

N e ~ = - 1 . 4 3 4 2 2  x 0.405020+1.16194 x 0.744148 

- 0.434811 = -0.1510434 

Ne~=-1 .69509  x 0.405020+1.02023 x 0.744148 

- 0 .401620=-0 .3289632  

N e ~ = - 0 . 1 0 9 3 0 1  • 0 .405020-0.0324836 x 0.744148 

+ 0.3790371 = 0.3105953 

Here, Nety denotes the weighted-sum for j th hidden layer 
neuron for the input vector defined in Step 3. 
3: Compute the outputs of the hidden nodes according to 
Eq. A2 as: 

1 1 
11H _ 1 + e -(-0'2884194) T/412 - -  1 + e-(-10206236) 

= 0.4283908 = 0.2649059 

I ,/7 1 rH 
t3 = 1 + e  -(-1"0968478) /4 = l + e  -(-0-1510434) 

= 0.2503309 = 0.4623107 

1 m 1 rH 
t 5  = 1 + e -(-0'3289632) ~6 - -  1 + e -(0-3t05953) 

= 0.4184929 = 0.5770305 

4: Compute the weighted-sum of the inputs of the output 
layer node according to Eq. A3 as 

Net~ = (-0.484905 x 0.4283908) 

+ (0.389519 x 0.2649059) 

+ (0.978241 x 0.2503309) 

- (1.21877 x 0.4623107) 

- (1.89753 x 0.4184929) 

+ (0.342731 x 0.5770305) + 0.742981 

= -0.2764651 

5: The output of the single output node is evaluated as 

1 
I t  -- 1 + e (0.2764651) -- 0.4313206 

6: Rescale the network output to finally get the predicted 
rainfall 

predicted Rainfall = 0.4313206 x 451.055 + 620,255 

= 814.804(mm) 

where 451.055 and 620.255 are the scaling parameters for 
ISMR. Note that while network training the actual 
magnitudes of ISMR must be scaled down using these 
scaling parameters so as to lie between zero and 1. 
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