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One of the most significant achievements in rarefied gas theory in 
the last 20 years is the Kxook model for the Boltzmann equation [1]. 
The I<rook model relaxation equation retains all the features of the 
Boltzmann equation which are associated with free molecular motion 
and describes approximately, in a mean-statistical fashion, the moI- 
eeular collisions. The structure of the collisinnal term in the Krook 
formula is the simplest of aI1 possible structures which reflect the 
nature of the phenomenon. Careful and thorough study of the model 
relaxation equation [2-4], and also solution of sevexal problems for 
this equation, have aided in providing a deeper understanding of the 
processes in a rarefied gas. However, the quantitative results obtained 
from the Krook model equation, with the exception of certain rare 
cases, differ from the corresponding results based on the exact solution 
of the Boltzmann equation. At least one of the sources of error is 
obvious. It is that, in going over to a continuum, the relaxation 
equation yields a Prandtl number equal to unity, while the exact 
value for a monammic gas is 2/8. 

tn a comparatively recent study [5] Holway proposed the use of the 
maximal probability principle to obtain a mode1 kinetic equation 
which wouId yield in going over to a continuum the expressions for 
the stress tensor and the thermal flux vector with the proper viscosity 
and thermal conductivity. 

In the following we propose a technique for constructing a sequence 
of model equations which provide the correct Prandtl number. The 
technique is based on an approximation of the BoItzmann equation for 
pseudo-Maxwellian molecules using the method suggested by the 
author previously in [6]. For arbitrary molecules each approximating 
equation may be considered a model equation. A comparison is made 
of our results with those of [5]. 

w Consider the Boltzmann equation in the absence of external 
forces 
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Here n is the collision frequency, I + is the reverse coliision into- 
gral, o is the collision section; summation over repeating subscripts is 
assumed. 

In the following we restrict ourselves to pseudo-Maxwellian mol- 
ecules, i . e . ,  we shall consider a and do to be inversely proportional 
m the relative velocity of the colliding molecuies. In this case the 
coilision frequency is independent of the moiecular veioeity. Along 
with (1.1) we consider the equation 
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in which F + is assumed to depend on the thermal velocities and some 
combination of macroscopic parameters; the form of this relationship 
is defined lateX. 

We shall term (1. 2) an approximating equation for the Boltzmann 
equation (1.1) if some number of first moment equations of the exact 
and approximating equations coincide, i . e . ,  if the conditions 
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are met, or 

More precisely, we shall call (1.2) the n-th approximating equa- 
tion for (1.1) if the conditions (1.5) are satisfied for all ~ which 
include power-law monomials of n-th order. 

The approximating equation which satisfies the conditions (1.3) 
for the set of ~ including not all powex-law monomiaIs of third order, 
but only convolutes of the form gig z, may be termed an approximat- 
ing kinetic equation in the 13-moment approximation, since the 
combination of maeroparameters appearing in F + is defined by the 
first 13 moments of the distribution function. We set the collision 
frequency 1/r  of (1.2) equal to the collision frequency u of (1.1). 

The form of F + as a function of the molecular velocities and the 
maeroparameters is not defined by the conditions (1.3). For simpli- 
city, following [6], we take F + in the form 
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Here F(0) is a locally Maxwellian distribution function, and u i is 
the gas mass velocity. The combination of coefficients a(xi, t) is 
defined by (1.3). 

If we restrict ore'selves to a finite number of terms of the series, 
then we shall have the corresponding approximation for the reverse 
collision integral. Considering for the moment the second approxima- 
tion, for which F + includes all the power-law monomials up to and 
including second order, and referring to (1.3) with r = 1, el, ciej, we 

obtain a(~ = a(t~ ) ~ a! 2) = 0 in view of the choice of F (~ and r .  Thus, 
in the second approximation, when the moment equations up to and 
including second order agree with the exact equations, we obtain as 
the approximating equation for the Boltzmann equation the Krook 
model 
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In the next, third approximation we restrict ourselves to represent- 
ing F + by convoluted Hermitian polynomials. We set 

F+ = F(o) { a(o) + ad~)c~ -~- 

-}-a~(2)( cic~ 6 i j )  / c 2 5 , ,  
~ -  +a,(~)~l~i---7) l (1.6) 

To determine the combination a(xi, t) we use also the corresponding 
orthogonal polynomials. We obtain 
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Thus the approximating equation of the incomplete third (or 13- 
moment) approximation has the form 
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As r -o 0 the moment equations for this equation yield the expres- 
sions for the stresses and the thermal flux with the correct values of 
the viscosity and heat c o n d u c t i v i t y .  
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w Obviously the approximation process may be continued. The 
structure of the approximating equations obtained in any approxima- 
tion is such that is is possible to construct a numerical solution method 
without storing the distribution function. 

Whethes or not the approximation approaches the exact solution of 
the Boltzmann equation with increasing number of terms in the repre- 
sentation of F+ depends on the convergence of series (1.4). The 
condition for convergence in the mean for this series amounts to 
existence of the integral 

i [~+(F)12 dg. 
F(o) 

Thus, together with the previously adopted representation for the 
distribution function as a series in Hermitian polynomials, multiplied 
by a locally Maxwellian distribution function [7, 4], we propose to 
use a similar expansion for the reverse collision integral. 

The assumption that it is possible to expand I+is natural from the 
physical point of view. Indeed, the reverse collision integral describes 
the velocity disUibution of only those molecules which have experi- 
enced collisions at a given point of physical space; therefore for its 
approximation it is natural to use a representation with separated 
variables, i . e . ,  in terms of molecular velocities for fixed x i and t, 
where the leading term of this expansion must be a locally Maxwellian 
function because of the nature of the process. Unlike J+, the distri- 
bution function contains a significant component associated with free 
molecular motion, i . e . ,  that component in which the variables are 
not separated but occur in combination. Even for the problem of re- 
laxation in a one-dimensional space the respresentation of the distri- 
bution function in the form 

F ~ F(~ (t + a~c~ + a ~ c l c ~ +  aijhcicjc~, + . . . )  (2.1) 

does not yield the true behavior of the distribution function in time, 
since in accordance with (2.1) the number of molecules with small 
velocities differs little from the equilibrium value over the time of the 
process regardless of the initial conditions. 

Continuity of the reverse collision integral means that we might 
expect not only convergence in the mean, but even uniform and 
quite rapid convergence of (1.4) in a finite region of velocity space. 

w 3. The technique proposed above for obtaining the approximate 
kinetic equations with a collision frequency which is independent of 
the relative velocity of the colliding molecules differs significantly 
from that proposed in [5] in that it offers an improvement of the solu- 
tion by using moment relations (1.3) of higher and higher order. If 
we restrict ourselves to second-order moments, then by selecting the 
collision frequency, as in [5], we can also obtain an approximate 
kinetic equation which provides the correct Prandtl number. This 
equation will agree with that of [5] for conditions sufficiently close 
to equilibrium, i . e . ,  when the ellipsoidal distribution can be lin- 
earized relative to the Maxwellian. 

The choice of F + in the form (1.4), as noted before, was based on 
considerations of simplicity. We could, following [5], use the prin- 
ciple of the most probable distribution, defining the moments of this 
distribution in terms of the distribution function moments from con- 
ditions (1.3), which reduce to a system of transcendental equations. 
The combination of the principle of most probable distribution and 
the moment relations for the collision integral yields in principle the 
possibilityof constructing a sequence of model equation. In particular, 
along with the second-order moments of the most probable distribu- 
tion, as suggested in [5], we could introduce the third-order moments. 
When trying to provide the correct expression for the heat flux (third- 
order moment) and consequently the Prandtl number, this procedure 
appears more natural than the choice of the collision frequency. In 
this case we would again obtain as the most probable distribution an 
exponential distribution, but now containing power-law monomlals 
of third order in the exponent. Consequently, for high velocities the 
integrals will deverge, i . e . ,  we will run into the same difficulty as 
in using the most-probable-distribution principle for quasi-equilib- 
rium flows [4,8]. To overcome this difficulty it is necessary to either 
always restrict ourselves to the higher even-order moments or lin- 
earize the exponent, i . e . ,  take F + in form (1.4). 

w In conclusion we shall consider the question of equilibrium 
solutions of the approximate equations. Unfortunately, rigorous proof 
of the H-theorem for an F + of form (1.4) is not possible, since F + and 
consequently F, as well, may be negative. However, we can hope 
that in most cases the coefficients of the expansion (1.4)wil l  be suf- 
ficiently small and F will be negative only in the region of large val- 
ues of the velocities, where the distribution function itself is small. 

We consider the case of small deviations from equilibrium in a 
homogeneous space and restrict ourselves to analysis of (t .  7), which 
is the simplest of the model kinetic equations providing the correct 
l~andtl number, with Pr = 2/a. 

Multiplying both sides of (1.7) by in F and integrating over the 
entire velocity space, we obtain after an obvious transformation of 
the right side 

OH 1 , F 
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In view of the smallness of Si, we linearize In F+relative to Si; 

in addition, we use the moment relations (1.3). We obtain 
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According to (4. 2), for sufficiently small deviations from equilib- 
rium the Boltzmann function H decreases. 

For arbitrary, not small deviations from equilibrium the expansion 
of in F+is not valid; consequently the proof of the H-theorem is dif- 
ficult. However, the question of the uniqueness of the Maxwellian 
distribution for equilibrium conditions is solved uniquely if we turn to 
the moment conditions (1.3). For equilibrium we must have F = F + ; 
therefore on the left in (1.3)there will be zeros. Consequently, for 
example, for (1.7) we obtain S i = 0, i . e . ,  for equilibrium the Max- 
wellian distribution is the only possible one. 
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