AVERAGED DESCRIPTION OF WAVE BEAMS IN LINEAR
AND NONLINEAR MEDIA (THE METHOD OF MOMENTS)

3. N, vlasov, V. A, Petrishchev, UDC 535.1
and V. I, Talanov

For a monochromatic wave beam the moments of the transverse energy-flux density distri-
bution are introduced into consideration. It is shown that in a linear medium a polynomial
representation in z holds for moments of any order. In 2 medium having cubic nonlinearity
polynomials in z of corresponding order can be used to represent the moments of zero

and first order, and the centrifugal moments of the second order. Examples of the applica-
tion of the average description of wave beams are considered.

As is well known, one of the effective methods of solving problems in transport theory is the method
of moments [1, 2]. In this method, the problem of finding a certain distribution f(t) is replaced by that of
o0

determining the moments Ry, = S t%£(t)dt of this distribution. The effectiveness of the method of moments
—00

in problems of transport theory is related to the relative simplicity of the equations for R. Knowledge of

all the moments allows known methods to be used to reconstruct the form of the function f(t) [3].

However, even in those cases when it is found to be impossible to determine all the moments of the
desired distribution, information on the first several moments proves useful [4, 5]. This is especially
important in nonlinear problems in which tofind the entire distribution often necessitates numerical methods,
In the present paper we shall speak of the use of the method of moments in analyzing problems of linear
and nonlinear gquasioptics.

1, The Connection between the Averaged Description

of the Field and the Energy and Momenftum

Conservation Laws

In three-dimensional space (xy, X,, X;) let there be a certain set of quantities comprising the scalar
wi(t, r), the vector S(t, r), and the tensor T, g(t, r) which satisfy the relations

LI S; (1a)
ot
L0 _ gty (1b)
c® ot
3
—372 T = — div@Q, (L.1c)

a=]

where Q is a certain vector. Let us introduce the moments of the quantity w(t, r) into consideration: the

zero~order moment
W) = g wdv, 1.2)
v
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the first-order moment

r. (i)=—é—§rw(f, r) dv 1.3
1

and the centrifugal second-order moment

I(t) = d’gs = lvy rwdv, 1.4)

v

In (2)-(@4) the integral is taken over the entire infinite space. If the quantity w is given the meaning of
energy density, then the first two equations of (1.1) will describe the laws of conservation of energy and
momentum for the field, Thus, in the case of an electromagnetw field in vacuo w = (1/87) (E? + H?); S
= (c/4m[EH] is the density of the energy flux; TaB aB =(1/4m{E oEg +HyHg — (1/2)<5(m(£:2 + H?)}
3
is the Maxwellian tension tensor; 2 Tye =wandQ =S. Ina homogeneous medium with permittivity and
w=|
permeability €, u:

w = (ED + BH)j8z, S= f« [EH|,
T

X
[.l.

T =

T~

{Ea D; + H.B, mé bus (B Dy -+ HaB)| = - T,

=
:

[

3
ETua=—1~ w, Q=—“§~.
E[J. S}J-

By virtue of Egs. (1.1) the following relationships are fulfilled for the field localized in a certain region
of space:

W () = const = W (0); (1.52)
dr: (t) = const = dre : (1.5b)
dt =0
d* 1(t) ay
2V const= —— .5¢)
o const=—2 o a

Here (1.5a) derives from (1.1a), (1.5a) derives from (1.1a) and (1.1b), and (1.5¢) derives from (1.1a)-(l.1c).

Thus, the distribution moments indicated above are represented in t by polynomials of the appro-
priate order:

W= W’]r
ro=r., + oL .6
I =1, + Bt + Af*

having coefficients determined by the initial conditions

ax

Y rSduv
t=0 WO .

v

=0

The relations in Eq. (6) have a simple physical meaning: the energy W of the field is conserved, the
"energy center" r, moves along a straight line with a constant velocity v, and the square of the effective
radius of the bunch aeff varies according to a parabolic law (for t — o, ager ~ t) — the motion of the bunch
is similar to the motion of a cloud of noninteracting particles in the absence of external forces (in this case
re is defined as the center of mass).
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2. Averaged Description of Stationary Wave

Beams in a Linear Medium

Let us now consider a wave beam & = Ee—1KZ that is stationary in time and is described by the
quasioptic equation (in the coordinates kr)

9E 1 A E. 2.1)
az 2
We shall be interested in the dependence of the moments of the intensity |E|? on z:
Fwa = | 2"y"|E [ dxdy. (2.2)
S
Since it follows from (2.1) that the relationships
OEE g s @.3)
gz ot
9. _ div, f‘; 2.4)
dz
2
'gz—E T“ = leLQ: (2'5)
im]
hold, where
S, = FA, E* —c.c. : 2.6)
' 2
1 1/0E OFE*  JE* 9F 9.7
L= ALIERD __(___ » _) @.7
Tiw= g Bl Pou—3 ox, Ox, = Ox; Ox,
Q=—1 |Ey,AE*—cc |, 2.8)
4i
it follows that for the quantities
Yoo = Wo’
(F1o% + o1 M) =T
Yoo
! (Fao + roo) = aPeff
LY
equations analogous to (1.2)-(1.4) are applicable with the substitution of z for t and S for V:
roq(2) = r4(0); 2.9)
te (&) =1, (0) + az; 2.10)
aesi(2) = a%gr(0) + Bz + A2, 2.11)
where
1 e 1 2.12)
o= $,ds =-—— | Ely, eds ;
Fag Yog 2=0
S S
B = -2 j r S ds= Wgﬁj(nvl o Eds| @.13)
Tgo ’ Foo 2=0
N
1 1
A = I v, ElRfds= g‘ (v, Ey)? + Eg (v, 9)?] ds !’=07 2.14)
Fao Fao »
$ Ry
E = Eje—ts.
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Thus, the total energy flux of the beam is conserved, the intensity center lies on one straight line* (a
consequence of the law of conservation of transverse beam momentum), and the square of the effective
beam length varies according to a parabolic law.

It can be shown that the polynomial (in z) representation of the intensity moments of the field
described by Eq. (2.1) also holds for the subsequent orders ry,p:

Fmn (2) = Pm1n(2), 2.15)

where Py, . 4(z) is a polynomial of degree (m + n). This can be verified most simply using the integral
Fresnel transformation equivalent to Eq. (2.1):
iro—r

i ' , L L .
) =L VEW,0ex (—L_,_——-—) ar. (2.16)
I(r, Z) 21‘!25‘ _(I’l, ) p 22 L
S
Let us consider the focusing of a Gaussian beam: E = ejexp [-r%/2a} + i(r?/2F)]. For this beam
aeff = a, and the expression

Ay (2) = a2(2) = Lo +(1 ~-Z )2 a3’ 2.17)

as F
describes the variation of the real width a of the beam. Thus, the wave beams in the average description
behave analogously to Gaussian beams having a corresponding width and divergence. It can be shown that
for collimated beams (¢(0) = 0) for a stipulated value of aéff(O) Gaussian distributions realize the minimal
diffraction divergence of the effective cross section.

As our other example, let us consider the passage of an arbitrary beam through a quadratic phase
corrector ¢, = —r?/2F. Assuming in (2.9)-(2.14) that ¢ = @; + @g, where ¢ is the phase of the incident
beam, we find that

(rc*)(’“tﬁ (rc.i.)in- ®out == &in — ,QE%Q’
2.18)
(“etf dour = (Cefi)in
2 (agsr )s By | (dft)hn
Boy = By — ____;__ﬁ‘ Aout = Ain—% -+ T

The indicated relationships, together with (2.9)~(2.14), allow arbitrary beams in the system of quadratic
phase correctors to be considered. Note that for nonquadratic correctors the transformations of the coef-
ficients that determine the change in the effective width of the beam and in its direction will contain the
input-distribution moments of order higher than the second.

3. Description of Partially Coherent Fields and

Fields in Statistically Inhomogeneous Media

Let us indicate still another way of obtaining the moments of the intensity distribution in quasioptics,
which is also suitable for the description of partially coherent fields. Let us introduce a mutual-coherence
function [5]:

B(r, p, 2) =<E (r 4- % z) E* (r- %, z)> 8.1)

where r(x, y), p{¢, n) are radius-vectors in the plane z = const, The equation for the function B(r, P, z)
, 0
Lé; B(f, P Z):VerB(r; P, z), (3.2)

which derives from (2.1), can be solved by a method analogous to that developed in [2]. For the moments
of the mutual coherence function

run@) = { x"y" B(r; 8, &1 (3.3)
S

* Attention was already directed to this fact in [6].
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it is not difficult to derive from (3.2) recurrence relations:

. OF s
— = Ym—t,n— 1N P, nt. .
i 0z i3 1 P m, n—1 (3.4)

From (3.4) it follows that
Fy (] (P’ 2) = ?‘00(?, O) S c()nst; (3.5)
1 a , 0
For(p, 2) = ro1(p, 0) — — '-—r“}f ),

l q (3.6)

1 d , 0
rlo(P’ Z)=r10(P’ 0)“"—- z___rg_(l_(_g_)_;
12 i3

2
Faz(p, 2) = roa(p, 0) _'7?— z 0”01\(% 9 Proofp, 0) 2

a1 dr* ’ 3.7)
¢ " 2
raule, 2) = raup, 0) = —% ?a’”((;’ 2L ’"gﬁf’ Lz

etc. Thus, the polynomial representation for the intensity moments is a particular case (for p = 0) of the
polynomial representation for the moments of the mutual coherence function B(r, p, z). The results (3.4)-
(3.7) can naturally be generalized for the case of the propagation of partially coherent wave beams in statis-
tically inhomogeneous media. In the known approximation of [5, 7] this case can be described by the equa-
tion

. 0B

—— DT B——- .i- e .
¢ oz Vr Ve 4 d.(p} B (3.8)

for the mutual coherence function (3.1). In (3.8)
d @) =D VI +2)dz~ [D.VZ) a2,
] k]

o = [ {2y =] =

is the structural function of locally homogeneous and isotropic fluctuations of the permittivity € (R and p®)
are radius-vectors in three-dimensional space x, y, z: p® = Vp? + 22),

From (3.8) one can obtain a recurrence equation which generalizes (3.4) and describes the variation
of the moments of the mutual-coherence function B:

a 1 A d d
i — 4 —d. Poun=—M —F | —H— Fu, a1 3.9
[ (02 + 1 (9)) n ot I,n . d"l 1 (3.9)

Hence it follows that

. 1
Foo(pr 8) = Pyo(, 0) exp(—;— dﬁ(p)z).

0 1 add. 2 ,
rorte, 9 = [ rorte, 0 = 20BN 2 4 2 B o, 0% | ol 14 40 2
. i {

' 1 od. 2 1 0%d.

roo(p, 2) = [(r02(p, 2)regt T on ro1(p, 0) Y + (1—2- o
1 0d. dro, (e, 0)\ 5 __ (0d: \ 0 _zj} —(1/4) d:(o)z 3.10
Xraole, 2+ S e )z (550 )roo® 0% | exp [=(1/4) dipl. (3.10)

In particular,

@ () = @i @egt 7= 18000, 07" (3.11)

As is evident from (3.11), a random irregularity of the medium introduces an additive contribution to the
broadening of the effective beam cross section [4, 5].
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4, Wave Beams in a Nonlinear Medium Having

a Permittivity ¢ = g,(1 + ¢'|E|?) -

Let us consider wave beams in a cubic medium which are described by the equation

oE 1 R,
= (A, B E). .
% 5 (ALE +[EP)E) @.1)

By direct differentiation of the intensity moments with respect to z using Eq. @.1) it can be shown that

wave beams in media having a permittivity € = g4(L + £'| E|?) may be described by Egs. (2.3)-(2.5) in which

T, = T4 +~i- o E [y
Q= QL—% |E[(Ey E* —c.c. ),

Tilf{ and QL are the corresponding expressions for the linear medium.
As a result of this Egs. (2.9)-(2.11) are valid as previously, the only difference being that

A=AV o pt — = §|E|"ds. 4.2)

Yoo oJ
§

Let us consider certain consequences which derive from Egs. (2.9)-(2.11) taking into account 4.2).*
In a nonlinear medium the intensity center of the beam propagates along a straight line; this straight line
is the same as in a linear medium. This conclusion is valid not only for a cubic medium but also for an
arbitrary dependence £ (| E|?). Hence, the transverse displacements of a beam having an asymmetrical
amplitude profile (8] are local in character, while as a whole the beam propagates in a straight line,

From (2.11) and (4.2) it follows that any collimated beam, beginning with a certain critical power
Pgp, will, on the average, "collapse" in a nonlinear medium: for ANL < 0, d®a%g/dz? < 0. The critical
power is determined from the condition ANL = 0:

ﬂtvﬁlz——;wl*]ds:o. @.3)

Assuming E = Ejf(r,), we obtain from @.3)

[ty fyds
Eier = ET—d—— @.4)
3
or
f(v.hrds | f2as
Po = 4«2’%5 ; fFe dz ’ @9
3

where k; = (w/c) Ve, The critical power (4.5) is determined solely by the parameters of the medium and
the profile of the transverse distribution f(r); it is independent of its amplitude or width. Thus, for a
Gaussian beam f ~ exp (—r?/2a?):

cH

pg - —. “.6)
2:"ks

Let us determine the profile for which the critical power is minimal. Varying Per with respect to
f(r,), we find that this profile must satisfy the equation

*In view of the arbitrariness of the origin of the coordinate z in (2.11) the coefficient A is the integral of
the original equations. For arbitrary nonlinearity an analogous invariant was determined in [14].
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j (vf)*ds j (vl)* ds

A f+2= f— = f=0,
Sf'*ds yfzds
5 S

which by means of the substitution

( frds \'"
ew=Tr, jf’ds y

N

fnew= [ 2 fzds/ f‘ds)l‘!z

can be reduced to the form
Anfwfnew+ fgew— faew= 0. @.7)

The simplest solution of this eguation corresponds to an axisymmetric beam which is a solution of
Eq. {4.1) independent of z, Thus, a beam the profile of which coincides with the profile of a uniform (with
respect to z) beam has the least critical power: Pgpypin = Pypni- The quantity
cn

nkh e’

5.7637 4.8)

Funi =
was determined in [9] by numerical integration of Eq. @.7). However, the stationary properties of the
functional Pgy[f] allow Pyyni to be calculated with comparatively high accuracy by standard variational
methods. As is evident from (4.6), a Gaussian beam already yields an approximation that is adequate in
practice for Pyp;: P(c}r =1.09 Pyp;. It should be noted that the value obtained for the critical power of a
Gaussian beam is somewhat higher than the value determined as a result of numerical calculations in [10]:
P(c}r =1,015Pypi. This is probably because in the first case the critical power determines the "collapse"
threshold of the beam as a whole (d%al¢r/dz? < 0), while in the second case it determines the threshold

of local "collapse™ when a focal point having an infinite intensity is formed on the beam axis., In a
certain small power interval Py,; < P < 1.09 Pyy; the formation of the focal point is accompanied by an
increase in the effective width of the beam.

Let us write Eq. (2.11) for the effective beam width by introducing into it the critical power 4.5):

)22 + 5‘ (r, +v, o2? Elds /S El ds, @.9)
S 5

agss =A5(1 - 1],)

cr

where
5= (v, Eods || B ds @.10)
§ 3

is a coefficient characterizing the diffraction divergence of a collimated beam having the same amplitude
profile in a linear medium. In particular, for a focused beam (¢ = —1r2/2F)

2
ags (2) = AOL( 1= “P—) 2+ <1 - i) @ (0)- 4.11)
B F
From (.11) it is evident that the critical self-focusing power for a focused beam (F > 0) is the same as
that for a collimated beam: for P = P, the wave beam on the average has the shape of a cone ggff = 1~z
/ F|aegr(0) with its vertex at the point z = F. This result has been noted already in [11]. It is not difficult
to verify the proposition that the effective width of the beam (2.11) satisfies the equation

Pagy _  Adt (O — BY4 )
dz? Teif

4.123a)

In particular, for a focused beam

az Qs
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If E = Ejexp (-r%/24?), then aef(0) =ay, AL =1/4d},
d®a, ¢ I — PP, .
- 3
da2 @ g
The latter equation is derived in the theory of so-called aberrationiess self-focusing [12], understanding
by aefs the width of the Gaussian beam. The analysis performed refines the meaning of the aberrationless
approximation: the derived equation describes the effective width of the self-focusing beam, which may
differ noticeably from the actual width determined from some fixed level. At the same time, in ¢.12b)
the idea of critical power is also refined: Py =4 ?CI., where Per is the critical self-focusing power ob-
tained in the near-axial approximation [12]. Note that the equation for the width of a Gaussian beam, which
can be derived from the action functional for Eq. @.1) by the variational method [13], coincides completely
with 4.12b) and thus describes the effective beam width rather than the true width.

From @.11), for P > P, the self-focusing length may be determined as the distance to the point
where gqgp = 0; for a collimated beam:

LI aeff 0)
24 = “4.13)
* A @y — 11
For a Gaussian beam
. S @.14)

F4 .
sf (P/Pcr — 1)

It is of interest to compare this expression with the value of the self-focusing length determined from
numerical calculations as the distance to the focal point [10]:

0.366 a2

% = 2 e @.15)
{(V p1P% — 0.825)'— 0.03]

For P >» Pgr

2 2

* ao aO
Zsf = 1’ Zsf= e 4.16)
(PfPer ) 2 Vo(P[Pc)?

i.e., zgf is less than zZs by almost a factor of 3. For P ~ Pgr, zsf ~ 0.85a%/ (P/ Per ~1)1/2, which is very
close to zf. Thus, the determination of zgs from the averaged description (and likewise from the aber-
rationless approximation with a refined critical power) yields a negligible error only for P ~ Pgp. With
increasing power, zgf and zgs begin to diverge greatly. The points zgf and z3¢ could be interpreted, re-
spectively, as the points corresponding to local (partial) and absolute collapse. However, at the local-
collapse point we are dealing with a singularity of the solution, as a consequence of which the averaged
description is valid only up to this point.f Under these conditions the quantity z{ characterizes the gener-
al tendency of beam behavior on the segment 0 < z < zgg. Substituting z = zgf from (4.16) into the expres~
sion for the Gaussian beam, it is not difficult to verify that for P >» P, the effective cross section toward
the point zgr decreases by 12.5%. Note that for P >» P, the effective broadening of the beam in a linear
medium at distances of z ~ zgf amounts to a quantity of the order of 1/ 8)(Pgr/ P) « 1, so that nonlinear
focusing narrows the beam only insignificantly in comparison with its width in a linear medium. Note that,
by virtue of the invariance of Eq. 4.1) relative to the focusing transformation [11], this conclusion also
applies to the focused beams: toward local~-collapse points the effective beam width varies slightly in com-~
parison with the case of a linear medium.

The possibilities of the average description are not restricted to the cases considered here, In the
quasioptics approximation the polynomial representation of the intensity moments also holds for pulses in
dispersive media. Among the nonlinear problems the description of fields in statistically inhomogeneous
media having a cubic nonlinearity should be mentioned. This problem was considered in [15].
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