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The Statist ical  Analys i s  o f  Geochemica l  
C o m p o s i t i o n s  1 

John Aitchison 2 

The analysis and interpretation o f  compositional data, such as major oxMe compositions o f  
rocks, has been traditionally plagued by the so-called constant-sum or closure problem. 
Particular difficulties have been the tack o f  a satisfactory, interpretable covariance structure 
and o f  rich, tractable, parametric classes o f  distributions on the simplex sample space. Con- 
sideration of  logistic and logratio transformations between the simplex and Euclidan space 
has allowed the introduction of  new concepts o f  covariance structure and o f  classes o f  
logistic-normal distributions which have now opened up a substantial and meaningful array 
o f  statistical methodology for compositional data. From the motivation o f  a wide variety o f  
practical geological problems we examine the range of  possibilities with this new approach 
to the constant-sum problem. 
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1. INTRODUCTION 

Any browser through the geological literature, past and present, must soon be- 
come aware of its pervasion by compositional data, such as major oxide per- 
centages of rock specimens or sand-silt-clay compositions of  sediments. The 
immediate inference, that the study of such compositions is fundamental to 
geology, would find ready support among geologists themselves. For example, 
Chayes (1962) afftrms that "percentage data occur in every natural science but 
are possibly of more central importance to the petrographer than to most other 
naturalists." Reflecting that the study of patterns of variability in data of  any 
kind is the bread-butter-and-jam of statisticians, our browser might reasonably 
expect to find a well-established and satisfactory methodology for the statistical 
analysis and interpretation of compositional data. He would be bitterly 
disappointed. 
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Instead of confident recommendations for statistical analysis he would dis- 
cover confusion. From 1960 onward he would read many warnings, mainly by 
geologists to their colleagues, that there are apparently unyielding difficulties in 
the interpretation of compositional data caused by their constant-sum or the 
closure property which states that the sum of the proportions of a whole is unity. 
He would find analyses by these colleagues ignoring the warnings and even some 
by the warners themselves ignoring their own warnings. He would hear conse- 
quent cries of near-despair from some warners as, for example, from Reyment 
(1977) in his Presidential address to the International Association for Mathemat- 
ical Geology: " . . .  I feel I should express a certain amount of dismay at the rela- 
tively slow rate of penetration of quantitative thinking in the rank and file of 
geology. Petrologists are still largely unaware of the dangers of closure (that is the 
effect of the constant constraint) in their diagrams . . . .  " 

There indeed had been even earlier warnings from no less a statistical au- 
thority than Karl Pearson (1897), pointing out the dangers that may befall the 
analyst who attempts to interpret product-moment correlations between quo- 
tients whose numerators or denominators contain common parts, and thus im- 
plying that the analysis of proportions of some whole is likely to be fraught with 
difficulty. History has proved him correct, for over the succeeding years and 
indeed right up to the present day there has probably been no other form of 
data analysis where more confusion reigns and where improper or inadequate 
statistical methods are applied. 

Unfortunately it must be admitted that the 'rank and File of geology' have 
had little more than warnings. In possession of a can of delicious compositional 
beans and wanting to reveal its contents they have naturally been unimpressed 
by the news that they are bound to make a mess with their neolithic flint of a 
tool. The sole purpose of this paper is to bring them the good news of the inven- 
tion of a modest form of can opener. I hope that by its deliberately provocative 
style the paper may achieve five objectives: 

(1) To persuade geologists and statisticians alike to abandon the use of"standard 
methods" quite inappropriate to "nonstandard" data sets such as composi- 
tions. 

(2) To provide a clear exposition of new concepts and an associated methodology 
for meaningful statistical analysis of compositional data. 

(3) To illustrate the simplicity and effectiveness of the new procedure in a series 
of applications. 

(4) To convince geologists that they no longer need subscribe to defeatist atti- 
tudes toward the constant-sum problem but should direct their energies 
toward reformulating, or possibly even formulating for the first time, their 
geological hypotheses within the new framework. 
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(5) To persuade editors to reject all papers using "standard methods" or adopt- 

ing the negative approach of extending the repertoire of variations on the 

theme of how standard methods fall. 

2. COMPOSITIONAL DATA SETS 

To illustrate the methodology of this paper the ideal would have been to 

present the reader with a series of published compositional data sets covering the 
whole range of problems considered. Unfortunately these would have been 

prohibitively large and so, after much hesitation, I have settled for four modest, 
presentable "unpublished" data sets of sufficient complexity to capture the 

Table 1. Compositions of 25 Specimens of Hongite 
I I I II I I I  I I I I 

Percentages 
Specimen 

no. A B C D 

H1 48.8 31.7 3.8 6.4 9.3 
H2 48.2 23.8 9.0 9.2 9.8 
H3 37.0 9.1 34.2 9.5 10.2 
H4 50.9 23,8 7.2 10.1 8.0 
H5 44.2 38.3 2.9 7.7 6.9 

H6 52.3 26.2 4.2 12.5 4.8 
H7 44.6 33.0 4.6 12.2 5.6 
H8 34.6 5.2 42.9 9.6 7.7 
H9 41.2 11.7 26.7 9.6 10.8 
H 10 42.6 46.6 0.7 5.6 4.5 

H11 49.9 19.5 l 1.4 9.5 9.7 
H12 45.2 37.3 2.7 5.5 9.3 
H13 32.7 8.5 38.9 8.0 l l .9 
H14 41.4 12.9 23.4 15.8 6.5 
H15 46.2 17.5 15.8 8.3 12.2 

H16 32.3 7.3 40.9 12.9 6.6 
HI7 43.2 44.3 1.0 7.8 3.7 
H18 49.5 32.3 3.1 8.7 6.3 
I-t19 42.3 15.8 20.4 8.3 13.2 
H20 44.6 11.5 23.8 ll .6 8.5 

H21 45.8 16.6 16.8 12.0 8.8 
H22 49.9 25.0 6,8 10.9 7.4 
H23 48.6 34.0 2.5 9.4 5.5 
H24 45.5 16.6 17.6 9.6 10.7 
H25 45.9 24.9 9.7 9.8 9.7 

[ II I I I J ] II 
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typical difficulties of analysis. Regretable though this device may be it does have 
the advantage that fresh data present a substantial chaUenge of discovery to the 

reader and may avoid any preconceptions he may have as to their pattern of 
variabflity. Moreover, for each statistical method iUustrated we can indicate a 
reference providing an analysis of a published geological data set. 

Tables 1-4 present four compositional data sets, each consisting of 25 five- 

part compositions of a particular type of rock. For convenience of reference, 
I have labeled the four different types hongite, kongite, boxite, coxite and the 

five geochemical parts, A, B, C, D, E. For each of the boxite and coxite composi- 

tions Tables 3 and 4 provide the depth at which it was sarnpled; in addition 

Table 4 provides a measure of porosity for each of the coxite compositions. 

Table 2. Compositions of 25 Specimens of Kongite 
[ I I  ] I I • I I 11 I 

Percentages 
Specimen 

no. A B C D 

K1 33.5 6.1 41.3 7.l 
K2 47.6 14.9 16.1 14.8 
K3 52.7 23.9 6.0 8.7 
K4 44.5 24.2 10.7 11.9 
K5 42.3 47.6 0.6 4.l 

K6 51.8 33.2 1.9 7.0 
K7 47.9 21.5 10.7 9.5 
K8 51.2 23.6 6.2 13.3 
K9 19.3 2.3 65.8 5.8 
Kl0 46.1 23.4 10.4 ll.5 

Kl l  30.6 6.7 43.0 6.3 
Kl2 49.7 28.1 5.1 8.0 
Kl3 49.4 24.3 7.6 8.5 
Kl4 38.4 9.5 30.6 14.8 
Kl5 41.6 19.0 17.3 13.8 

K16 42.3 43.3 1.6 5.9 
Kl7 45.7 23.9 10.3 ll.6 
Kl8 45.5 20.3 13.6 10.9 
Kl9 52.1 17.9 10.7 7.9 
K20 46.2 14.3 18.5 12.2 

K21 47.2 30.9 4.6 6.3 
K22 45.4 33.3 4.0 11.9 
K23 48.6 23.4 8.7 10.7 
K24 31.2 4.5 47.0 10.2 
K25 44.3 15.0 19.4 10.5 

E 

12.0 
6.6 
8.7 
8.7 
5.4 

6.1 
10.4 
5.7 
6.8 
8.6 

13.4 
9.l 

10.2 
6.7 
8.3 

6.9 
8.5 
9.7 

11.4 
8.8 

11.0 
5.4 
8.6 
7.1 

10.8 
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Table 3. Composition and Depths of 25 Specimens of Boxite 
i m  i i , i  

Percentages 
Specimen 

no. A B C D E Depth 

B1 43.5 25.l 14.7 10.0 6.7 1 
B2 41.1 27.5 13.9 9.5 8.0 2 
B3 41.5 20.l 20.6 11.1 6.7 3 
B4 33.9 37.8 11.1 11.5 5.7 4 
B5 46.5 16.0 15.6 14.3 7.6 5 

B6 45.3 19.4 14.8 13.5 9.3 6 
B7 33.2 25.2 15.2 17.l 9.3 7 
B8 40.8 15.l 21.7 14.6 7.8 8 
B9 33.0 30.8 15,1 12.9 8.2 9 
B10 28.2 38.6 12.1 14.1 6.9 l0 

B l l  33.9 31.5 15,4 12.0 7.2 l l  
B12 48.7 19.3 13,4 10.7 7.9 12 
B13 37.8 37.1 10,4 8.6 6.1 13 
Bl4 42.0 26.6 13,7 10.5 7.2 14 
B15 44.2 26.5 12,9 9.6 6.8 15 

B16 39.7 23.2 20,6 10.2 6.3 16 
B17 39.3 28.1 13.0 13.6 6.0 17 
B18 34.1 26.7 13.6 17.0 8.6 18 
B19 36.2 35,3 11.2 11.9 5.4 19 
B20 39.5 36.0 9.4 8.4 6.7 20 

B2l 39.5 22.5 18.7 11.4 7.9 21 
B22 33.0 33.5 17.7 9.8 6.0 22 
B23 42.3 16.6 16.9 17.0 7.2 23 
B24 39.9 19.0 13.4 21.3 6.4 24 
B25 37.8 30.9 l l .9  12.9 6.5 25 

i i i i i  i i i i I II I i i I 

Note that  the composi t ional  part o f  these data sets forms an array or a com- 

posi t ional  data  mat r ix  X = [xrc], where  xt« , the  ent ry  in the r th  row and c th  

co lumn,  denotes  the  c th  c o m p o n e n t  or  p ropor t ion  o f  the c th  part  o f  the  r th  

replicate or  rock  specimen.  In general X will  be o f  order  n X (d + 1) where n is 

the  number  o f  replicates and d + 1 is the  number  o f  components .  The constant-  

sum constraint  satisfied by composit ion's  is then  equivalent  to the fol lowing 

condi t ion  on the data ma t r ix  

X]a+I =/d+l (1) 

w h e r e f a ÷ l  is a (d + 1) vector  o f  units.  
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Table 4. Compositions, Depths and Porosities of 25 Specimens of Coxite 
I II I I I I I I I I I I I I I 

Percentages 
Specimen 

no. A B C D E Depth Porosity 

C1 44.2 31.9 5.4 10.5 8.0 1 43.5 
C2 49.0 25.4 5.8 11.3 8.5 2 50.4 
c3 50.2 24.8 5.7 11.1 8.2 3 52.3 
C4 49.9 24.7 5.4 11.4 8.6 4 52.5 
C5 48.5 27.8 5.9 10.2 7.6 5 45.2 

c6 45.9 27.1 6.9 11.5 8.6 6 42.7 
c7 44.1 31.9 6.0 10.2 7.8 7 44.0 
c8 46.4 29.9 5.5 10.3 7.9 8 44.0 
C9 45.7 27.0 6.2 12.0 9.l 9 46.0 
C10 46.4 30.0 5.1 10.4 8.l 10 48.0 

Cl l  41.7 30.2 7.7 11.6 8.8 1l 36.7 
c12 44.9 25.7 7.7 12.4 9.3 12 41.0 
c13 48.6 27.7 5.8 10.2 7.7 13 45.7 
C14 49.7 26.7 4.9 10.6 8.1 14 54.4 
Cl5 49.6 24.4 6.4 11.2 8.4 15 46.8 

C16 46.5 28.6 5.9 10.7 8.3 16 44.9 
C17 47.3 24.2 7.9 11.8 8.8 17 43.1 
Cl8 44.7 30.0 6.8 10.5 8.0 18 41.0 

,C19 48.0 25.6 7.0 11.1 8.3 19 45.4 
c20 50.0 23.8 6.6 11.2 8.4 20 47.5 

C21 51.4 24.2 5.7 10.7 8.0 2l 52.5 
C22 53.3 25.1 5.2 9.4 7.0 22 52.9 
c23 47.9 25.4 6.7 ll .4 8.6 23 44.4 
c24 43.5 29.8 6.7 11.2 8.8 24 39.l 
C25 44.5 29.2 6.5 l l .2 8.6 25 42.6 

I I I I  I 

3. TYPICAL PROBLEMS 

The following is a typical, although by no means exhaustive, set of  ques- 

tions about compositional data sets in geology. 

1. How can we satisfactorily describe the pattern of  variability o f  the 

hongite compositions? For a new rock specimen with (A, B, C, D, E) composi- 

t ion (44.0, 19.7, 14.9, 9.1, 12.3) and claimed to be hongite, can we say whether 

it is fairly typical o f  hongite in composition or can we place some measure on its 

atypicality? 

2. For a particular rock type can we suitably define a correlation structure 

that will allow us to pose and test meäningful hypotheses about that structure? 

What forms of  independence are possible within the constant-sum constraint? 
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3. To what extent can we obtain insights into the pattern of  variability of 
the compositions by partial analyses such as the commonly employed ternary 
diagrams? Are there any other ways of discovering the essential dimensionality 
of  the pattern? 

4. Are the patterns of variability of hongite and kongite essentially differ- 
ent and if so, can a convenient form of classification be devised on the basis of 
the composition? Can we investigate whether a subcomposition, such as a 
ternary diagram, would be as effective? 

5. Are the compositions of boxite and coxite related in any way to depth; 
in other words, is there some trend in the compositions of  boxite and coxite? 

6. Does the porosity of a coxite specimen depend on its composition in 
any way? 

These specific questions will be used to motivate the development of a simple 
methodology for the statistical analysis of compositional data and to illustrate 
its application. 

4. THE SIMPLEX AS SAMPLE SPACE 

The first task of a statistician when faced with modeling a new observa- 
tional or experimental situation is surely to devise an appropriate sample space. 
For compositional data this is a simplex. For compositions (xl . . . . .  x a .  1) of 
d + 1 parts this is essentially a d-dimensional space, a subspace o fR  d 

S d = ( ( x l  . . . . .  x d ) : x i > = O ( i = l  . . . . .  d ) , x i + " ' + X d < =  1[} (2) 

although it may often more conveniently be considered in a symmetric form as 
a d- dimensional subspace of R d + 1 

S a = ((xx . . . . .  Xd+I):Xi>= 0 ( i =  1 . . . .  , d +  1),xl  + " ' + X a + 1  = 1} (3) 

The ternary diagrams and tetrahedral representations, so familiar to geologists, 
are the cases d = 2 and d = 3. The statistical problems of geochemical composi- 
tions are, therefore, those of  investigating distributions over the simplex. Before 
we begin to consider these it is useful to define two simple algebraic operations 
on compositions. 

Subcompositions 

From a composition of 10 or 11 major oxides a geologist may select some, 
such as CaO, Na20, K20, and rescale to obtain a new composition, a subcom- 
position which he can then represent in the familiar CNK diagram. From any 
subvector, say (x ,  . . . . .  Xc), of a d-dimensional composition (xl . . . .  , Xd+ 1 ) we 
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can form a subcomposition, denoted by C ( x l , . . . ,  xc)  with 

C(X 1 . . . . .  Xe) =(XI, , . .  »Xc)/(X 1 +" "" + Xe) (4) 

Formally the subcomposition operator (4) can be regarded as a projection 
from the full simplex S a to a subsimplex S c- 1. 

Partition 

When we wish to divide the composition into a number of subvectors and 
examine the interrelationships, including the total amounts of the available unit 
taken up by the components of the various subvectors, we may f~md it convenient 
to consider the concept of a partition of a composition. We confine attention to 
a simple partition based on a single division of the composition into two sub- 
vectors (xl . . . .  ,Xc) and ( x c + l , . . .  ,xd+l) .  A partition is then defmed as 
(sl, s2, t) where sl and s2 are the subcompositions based on the two subvectors 
and t is the total of one of the subvectors, say the first. Thus sl = (sn . . . . .  
Sx,c-a), s2 = (s~l . . . . .  s2,~-c) and 

Sli =Xi/(X 1 - I ' ' ' ' ' [ -X¢)  (i= 1 , . .  ,C - 1) 

S2i =Xe+i/(Xc+ 1 + ' ' ' + X a + a )  (i= 1 , . .  , d -  c) (5) 

t = X l  + ' ' ' + X t  

An important aspect of this transformation is that it is one-to-one between S a 
and S c-1 × S a-c × S 1 . 

5. THE TRADITIONAL DIFFICULTIES 

Analysts of compositional data have recognized three main aspects of the 
difficulty of interpretation. 

High Dimensionality 

Many geologists have perceived the major, possibly the only, difficulty with 
compositional data to be the inability of the human eye to see in more than 
three dimensions. For example, the view of Iddings (1903) that "since composi- 
tions involve so many components, projection into two-dimensional diagräms is 
needed for comparison of types and samples" has been frequently reiterated, 
and recently Barker (1978) has expressed th_is view in almost identical words. 
Such projections or subcompositional analyses are at best partial analyses, subject 
to substantial loss of information and to misinterpretation, and have been re- 
peatedly condemned by geologist warners such as Chayes (1962) and Butler 
(1979). Thus Chayes (1962) asserts " . . .  inferences based on intuitive geometri- 
tal examination or cookbook statistical testing of these diagrams will more orten 



Statistical Analysis of Geochemical Compositions 539 

be wrong than right." We find an excellent particular example of the futility of 
subcompositional analysis in Section 12. 

Absence of an Interpretable Covariance Structure 

The difficulties, foreseen by Pearson (1897), of interpreting product-moment 
correlations between components of a composition, were first brought to the 
attention of geologists by Chayes (1960, 1962), Krumbein (1962) and Sarmanov 
and Vistelius (1959) and have continued to be a matter of concem right up to 
the present (Chayes, 1983). There are even complete texts (Chayes, 1971; Le 
Maitre, 1982) describing analyses of compositions in terms of cov (x» xj) (i, ] = 
1 . . . .  , d + 1) and discussing the difficulties of interpretation. Since the difficul- 
ties are so weil documented we confine attention here to two ways of exprëssing 
the awkward features. 

(1) Negat ive  bias d i f f i cu l ty .  Since cov (x  l , x l + "" • + x a + l ) = 0 then 

cov ( x l , x 2 ) + " "  " + c o v ( x l , X c l + l ) = - v a r ( x l ) < O  (6) 

so that at least one of the covariances on the left taust be negative. Hence 
correlations are not free to range over the usual interval (- 1, 1) and there are 
bound to be problems of interpretation. 

(2) Closure d i f f i cu l ty .  If the composition is formed from a basis ("open vari- 
ables") of actual quantities wl . . . . .  wa+ 1 by closure or scaling, x = C(w), 
independence of w l , . . . ,  wa+~ does not correspond to any simple "null" 
structure of the cov (xi ,  x i ) .  "Independence" of raw proportions, therefore, 
seems to be associated with ill-defined null, non-zero, correlations, an awk- 
ward concept. Chayes and Kruskal (1966) attempted to obtain tests of the 
hypothesis that the compositions could have arisen from such imagined 
bases with independent components. Apart from many technical and persist- 
ing interpretational difficulties (Miesch, 1969; Aitchison, 1981 a) the method 
suffers from an insuperable conceptual difficulty that there are many bases 
corresponding to a single composition (Kork, 1977; Aitchison, 1981a, 
1982). 

Difficulty of  Parametric Modeling 

In complex situations such as those involving compositional data it is diffi- 
cult to see how analysis of the pattems of variability can erer be whoily success- 
ful in the absence of a rich enough parametric class of distributions over the 
appropriate sample space. For example, the multinormal class N d (# ,  E)  and the 
multivariate lognormal class Ad(#, Z) have proved themselves to be flexible 
instruments in the analysis of data in R a and pct, d-dimensional positive space. 
When the space is the simplex S d any request of a statistical audience to declare 
what parametric classes of distributions its members know produces a standard 
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response: only the Dirichlet class and possibly some simple generalizations are 
offered. Unfortunately the Dirichlet distribution D ä (t3) with density function 

r(131 + ' "+13a+1)  xf l -1  ~a+l-! 
r(131)- .- -r(13-~++,) " X a + l  

turns out to be totally inadeqnate for the description of compositional data for 
three main reasons. 

(1) Its isõprobability contours are convex for 13i > 1 (i = 1 , . . . ,  d + 1) and so 
there is cleafly no hope of a satisfactory fit to commonly õccurring concave 
data patterns such as in Fig. 3. 

(2) Its correlation structure is completely negative with cov (xi,  x / ) <  0 for 
every i :~ ], and there are obviously data patterns for which some such cor- 
relations are defmitely positive. 

(3) A Dirichlet-distributed composition possesses all the imaginable indepen- 
dence properties of compositions (e.g., it can be visualized as the closure of 
a basis of independent, equally scaled, gamma variables). Generalizations 
have failed to widen the class substantially. Thus, recently James (1981) 
asserts that "there thus remains in the literature a lack of tractable rich 
distributions for random proportions which are not neutral." Neutrality is 
a particularly strong form of independence. 

Having briefly retraced the difficulties, hopefully finally, let us now turn 
our attention more positively toward a fresh look at describing variability within 
the simplex. 

6. COVARIANCE STRUCTURE 

All the difficulties arising in the traditional analysis of geochemical compo- 
sitions come from a lack of appreciation that to carry over ideas which are highly 
successful for one particular sample space, such as R a , to another very different 
sample space, namely S ä, may be completely inappropriate. The spate of papers 
in the last 20 years setting out the difficulties and the absence of any significant 
progress surely speak for themselves and I pay my reader the compliment of 
having realized by now that the adoption of a crude covariance structure based 
on cov (xi, xj)  causes more confusion than it removes. Any reader with a linger- 
ing nostalgia for an untampered cov (xi, x i )  should ponder the following passage 
from Zukav (1979, p. 71) 

Things are not "correlated" in nature. In nature, things are as they are. 
Period. "Correlation" is a concept which we use to describe connec- 
tions which we perceive. There is no word, "correlation," apart from 
people. There is no concept, "correlation," apart from people. This is 
because only people use words and concepts. 
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In other words we should not become hidebound in our approach to new prob- 
lems to the extënt of regarding any modeling concept as some embodiment of 
nature. As I have said elsewhere we would not expect that excellent tool of the 
wide open spaces (or R a) of North America, namely the barbecue, necessaarily 
to be an appropriate concept for cooking in the confined space (or S a)  of a 
low-cost housing flatlet in Hong Kong. If  our concepts fall to serve us in new 
situations we must invent new concepts. 

A crucial sentence in Zukav's paragraph is surely that correlation is a con- 
cept we use to describe connections we perceive. In the plethora of papers 
enumerating the absence of connections within the crude covariance structure 
we find, for example in the comparison of väriances of oxides in the complete 
composition with those in a subcomposition, namely, rar (xi)  with rar {x i / (x l  + 
. • • + Xc} (i = 1 . . . .  , c), very different and unrelatable rank orderings. And much 
is also made of the fact that from subcompositional information such as the 
crude variances and covariances the corresponding compositional quantities can- 
not be reconstructed. Yet some do perceive an elementary connection between 
subcompositions and the parent composition, namely that ratlos of components 
are the same within the subcomposition and the composition, but fail to realize 
that the embodiment of this single wisp of a connection must surely form the 
foundation of a sensible study of compositions. This realization that the study 
of compositions is essentially concerned with the relative magnitudes of ingre- 
dients rather than in any sense their absolute values leads naturally to a concept 
of  correlation structure based on product-moment covariances of ratios such as 

cov (x i[x/, X J X l )  (7) 

Experience with mathematical and statistical modeling has, however, led us 
to another perception, that in first attempts at modeling new situations there is 
little harm in opting for the tractable. Now, variances and covariances of ratlos 
are awkward to manipulate and as any lecturer in statistics must grow weary of 
telling students, when stuck by complicated products and quotients take logs. 
Thus, as far as compositions are concerned, as far as living in the simplex is con- 
cerned, we should be able to think more clearly about relationships if we adopt 
a new concept of correlation (Aitchison, 1981a, 1982) based on 

cov (log xi/x], log Xk/Xl) (8) 

This covariance structure can be more economically expressed in terrns of ad  × d 
logratio covariance matrix 

2 = cov (log xl /Xd+ 1 . . . . .  log Xd/Xa+ 1 ) (9) 

Knowledge of ~ = [oij ] allows us to construct any variance or covariance 
of logratios through the relationship 

cov (log xi /xj ,  log Xk/Xl) = aik - a u -  ajk + ojl (10) 
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where any o with a suffix d + 1 is interpreted as zero. Also we can identify clearly 
and precisely what partial information about a compositional covariance struc* 
ture ~ is provided by the knowledge of the coväriance structure of a subcompo- 
sition. For example, the logratio covariance matrix of C(xc. 1 . . . .  ,Xa÷l) is 
identical to the trailing (d - c) × (d - c) submatrix of ~. 

The introduction of logarithms, of course, requires the assumption that 
none of the components is zero, in other words, that the sample space is the 
strictly positive simplex 

S+ a = ( ( X l , . . .  , x a + l ) : x i > O ( i =  1 . . . .  , d+  1),Xl + " "  +Xct+l = 1} 

(11) 

We continue with this assumption until Section 14 when we briefly discuss the 
problem of zeros. 

Def'mition (9) apparently introduces an asymmetry in selecting one compo- 
nent for the special role of  common divisor. The reader may, therefore, ask 
whether statistical procedures based on such a construct may lead to different 
conclusions depending on which component is chosen as divisor. Such is not the 
case for any of the procedures discussed in this paper: they are invariant under 
the group of permutations of the components. I do not digress to discuss the 
technicalities of this invariance but invite the reader to choose dix;isors different 
from the final component x a .  1, chosen hefe merely for convenience and to 
verify the accuracy of the claim. 

As an alternative to the asymmetric logratio covariance matrix we can 
deFme a symmetric (d + 1) × (d + 1) logcentered covariance matrix 

I" = cov {log xl  l g ( x ) , . . ,  log xa+ 1 lg(x)} (12) 

where the common divisor g(x) used to form the ratios is the geometric mean 
(xl . . . . .  x«÷l)x/(a+l) of  the d + 1 components of  the composition. The aes- 
thetic advantage of symmetry is bought at a price, the disadvantage of the singu- 
larity of  F, although for many applications this is adequately overcome through 
the use of pseudo-inverses of singular matrices. For the special form of singularity 
of (12) a very convenient pseudo-inverse is usually 

( ~ 1  0 -1 1 1)Jd+l (13) F -= F+ Jd+ r(d+ 

where r = trace(P) and Ja+ 1 is the (d + 1) X (d + 1) matrix with every element 1. 
The choice between forms (9) and (12) is largely a matter of personal Preference, 
of whether orte hates asymmetry more or less than singularity. 

To clarify the relationships of  these various covariance matrices we examine 
the computation of the corresponding sample covariance matrices starting with 
data matrix X = [Xrc]. First we note that from any n X (d + 1) data matrix X, 
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the sample covariance matrix S x  is formed by the operation 

(n - 1)S x = XTGn X (14) 

where 

G n = I n - (1/n)J n (15) 

and Jn is the n × n matrix with each element 1. 
From the n × (d + 1) crude matrix X we can form three other data matrices, 

the n X (d + 1) log data matrix 

W = [wc« ] = [log x~«] (16) 

the n X d logratio data matrix 

T=[Yre]  =~log x ~ ~ c  7=[Wre-Wr ,  d+l] =WB r (17) 
[_ xr,d+l_l 

where 

B = [ l a ,  - ] d l  (18) 

and the n X (d + 1) logcentered data matrix 

I l ) t  Z =  wrc d + l  (Wrl + +Wr, d+l =WGd+I (19) 

Then the relations between the sample log, logratio, and logcentered covariance 
matrices Sw,  S t ,  and S z are 

S y  = BSw BT = BSz  B T (20) 

S Z = Gd+ISwGd+ 1 (21) 

Note that the centering process taking W to Z is a row-centering among the dif- 
ferent components of individual rock specimens whereas the covariance matrix 
computation from W to S w involves a column-centering of the same component 
within different rock specimens. 

The natural first reaction of the geologist to the covariance structure (9) is 
probably one of resistance to what may seem an unnecessarily complicated 
descriptive tool. I think, however, that the geologist has to accept that for a 
constrained form of data this must be the simplest alternative to persistence with 
crude analysis and more decades of bewilderment. One should look to other 
restricted forms of vectors for some insights; for example, directional data with 
the circle and  sphere as sample spaces. It is somewhat of a paradox that the 
simplex has been such a stumbling block to analysts whereas the sphere has not. 
No one doubts that statistical analysis of directional data shoutd be very different 
from data in R d. Why then should we expect methods in R d to be successful ha 
sd? From our modest start with an appropriate covariance structure we find, as 
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we reexamine the questions posed in Section 3, that a set of concepts and meth- 
ods will emerge, far easier to comprehend and to practice than their counterparts 
on the circle and sphere. 

7. DIMENSlON-REDUCING TECHNIQUES 

In handling "ordinary" vectors in R a we have become familiar with two 
forms of the dimension-reducing technique. The first is marginal analysis, where 
we simply select some of the components and look at their marginal distribution 
in fewer dimensions than d. For compositions the counterpart ofmarginal analysis 
is subcompositional analysis, as in the popular inspection of ternary diagrams. 
The second is principal component analysis with its attempt to capture most of 
the variability in a few linear combinations of the components. There have been 
many attempts to carry over this idea into the analysis of compositional data, 
mainly by a method advocated by Le Maitre (1968). With a new covariance struc- 
ture for compositions we are in a position to study both techniques. Aitchison 
(1983, 1984a) has undertaken a detailed critical reappraisal of these two dimen- 
sion-reducing techniques with applications to the major oxide compositions of 
rocks, thus answering question 3 posed in Section 3. Hefe we present the essence 
of the argument in relation to the hongite and boxite data sets. 

Principal Component Analysis 

The currently popular form of principal component analysis, advocated by 
Le Maitre (1968), uses the d positive eigenvalues and their d eigenvectors of the 
crude (d + 1) × (d + 1) covariance matrix Sx. Figure 1 shows the scattergrams of 
the first and second crude principal components for the hongite and boxite com- 
positions. The persistent curvature in the hongite scattergram reflects a failure of 
the linear crude method to capture the essentially curved nature of the variability 
of hongite compositions in the simplex. Webb and Briggs (1966) provide an 
alternative method based on a ratio, not logratio, covariance matrix, but it also 
is linear in effect and is not invariant under different choices of divisor. 

With the new covariance structures we can use either the asymmetric Sv or 
the symmetric Sz to obtain identical results. With Sy we use the d eigenvalues 
Xl > X2 >"  • • > Xa and eigenvectors b l , . . . ,  b a which are solutions of 

( S y -  XHa)b = 0 brHa b = 1 (22) 

where Ha =Ia +Ja is the "isotropic" logratio covariance matrix (Aitchison, 
1983). WithSz we use the d positive eigenvalues X i and the corresponding eigen- 
vectors ai, satisfying 

(Sz - X/a+ 1 )a = 0 a~a = 1 (23) 
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Fig. 1. Scattergram of  the first and second crude principal components  for hongite  and 
boxite.  

The eigenvectors a of (23) and b of (22) are simply related by a = bB r and lead 
to identical principal components which are loglinear contrasts of the composi- 
tion components, that is, of the form 

d + l  d + l  
Z ai log x i Z ai = 0 (24) 
i=1 i=1 " 

The total measure of  variability is given by 

kl + " • " + kot = trace Sz (25) 

Here the symmetric form is probably the easier with standard algorithms for 
eigenanalysis. 

Table 5 shows the 5 X 5 logcentered covafiance matrix S z for hongite 
together with the four positive eigenvalues and their eigenvectors. The usual 
measure 

(3,~ + " "  + Xc)/(Xl + " "  + Xct) (26) 

of the proportion of "total variability" captured by the first c principal compo- 
nents applies. Thus, for hongite the first logratio or logcentered principal compo- 
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Table 5. Logcentered Covariance Matrix SZ, Eigenvalues and 
Eigenvectors for Hongite 

Sz  = 

-0.06350 0.17762 -0.24063 0.01412 -0.01461- 

0.17762 0.55134 -0.72794 0.02537 -0.02639 

-0.24063 -0.72794 0.96718 -0.03968 0.04105 

0.01412 0.02537 -0.39668 0.04693 -0.04675 

-0.01461 -0.02639 0.04105 -0.04675 0.04670 

Eigenvalues 

kl k2 k3 k4 
1.579 0 . 0 9 1 1  0 . 0 0 5 6 6  0.000106 

Eigenvectors 

-0,194 -0.069 0.799 -0.345 
-0.590 0.085 -0.549 -0.378 

0.783 -0.013 -0.222 -0.372 
-0.033 -0.704 -0.085 0,544 

0.034 0.701 0.057 0.551 

nent captures 94.2% of the total variability. The scattergrams of first and second 
logratio principal components, shown in Fig. 2 for hongite and boxite, demon- 
strate the capability of the new method to reduce successfttlly both the "curved" 
variabflity of the hongite compositions and the "linear" or "elliptical" variability 
of  the boxite compositions to standard patterns for principal component vari- 
ability. Figure 3 reinforces the success of the logratio method and the failure of 
the crude method by showing the ternary diagrams and the principal axes for the 
ABC subcompositions of the hongite compositions. 

Subcompositional Analysis 

A central question here is whether we can similarly obtain a measure of the 
proportion of total compositional variability retained by a subcomposition. 
Since a subcomposition such as C(xl  . . . . .  xc+l )  is teclmically a composition 
with dimension c, smaller than the dimension d of the original composition, its 
total measure of variability is given by the trace of its logcentered covariance 
matrix, say S. Then we can use 

trace S/trace S z  (27) 

to assess the proportion of the total compositional variability retained by the 
subcomposition. If the purpose of the subcompositional analysis is to retain as 
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Fig. 2. Scattergram of first and second logcontrast principal components for hongite and 
boxite. 

much variability as possible then we have to search for subcompositions which 
maximize (27); see Aitchison (1984a) for a simple algorithrn for this search, and 
for applications to major oxide compositions of rocks. 

Table 6 shows the rankings of all 10 two-dimensional subcompositions and 
the associated proportions (27) of total variability retained by each for hongite 
and boxite, and compares these with what is achievable by the first two prin- 
cipal components. Note the substantial differences between the proportions 
retained by the first and last ranked subcompositions for each type and the 
differences in the orders between hongite and boxite subcompositions. The first 
ranked temary compositions for hongite and boxite capture 94.4 and 77.5% of 
total variability compared with 99.7 and 81.9% captured by the corresponding 
first two principal components. The good quality of the performance of these 
best subcompositions relative to the principal components should not delude us 
into imagining that this will be generally so, particularly with tügher-dimensioned 
compositions. For example, Aitchison (1984a) gives an example of 11 major 
oxide compositions where a best ternary subcomposition retains only 60.5% 
of total variability compared with 90.6% for the first two principal components. 

The importance of the technique is its provision of a quantitative measure 
of the effectiveness of a subcomposition in retairling variability displayed in the 
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Table 6. Subcompositions of Hongite and Boxite in Rank Order 
of Percentage Retention of Total Variability 

Hongite Boxite 

Subcomposition Percentage Subcomposition Percentage 

ABC 99.4 BCD 77.1 
BCD 91.8 ABD 67.9 
BCE 90.6 ABC 64.9 
A CD 53.5 BCE 63.0 
A CE 51.4 BDE 62.5 
CDE 44.0 ABE 50.8 
BDE 27.6 A CD 35.0 
ABE 20.9 CDE 29.6 
ABD 17.7 ADE 27.3 
ADE 8.1 ACE 21.7 
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full composition. Sometimes the objective in subcompositional analysis, as, for 
example, in classification, is to discover subcompositions which display little 
variability within rock type but which are radically different between rock 
types. Although criterion (27) could be used as a guide for this purpose we find 
a more satisfactory procedure in Section 12. 

8. PARAMETRIC CLASSES OF DISTRIBUTION ON S d 

The range of statistical analyses of compositional data is likely to be con- 
siderably extended if in addition to a sensible covariance structure we can find 
a rich parametric class of  distributions on S a which reflects the patterns of vari- 
ability we observe in the simplex sample space. As indicated in Section 4 the 
familiar Dirichlet class and its generalizätions to date are not sufficiently rich for 
the purposes of  compositional data analysis, particularly in their inability to 
support a sufficient degree of compositional dependence. 

Alternatives have been slow to emerge but there are now a number of prac- 
tically useful classes based on a delightfully simple and old idea. When trying to 
find suitable means of describing patterns of väriabflity over the positive real line 
p1, for which at that time none existed, McAlister (1879) saw that it was sensible 
to transfer the highly successful normal pattern on the whole of  the real line R 1 
to p1 through the õbvious transformation 

w = e x p ( y )  ( w E P X , y E R  1) (28) 

and so the lognormal class of distributions was invented. In the same way we can 
induce a class of distributions on the simplex from the class of multivariate nor- 
mal distributions on R a by use of any one-to-one transformation from R a to 
S a. We can do no better than to start with the simplest, which is already in use 
in other areas of  statistical activity, namely the generalized logistic transforma- 
tion, or as we prefer to term it, the additive logistic transformation between 
x C S a and y E R a, specified by 

{ e x p ( y i ) / [ e x p ( y l ) + ' ' ' + e x p ( y d ) +  1] (i= 1 . . . . .  «)  

x i= 1 / [ e x p ( y l ) + ' ' ' + e x p ( y d ) + l ]  ( i = d + l )  
(29) 

with inverse 

Yi = log (xi/xa+ 1 ) ([ = 1 . . . .  , d )  (30) 

The distribution on S d corresponding to  Nd(p, ~) on R a, will be denoted 
by L d(p ,  £). This class of distributions and its properties and uses have been 
studied by Aitchison and Shen (1980). One useful property in geochemical 
compositional analysis is that every subcomposition of a composition with a 
logistic-normal distribution has itself a logistic-normal distribution. Moreover 
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it is equally capable of contouring banana- and football-shaped patterns (Aitchi- 
son, 1982). 

We meet another useful parametric class of distributions later but for the 
moment we can concentrate on the additive logistic-normal class. An important 
point to note is that the covariance parameter E of the distribution is precisely 
the logratio covariance matrix we arrived ät in Section 6. Thus, if we can adopt 
a logistic-normal model for the description of our pattern of variabflity we will 
be in a position to test parametrically hypotheses concerning the covariance 
structure. 

The great advantage of this approach to compositional data analysis is that 
it makes available the whole range of statistical procedures based on multivariate 
normality. All we have to do is transform the compositions x to the logratio 
compositions y and then work within R a and on multivariate normal assump- 
tions. In particular we can test the reasonableness of the logistic-normality as- 
sumptions through the battery of tests for multivariate normality. It would be 
preposterous to believe that all compositional data will turn out to be logistic 
normal and no doubt modifications to statistical procedures will have to be 
made in the liglit of further experience. But there do appear to be a sufficient 
number of geochemical data sets that are reasonably logistic normal in pattern 
and it is necessary to make a start with some parametric form. In addition to the 
investigation of covariance structure, particularly attractive procedures from the 
viewpoint of the statistical analysis of geochemical compositions are discrimi- 
nant analysis for classification purposes and linear modeling of the mean for 
investigating the dependence of composition on other explanatory variables. 
Moreover, Bayesian methods, including statistical prediction analysis, are readily 
available through the substantial multivariate normal counterpart. 

9. AN EXAMPLE OF MODEL FITTING 

Let us consider the hongite data of Table 1, and investigate its pattern of 
variability. 

Tests of Logistic Nonnality 

We first transforrn the five-part compositions to their four-dimensional 
logratio counterparts and then submit these vectors to a battery of 22 tests of 
multivariate normality: the Kolmogorov-Smirnov and the Cramer-von Mises tests 
in their Stephens (1974) versions to 

(i) each of the four univariate marginal distributions 

(ii) each of the six bivariate angle distributions 

(iii) the four-dimensional radius distribution 
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No significant departure from multivariate normality is found at the 5% level by 
any of these tests. A similar procedure applied to the kongite, boxite, and coxite 
data sets detected significant departures at the 5% level in some marginal tests 
only: 

kongite: Cramer-von Mises test for Y2 
coxite: Kolmogorov-Smirnov and Cramer-von Mises tests for y~ 

In such a multiple hypothesis testing situation we must not be discouraged 
from continuing with a logistic-normal fit by one or two significances like this. 
Indeed the reader can now be let into the secret that the data were in fact simu- 
lated by a n  L 4 mechanism and yet we have a trace of apparently significant 
departure. 

Estimation 

The parameters /J and £ are estimated in the usual way from the logratio 
data array Y as the sample mean vector y and the sample covariance matrix Sy  

F1.71 1 

=1°.9141 
] 0.121| 
!_o.168_1 

n u 

0.134 0.255 -0.212 0.117 

Sy 
0.255 0.624 -0.668 0.139 

-0.212 -0.668 0.895 0.012 

0.117 0.139 0.012 0.180 

(31) 

Predietive Distribution 

For purposes of embodying the experience we have gained from Table 1 of 
the compositional variability of hongite in a single distribution we recomrnend, 
for the various reasons presented in Aitchison and Dunsmore (1975), the pre- 
dictive distributon based on the vaguest of priors. Within the simplex this would 
be what might be termed a logistic-Student distribution but we can work wholly 
within R a in our subsequent discussion of typicality. For the y vector, therefore, 
the predictive distribution is simply, in the notation of Aitchison and Dunsmore 
(1975), the generalized Student distribution 

St« {24, y, (1 + 2~)Sy} (32) 

Atypicality Index 

Is the composition (44.0, 19.7, 14.9, 9.1, 12.6) reasonably typical of the 
hongite experience or is it essentially an outlier? We can conveniently base our 
assessment on the foUowing consideration. The predictive distribution assigns 
a probabflity density to each possible composition and the smaller the density 
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assigned to a composition the more it inclines to atypicality. First determine the 
density associated with the given composition. Then compute the probability, 
on the basis of the predictive distribution, that a hongite composition has a 
density greater than the density of the given composition and call this the 
atypicality index of the composition. The atypicality index, therefore, ranges 
between 0 and 1 and the closer it is to 1 the more atypical is the given composi- 
tion. Fortunately the atypicality index associated with (32) is easily computed 
through the use of incomplete beta functions. See Aitchison and Dunsmore 
(1975, Sect. 11.4) for details. In the present case the atypicality index is 0.997 
and so we must, therefore, express some doubt as to the specimen being an 
example of hongite. 

Comparison of Hongite and Kongite 

We may readily find the estimates of mean logratio vector and logratio co- 
variance matrix for kongite as 

F1.~41 F 0.108 0.226 -0.192 0.092 
=1°.~~61 =/°-~~6 0.6~~ 06~~ 0.10~ 

, 0 . 1 9 4 , ,  ~, i_0.1~~ 0.69~ 1.00~ 0.0~6 
I_0.106_] L0.092 0.102 0.o86 0.186 

(33) 

and we may then test hypotheses about similarities between hongite and kongite. 
For example, a standard multivariate normal test of equality of the two covari- 
ance matrices (Anderson, 1958, Sect. 10.6) shows no significant difference. If 
we follow this with a test of the hypothesis of the equality of the mean vectors 
we find with a pooled covariance matrix S, that the generalized T 2 -statistic 

nln2 (y(1) _ y(2))Ts-1 (y(1) _ y(2)) = 82.1 (34) 
H 1 +~t 2 

where hongite and kongite sample sizes and logratio mean vectors are labeled by 
1 and 2, respectively. The standard test (Anderson, 1958, Sect. 5.3.2) detects a 
significant difference between means at the 0.1% level of significance. This result 
suggests that it may be possible to devise a system of differential classification 
between hongite and kongite based on the geochemical compositions. 

The reader may care to verify that the symmetric logcentered form of the 
Mahalanobis distance 

(Z(1) - Z(2)) T S Z (z (1) - z (2)) (35) 

with the pseudo-inverse Sz computed as in (13), leads to the same result as the 
above asymmetric version. Reference to Section 3 will also show that we have 
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now effectively answered question 1, and made a start on the answer to ques- 
tion 4. 

10. AN EXAMPLE OF LINEAR MODELING 

The transformed, logratio composition vector can be subjected to linear 
modeling to examine its possible dependence on explanatory or concomitant 
variables through standard multivariate linear hypothesis testing. For the hongite 
four-dimensional logratio composition y found at depth u we may consider the 
mode1 

y isN4(a + [3u, E) (36) 

and test the hypothesis of no dependence of composition on depth 

/3 = 0 (37) 

by well-established and computer-packaged procedures; see, for example, Morri- 
son (1976, Sect. 5.2). For boxite and coxite the test statistics (Morrison, 1976, 
p. 167, formula 41) have values 1.24 and 10.53, both to be compared against 
upper percentage points of F(4,20). Thus, there is strong evidence, at the 0.1% 
level, that the coxite compositions depend on depth but no such evidence for 
boxite. 

Note that there is no requirement for the modeling to be linear in u. For 
example, Aitchison (1982), in investigating the dependence of Arctic lake sedi- 
ment compositions on depth, fmds that forms a +/3 log u or o~ + 3u +/3u 2 are 
necessary for an adequate description of the dependence. 

11. CONCEPTS OF COMPOSITIONAL INDEPENDENCE 

Over-concentration on standard ideas and absence of an appropriate co- 
variance structure have limited the scope of investigation by geologists of the 
possibilities of different forms of independence within the composition. The 
simplest approach to independence concepts for compositions is to consider 
various forms of independence in relation to a single division (x l  . . . . .  xc]xc+x, 
. .  ,Xd+1) of the composition and the corresponding transformation to the 
partition (s j ,  s2, t) given by (5). We can define three different forms of indepen- 
dence in descending order of strength of independence, which go a substantial 
way toward completing out answer to question 2 of Section 4. 

(i) Partition independence: s~ , s2 , t independent 

(il) Neutral i ty  on the right: (sl , t) and s2 independent 
Neutral i ty  on the left: sl and (s2, t) independent 
Neutrali ty:  neutrality both on the right and on the left 

(iii) Subcompos i t ional independence:  sl and s2 independent 
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Partition independence and subcomposition independence were introduced 
by Aitchison (1982). Neutrality on the right, introduced by Connor and Mosi- 
mann (1969) in relation to problems of biological growth, can be expressed 
equivalently as independence of the left-hand subvector ( x l , . . . ,  Xc) and the 
right-hand subcomposition C(xc+ i . . . . .  xa+ 1). If we imagine that the composi- 
tion is determined by components 1 , . . . ,  c, first assuming their values, then we 
have neutrality on the right if the relative magnitudes of the other components 
are quite uninfluenced by the actual values adopted by the first c components. 
Partition independence implies neutrality on the right (and equally its counter- 
part neutrality on the left) and neutrality of any form implies subcompositional 
independence. When we demand that these forms of independence hold for any 
partition and any permutation of the components of the composition then we 
have much more extreme forms of independence which we term complete. 

Completeness is a strong form of independence and indeed provides charac- 
terizations of the Dirichlet class: any composition with complete partition inde- 
pendence or complete neutrality necessarily has a Dirichlet distribution. Since 
the L ä and D ä classes are separate tlUs means that the logistic-normal class has 
a limitation in that such extreme forms of independence cannot be tested within 
its framework. Aitchison (1984b) has recently shown how to construct a more 
general class A a on the simplex which includes as special cases the D a and L a 

classes and so provides a framework for testing these extreme (and, therefore, 
Dirichlet) forms. Since it seems unlikely that any geochemical compositions have 
such extreme forms of independence we do not pursue these tests here. 

It is not possible within the scope of ttüs paper to discuss in detail the 
variety of modeling and test procedures appropriate to the investigation of all 
these different forms of independence and, as illustration, we concentrate on 
one particular form, complete subcompositional independence. For a fuller dis- 
cussion and applications of other forms of independence, see Aitchison (1982). 
Only one point of particular interest need be mentioned, namely that for the 
investigation of neutrality on the right a multiplicative form of logistic transfor- 
marion from S a to R a is required (Aitchison, 1981b) 

xp (Yi [1 + exp (yj)] 

X i  = d 

Il/il--Il [1 + exp (yi)] 

(i= 1 . . . . .  d) 

( i = d +  1) 

(38) 

with inverse 

Y i  = log [ X i / ( 1  - X l  . . . . .  X i ) ]  (i = 1 . . . .  , d) (39) 



Statistical Analysis of Geochemical Compositions 555 

The form of independence which has been the goal of the work on relation- 
ships between open and closed sets, such as by Chayes and Kruskal (1966), is 
cornplete subcompositional independence which can be conveniently redef'med, 
in terms of  the cornposition only, as follows 

Cornplete subcompositional independence: A composition has com- 
plete subcompositional independence if the subcompositions formed 
from any set of nonoverlapping subvectors are mutually independent. 

Aitchison (1982) has shown that complete subcompositional independence ~or- 
responds to a simple form of the logratio covariance matrix Z, namely that its 
off-diagonal elements are all equal, or equivalently that 

= diag(Xa . . . .  , Xd)+ Xa+lJa (40) 

Every member of the Dirichlet class has complete subcompositional inde- 
pendence and so yet again there is no way of testing this hypothesis within the 
Dirichtet class. On the other hand within the additive logistic normal class 
Ld(tl, 2) complete subcompositional independence corresponds to the para- 
metric hypothesis (40) which may be tested by standard test procedures such as 
generalized likelihood ratio tests. The method, reported in Aitchison (1982), 
uses the Wilks (1938) asymptotic test with critical region 

2(lM - lH) > upper percentage point of the X 2 [½ (d + 1) (d - 2)] distribution 

(41) 

where l H and lM are the maximized values of the loglikelJhood function under 
the hypothesis H of complete subcompositional independence and under the 
model M of logistic normality. The only problem is the teclmical one of maxi- 
mizing the likelihood with the special form (40) for the covariance structure but 
this need not concern us in this exposition. 

The computed values of the test statistic (41) for hongite, kongite, boxite, 
and coxite are 262.7, 251.5, 3.64, 34.5, to be compared against upper percentage 
points of ~(2 (5). There is, thus, overwhelming evidence against complete subcom- 
positional independence of hongite, kongite, and coxite but it is certainly a 
tenable hypothesis for boxite. The differences in the forms of the hongite and 
boxite logratio covariance matrices, given in Table 7, are indeed fairly obvious to 
the naked eye. 

Finally, we may note that there are forms of partial subcompositional inde- 
pendence which correspond to geological concepts such as concretionary and 
metasomatic, as introduced by Sarmanov and Vistelius (1959) within the context 
of open and closed variables and crude covariance structures. These correspond 
to hypotheses such as: sl and s2 are independent and s2, as a (d - c)-dimensional 
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Hongite 

Boxite 

Table 7. Logratio Covariance Matrices for Hongite and 
Boxite 

i i ii i 

r 0 . 1 3 3 9  0 . 2 5 4 7  - - 0 . 2 1 1 6  0 . 1 1 7 3 ~  

=/0 .2547 0.6248 _0.6681 0.1394 I 

sy  i -0"2116 _0.6681 0.8945 o.o12q 

/0.1173 0.1394 0.0122 0.1797..] 

0.0314 0.0122 0.0135 0.00207 

10 .01220 .1308-0 .0091-0 .00121  

SY= [ 0.0135 -0.0091 0.0461 0.0098[ 

1~.0020-0.0012 0.00980.0510_] 
i i 

composition, has complete subcompositional independence. Such independence 
hypotheses are readily tested within the framework outlined above. 

12. CLASSIFICATION 

A first step in answering question 4 of Section 3 is to investigate whether 
our past experience of the pättern of variability of the geochemical compositions 
of hongite and kongite as contalned in Tables 1 and 2 will allow us to devise a 
process for the differential classification of new rock samples known to be of 
one of those types. The facts of Section 9 that we can fit additive logistic-normal 
models to each of these data sets and that we find a significant difference be- 
tween the logratio vector means of the two models suggests that there is a 
reasonable chance of success. Since the hongite and kongite logratio covariance 
matrices are not significantly different we would be justified in applying standard 
discriminant analysis techniques to the logratio compositions. Many geologists 
are already familiar with this technique, albeit in relation to the questionable 
practice of applying it to crude proportions, and so it would serve little purpose 
to go over essentially familiar ground. Instead I will present an adaptation, suited 
to compositional data, of a well-established, although apparently, in geological 
circles, less familiar, alternative. In the analogous problem of differential diag- 
nosis in medicine there are often substantial grounds for believing that this 
alternative method will provide more reliable indications of disease type and the 
interested reader may care to examine the arguments put forward simply and 
cogently in Dawid (1976) and to ask himself whether they are not equally valid 
in a context of geological classification. There is, however, another substantial 
reason for choosing this alternative approach. It provides a very simple technique 
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for investigating the extent to which use of only a subcomposition is an effective 
means of classification. 

We briefly illustrate the techniques for two types only, namely hongite and 
kongite. The method readily extends to more than two types and the reader 
interested in greater detail and in applications to classifications of rock types 
from major oxide compositions may refer to Aitchison and Li (1985). 

With the transformed logratio composition y we may write the logistic 
discriminant model in the following form 

p(type l Ix, 13) = ex_p_ (I3__o +J,Y__~1 +- ; " +_~aYa) 
1 + exp (130 + 131 + " "  + 138Yct) 

= 1 - p(type 2 Ix,/3) (42) 

from which, by standard maximum likelihood estimation methods, we obtain 
maximum likelihood estimates of/3 as 

--258.2 
100.8 

~=  113.1 (43) 

110.0 

-162.1 
m 

We then regard classification as consisting of the assignment of type probabilities 
to new rock samples and for this purpose, for the many reasons advocated in 
Aitchison and Dunsmore (1975), we use the predictive diagnostic method which, 
for the logistic discriminant case, can be expressed in the approximate form 
(Lauder, 1978) 

p(hongite Ix, data) = • [~Ty*/(2.89 + y*TVy*) l /2  ] (44) 

where (b(.) is the N(0, 1) distribution function, y* is the extended logratio vec- 
tor [ 1 yT] r and V is the estimated covariance matrix of the estimator of 13, here 

- 7126 

-2785 

V= -3113 

-3023 

4487 

-2785 -3113 -3023 4487- 

1095 1203 1173 -1747 

1203 1385 1336 -1974 

1173 1336 1292 -1912 

-1747 -1974 -1912 2835 

(45) 

When reapplied to the 50 cases of the data set the probabilities assigned are 
distributed as shown in Table 8, and so it is seen that we have a reasonable 
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Table 8. Distributions of  Predictive Probabilities for 
Classificafion as Hongite by the Crude and 

Lografio Methods 

Crude method Logratio method 
Probability 

interval Hongite Kongite Hongite Kongite 

0 -0 .05 -  - - 
0 .05-0 .10 - - - 4 
0 .10-0.15 - - - 6 
0.15 -0 .20 - l 4 
0.20-0.25 - - - 1 
0 .25-0.30 - - - 2 
0.30-0.35 - - - 2 
0.35 -0 .40 - 1 1 
0.40-0.45 - - 1 
0 .45-0.50 13 17 1 2 
0.50-0.55 12 8 l l 
0.55 -0 .60 - - - 1 
0 .60-0.65 . . . .  
0 .65-0 .70 - - 2 - 
0 .70-0.75 - - 1 - 
0.75 -0 .80 - - 4 - 
0 .80-0.85 - - 3 - 
0.85 -0 .90 - - 6 - 
0 .90-0.95 - 5 - 
0 .95-1 .00 . . . .  

m e t h o d  o f  c l a s s i f i ca t ion ,  even  m a k i n g  a l l o w a n c e s  fo r  t h e  w e l l - k n o w n  fac t  t h a t  

assess ing a s y s t e m  b y  r e s u b s t i t u t i o n  o f  t h e  cases  f r o m  w h i c h  t h e  s y s t e m  was  c o n -  

s t r u c t e d  a lw a ys  gives an  over ly  o p t i m i s t i c  view.  T h e  c o m p l e t e  fa i lure  o f  t h e  cor -  

r e s p o n d i n g  c r u d e  ana lys i s  in  w h i c h  y a, • • • ,  Y a  in  ( 4 2 )  are  r e p l a c e d  b y  a n y  d o f  

t h e  r aw  p r o p o r t i o n s  is d e m o n s t r a t e d  in Tab le  8 b y  t h e  ve ry  p o o r  d i s c r i m i n a t i o n .  

F o r  t h e  e x a m i n a t i o n  o f  t h e  e f f e c t i v e n e s s  o f  a s u b c o m p o s i t i o n  t h e  m o d e l  

( 4 2 )  can  b e  e x p r e s s e d  m o r e  c o n v e n i e n t l y  in  a s y m m e t r i c a l  ve r s ion  

e x p  (fl0 + f l l  lOgXl  + " "  "[- ~ d + l  l o g x d + l )  (46 )  
p ( h o n g i t e  ]x, fl ) - 1 +-e-~xp-~o +-fll l~g x ; - +  . - : + flä~+ l log  x - ~ ä + ~ )  

w h e r e  fll + " ' "  + flä+ 1 = 0. T h e  h y p o t h e s i s  t h a t  t h e  s u b c o m p o s i f i o n  C ( x l  . . . .  , 
x t )  is j u s t  as e f f ec t i ve  as t h e  c o m p l e t e  c o m p o s i t i o n  can  t h e n  b e  r e g a r d e d  as t h e  

p a r a m e t r i c  h y p o t h e s i s  t h a t  flc+ 1 . . . . .  ~d+l  = 0,  a n d  so can  b e  t e s t e d  b y  s tan-  

d a r d  p a r a m e t r i c  h y p o t h e s i s  m e t h o d s .  All  w e  have  to  do  is t o  o b t a i n  t h e  max i -  

m i z e d  l o g l i k e l i h o o d  1M u n d e r  t h e  mode1  M t h a t  t h e  fuU c o m p o s i t i o n  is r e q u i r e d  

a n d  also t h e  m a x i m i z e d  l o g l i k e l i h o o d  I ß  u n d e r  t h e  s u b c o m p o s i t i o n a l  h y p o t h e s i s  

H ,  a n d  th i s  l a t t e r  can  b e  d o n e  b y  s t a n d a r d  log is t ic  d i s c r i m i n a n t  ana lys i s  us ing  t h e  
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Table 9. Maximized Loglikelihoods and Values of 
the Test Statistics for Investigating the Discriminatory 

Power of Subcompositions in the Classification of 
Hongite and Kongite 

Composition or Maximized 
subcomposition Ioglikelihood 2 (l M - l H) 

( A , B , C , D , E )  -l l .42 - 
Omitting A -31.25 39.7 

B -34.00 45.2 
C -34.35 45.9 
D -34.06 45.3 
E -34.44 46.0 

subcomposition in its logratio form as if it were the full composition. Then if 
2 ( l M  - l~4) exceeds the upper percentage point of x 2 ( d  - c + 1) we have to con- 
clude that the subcomposition is not a satisfactory substitute. 

For the classification of hongite and kongite we can readily test the effec- 
tiveness of each of the five four-part subcompositions obtained by dropping out 
just one of the components. Table 9 shows the maximized loglikelihoods, and it 
is clear that we have highly significant test statistics when compared against 
X2(1) percentiles: It is, thus, all too clear that attempting to use any subcom- 
position for this classification purpose is fraught with disaster. This can easily 
be verified by assessing the classification probabilities obtained by using a 
subcomposition. 

13. COMPOSITION AS A CONCOMITANT OR 
EXPLANATORY VECTOR 

How may the porosity of coxite depend upon the composition? This is the 
final question 6 of  Section 4 to be answered. If  we regard porosity as the response 
to the mixture of geochemical components then we have a problem identical in 
form to what is traditionally classified under the heading of experiments with 
mixtures, as for example, in Becker (1968, 1978), Cox (1971), and Cornell 
(1981). Here we do not follow any of the traditional models but adopt a recent 
approach more consistent with the concepts of compositions advocated here, 
a method that allows easy testing of hypotheses of inactivity of some compo- 
nents and also certain forms of additivity. For a full discussion of these concepts 
and some applications see Aitchison and Bacon-Shone (1984). We here describe 
only briefly the approach that might be considered and illustrate it for coxite 
porosity. 

Suppose that we adopt the usual least-squares model associated with mix- 
tures but with the expected response ~(x) of quadratic logcontrast form in the 
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composition ( x l  , . . . , Xd+ 1 ) 

with 

d + l  d d + l  

r~(x) =t30 + Z ( 3 i l ° g x i +  ~ ~ ~3il( l ° g x i -  l°gx/) ~ 
i=1 i=1 ] = 2  

(47) 

t31 +" "" +/3ct+l = 0 (48) 

and, thus, involving l ( d  + 1) (d + 2) unconstrained parameters. 
Then two hypotheses of interest with respect to the partition (x l , . . . ,  Xc[ 

x t+  1, • • • ,  Xct+ 1 ) may be the following 

(i) Inac t i v i t y  o f  (xl . . . .  ,Xc): rT(x) does not depend on ( x l , . . .  , x t ) .  This 
is expressible as the parametric hypothesis H~ 

Bi = 0 (i = 1 . . . . .  C) [3q = 0 (i = 1 . . . . .  C ; / >  i)  (49) 

placing 1 c ( 2 d  - c + 3) constraints on the parameters. 

(ii) A d d i t i v i t y  wi th  respect  to the  par t i t ion:  t l (x )  can be expressed as a 
sum of two separate functions, one in ( x l  . . . . .  x c )  and the other in 
C(xc+ 1, • • • ,  xa+ 1 ) or, equivalently for this symmetric expected response 
function, as Olle in C(Xl  . . . . .  Xc) and the other in (Xc+l , . . .  , x a + l ) .  

This corresponds to the parametric hypothesis H 2 

/30-=0 ( i=1 . . . . .  c ; ] = c + l , . . . , d + l )  (50) 

placing c ( d  + 1 - c) constraints on the parameters. 

Clearly inactivity H1 implies additivity//2, and so for the coxite porosity 
data and the partition (A, BI C, D, E) we illustrate the testing procedure by test- 
ing the simpler hypothesis H1 first and proceed to the more composite hypothe- 
sis H 2 o r l l y  if we reject H1. Here c = 2, d = 4, and the model M or (47) has 
parameter dimension 15, and hypotheses H1 and H2 have dimensions 6 and 9, 
respectively. Standard least-squares calculations give the following residual 
sums of squares 

R M = 13.2 R H ,  = 62.2 RH2 = 19.4 

Hence the usual F test of H1 within M compares test statistic value 4.1 against 
upper percentage points of F(6,10) and so rejects the inactivity hypothesis H1 
at the 5% level of significance. Subsequent testing of H2 within M compares 
0.78 against F(9,10) values and so we have to conclude that partition additivity 
is a tenable hypothesis. 

14. DISCUSSION 

There remain aspects of current research and open questions in composi- 
tional data analysis on which it is possible to comment only briefly. 
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Zeros 

When zero values in the components are persistent and cannot be ascribed 
to the recording of just a trace or to rounding oft, conditional modeling along 
the lines of Aitchison (1982, Sect. 7.4) is necessary. Where the zeros are of the 
rounding-off type, consideration of the rounding-off process indicates a reason- 
able procedure. Any recorded composition in the interior of the simplex repre- 
sents a whole polyhedron of compositions which round to the recorded com- 
position at the center of the polyhedron. When there are zero components the 
recorded composition lies on the boundary of the simplex and also on the 
boundary of the set of compositions it represents. It is then reasonable to re- 
place the recorded composition by a point interior to the set, say at the geo- 
metric center, in which process the zeros become positive. Robustness of the 
process can be investigated by varying the assumed maximum rounding error. 
See Aitchison (1982) for further possible approaches. 

Measurement Error 

Situations in which the observed composition X may differ from the true 
composition x may be readily investigated through the use of a perturbation 

error model 

X = x o  u = C ( x l u l  . . . .  ,Xd+lUd+l )  (51) 

a multiplicative form of error model which leads to tractable analysis (see Aitchi- 
son and Shen, 1984, for further details). 

Nonparametric Methods 

The parametric classes of transformed-normal distributions on S d may fail 
to provide an adequate description and so the question of how to handle com- 
positional data nonparametrically arises. For those nonparametric methods 
which depend on the idea of distance we suggest that the Euclidean squared 
distance E ( x i  - X i )  2 between two compositions may prove unsatisfactory be- 
cause of its association with covariance structure involving raw proportions. 
As an alternative 

d + l  d + l  

{log [xi/g(x)] - log [X i /g (X ) ] }  z or ~ (xi - X i )  log (x i /Xi )  
i=1  i=1  

(52) 

may prove more useful. For problems, such as discrimination where density 
function estimates are required, it is possible to devise suitable kernel methods 
using Dirichlet or logistic-normal kernels (see Aitchison and Lauder, 1984, for 
details). An alternative procedure adapting projection pursuit methods to the 
special features of the simplex sample space is currently being investigated. 
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Another View of Covariance Structure 

The logratio covariance structure E = [tyi] ] is completed determined by 
the ½ d ( d  + 1) logratio variances 

"Fij = ½ v a r ( l o g x i / x j )  (i=/=j = 1 , . . .  , d +  1) (53) 

through the relationships 

O i ] =  T i , d +  1 + 7"],d+ 1 - 7"i] (54) 

which can be expressed more compactly as 

Z = - B T B  T (55) 

where T=  [%j] is a ( d+  1 )×  (d+  1) matrix of  logratio variances with zero 
diagonal elements. There is some attraction toward discussing compositional 
covariance structure in terms of  T since it treats the components symmetrically 
and provides a measure of  the relative variation of  every pair of  components, 
with "ci/being identical to the measure of  total variability of  the subcomposition 
C(xi,  x j )  as discussed in Section 7. Another attractive feature is that complete 
subcompositional independence for this symmetrical form is equivalent to the 
expression of  the rij in additive form 

ri! = X i + X/ (i =/= ] ) (5 6) 

The Future of Compositional Data Analysis 

It must be clear to any reader that much remains to be done in developing 
and applying new and sound techniques for the analysis of  compositional data. 
I hope that with the dismissal of  crude forms of  analysis, with a fair appraisal of  
the new methodology, and the development of  even better concepts and tools we 
may make up for some-of t~he lost 80 years of  negle-ct-of Pearson's 1897 warning. 
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