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.

INTEGRATION OF THE STATIONARY PROBLEM FOR
A CLASSTCAL SPIN CHAIN

A. P. Veselov

A general solution is found to the stationary problem for an anisotropic
discrete Heisenberg chain with classical spins and also its natural
generalization — the discrete analog of the n-dimensional Neumann problem.
Explicit expressions are obtained for the solutions in terms of 8 functions,
and also expressions for the energy of these solutions. The integration

is based on the interpretation of the solutions in terms of a Bloch eigen-
function of a finite-gap difference Schrddinger operator.

Several recent physics studies have been devoted to discrete chains with classical
spins [1-3]. There are several reasons for the interest in such chains; in particular,
Pokrovskii and Khokhlachev {4] have shown that the problem of the wave functions of the
Hamiltonian in the Heisenberg model leads to the integration of such chains. Particular
solutions and integrals of the corresponding anisotropic chain with classical spins have
been found by Granovskii and Zhedanov [2,3], who have shown that the obtained system is a
natural discrete analog of the classical Neumann system [5].

In the present paper, we investigate the general solution of this problem and its
n-dimensional generalization in the framework of finite-gap theory of the difference
Schrddinger operator.

1. We consider a discrete chain at the sites of which there are variables S, (k€Z),
S:6R™*, |Sy|=1 with interaction energy

H=— Y (S ISn), (1)
ez
where J=diag(Ji,..., Jay:), and 0<J;<...<J,,.. For n = 2, we have the anisotropic Heisenberg
chain with classical spin [3]. The stationary states are found from the equation
S tSuo i =Ad '8y, (2)

which is obtained from (1) by variation with respect to S, subject to the constraint [S,|=1.
In contrast to the continuum case, the multiplier Xy is not determined uniquely by the
constraint condition; one can readily show that there are two possibilities: either
Ag = 0, or

Me=2(Ss—y, /1S, /|18, % (3)
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We shall consider only the second case, which corresponds to the correct continuum
limit [1,3,].

Thus, we consider the system of nonlinear difference equations (2), (3). We define
the function

VG 4y (IS A Sl

® (A, Sy, Spaa) = G 17— 2 IR “

where (zAy)ap=2y*—zby?, 1=, I,=J"".

PROPOSITION 1. By virtue of (2), (3) the equation ®(A, Si Spy)=®(A, Sy., S,;.) holds,
and, therefore, the functions F.(S,, SH4)=qesﬁﬂk=g do not depend on the number k and are
integrals of the system (2), (3). *

The form of the integrals

ISk A\ Sksr)as
— 2 - N
Fo= (S + B; T (5)

clearly resembles the integrals of the Neumann problem [5] and for n = 2 was obtained by
Granovskii and Zhedanov [3].

2. We show that there is a discrete analog of the Moser~Trubovits isomorphism [5,6],
which establishes a correspondence between the solutions of Egs. (2) and (3) and finite-
gap difference Schrédinger operators. In the simplest “soliton" case, this fact was
noted in [3]. We recall the necessary facts from the finite-gap theory of the difference
Schrédinger operator, which was begun in the work of Novikov, Tanaka, and Date and
developed by Krichever (see [7,8]). We shall be interested in the class of operators of
the form

(L) e=Cor1Prsa T CaPas, (6)

which was used by Manakov to integrate the difference Korteweg—de Vries equation and in
the framework of finite-gap theory was identified by Novikov [7]. In addition, we shall
consider only operators with odd number of spectral bands. Such operators have the
following algebraic—geometric description (see [8]).
2n
We consider a hyperelliptic curve T of the form y’=R(z), R(z%=II(zz—-@% and a non-
i=g
singular divisor D of degree 2n invariant with respect to involution of the curve t:
(y, z) » (~y, —z) (in the definition of t in the review [8] there is an error in the
sign). On T', we define functions Yy having at the points of the divisor D simple poles
and in the neighborhood of the infinitely distant points P4 the asymptotic behavior
Pm~an*'2*". Such functions are determined up to the sign. They are Bloch eigenfunctions
for the difference operator

(L) e=ChitPnsr T CaPr—1 =20, Cr=Ctpits™", (7
for which *z; are the ends of the bands of the spectrum.
The following relation holds:
U (P) (0 (P)) =Py (2)/P(z), (@)
where
09> (=32 PE=1l @ =) Pei)= II @ —ve )

and *ty; and *yi(k) are, respectively, the projections of the divisor of the poles D and
the divisors of the zeros of the function Yy onto the z plane. For reality of cj, it is
necessary to require, besides reality of zj, that ty; lie separately in finite forbidden
bands (where R(z) > 0). Using the freedom in the choice of the sign of yj, we can
assume that op and, hence, cp too, are positive.

Now suppose the polynomial R(z) has the form
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nt1

r@) =1l @—E3 1l -1, (9)

i=1

so that I, is a set of ends of bands such that between nearest ones there is just one gap
(forbidden band). We consider the sequence of vectors p, formed from normalized Bloch
functions at the ends of the bands,

pe=babella), bu=1/ PUo) 1] (12 —1. (10)

Beror
LEMMA. The sequence P, satisfies the equations
CrriPrpr T CPa=/""Ps, | Pa|=1. (11)
The proof of the lemma is completely analogous to the proof of the continuum case [6].
We consider a transformation of the unit sphere S=j(p): S=Jp/|[/p}.

TEEOREM. Let p. be a sequence of vectors formed from the normalized Bloch eigenfunc-
tions of the finite-gap operator (7), (9) at the ends of the bands (10). Then S,=j(p,) is
a general solution of the system (2), (3).

The proof uses the following directly verified identity:
[/pa|*=det J°P,(0). (12)
Substituting p.=j'(S;)=J"'S;|/p:] in (11), we obtain
Chrt|[IPnss [SurrtenlPass|Spmi=|Ips| 7S,

It follows from Eq. (7) for z = 0 and the identities (8) and (12) that cuyt|/Puri|=0a|IPact],
Whence Sk-}-i-{-sk—‘i:xh}'_ishy 7\.);#0- ’

The reciprocal correspondence is established by means of the relations

n-1

LS Pu(h) Q)
gf ey e TR (13)
Nt 10O 7o)_fl gy om— 1l 0— 1) (14)
a=1 M~ Ia? Q(}\‘) T(O) i=1 =1

Note that formulas (13) and (14) can be regarded as the discrete analog of Dubrovin's
equations for the zeros of the Bloch function. Another way of obtaining such relations
has been noted by Novikov [6].

3. To obtain explicit expressions for the solutioms, we can, for example, use the
review of [7]; however, the expressions given there refer to a general operator of
second order and are expressed in terms of a 6 function of the curve T of the kind 2n.
In our symmetric case, everything reduces to 6 functions of the kind n. Since such
formulas are known only for the case n = 1 [9], we give their explicit form in the general
case, using the relations of [10].

On T we choose a basis of cycles a;, b; (i=1,..., 2n) such that aj; hang above the gaps
and ©(a)=ain, 1(8:)=bi. (i=1,...,n). We determine the basis of holomorphic forms w; = f;i(z)

vy 'dz normalized by the conditions jsmjzzﬁﬁ, and the basis of t-invariant forms a=wT 0
ai
(i=1,..., n), and also the matrix BH:Cﬁaj (,j=1,...,n).
b
The matrix B is the Riemann matrix of the curve Ty, the factor of the curve I' with
respect to the action of t; from it, one can construct in the standard manner (see, for
example, [7]) the 6 function 6(u). Further, suppose

Q= (z"tpmz® >+, . +p.)y 'dz (15)

is an Abelian differential of the third kind normalized by the conditions &S!::O, U is

@3
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the vector of its b periods: Uﬁ::7éﬁgﬁ£2 (k=1,...,n),. and the mapping A(P) is determined
g

by the equation

P
apy={w (=1....n, P&l
Py

PROPOSITION 2. The Bloch function of the finite-gap operator and the general solution
corresponding to it of the stationary problem (2), (3) have the form

P
s . B8(A(P)+mU +§)
U (P) = %,y 0XP (m§ 9) AP (16)
. 0{ve](mU + )
St = bl g (17)

where P, is the largest point of the spectrum, B, is determined from the condition |S.|=1.
and v, are the characteristics corresponding to the semiperiods A(J.).

The integrals in the definition of A(P) and in the exponential are made consistent
by means of the natural path from P, to P;, and the constant x. is found from the relation

o 8mU+Do(m—2)U+ Q)
" 8(5)6(—2U+1) ’

which follows from the Riemann relation A(P.}=-—-2U. For completeness, we also give the
formula for the corresponding coefficients cy:

2 (=) U-LEo(m—2)U + ) g1
" 8(mU +8)8{(m —3)C +7§) ’

where B is determined from the condition

1

z

r
SQ:Inz—,’—lnﬁ-{—O(

Py

), P~P, z=z(P)

When some of the roots of the polynomial R(z) coincide, there is a degeneracy of the
6 functions, which corresponds to a decrease in the kind of the curve. Thus, the solutions
found in [2] and expressed in terms of elliptic functions correspond to E? = E2.

4. We consider the question of the energy of the obtained solutions:
N0

N
.1 I T
E—=lim — 3" (Sisi, Spi0s) = i ISer0)-
i=1

PROPOSITION 3. The energy of the solution (16) is
E=p,rdet J?,

where p,, is the coefficient in the formula for the differential @ (15), and r=(S,, J"'S,:)

is one of the integrals of the problem and it is related to the ends of the spectral bands
by the relation

n -1
=]l £ ] 102,
=1

i=]

The proof follows from the chain of equations

E="1,((8s, ISu11) F(8h IS:-1)) =1 2=|T"'S,| 2r=r|Ips|*=rP:(0) det J*=p.r det J?,

since Q=P,(z)y~'ds. The expression for the integral r is obtained by means of the relation
(14):

n+1

rt= ZfagFa:—O(O)/T(O)z [T &7 ﬁ Lo

=1 i=1 =1
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The coefficient u, is found from the system of linear equations for uj:

n .
Q=0& ) Kjyu;j+ Kig=0, K;j= f—%, i=1,...,n
i ; 'L]!’]+ Q 1) ‘é‘i]/ﬂ(z)
5. We end by discussing some open questions. The considered problem (2), (3) has all
the features of an integrable (even algebraically) system, i.e., it is an example of what
one may naturally call an integrable map. It would be interesting to understand the
mechanism of its integrability in the sense of a certain analog of Liouville's theorem.*
It would seem that hitherto only one example of such a system has been found — the
ellipsoidal billiard table. One can show that for it there is also a connection with a
certain class of difference operators, this making it possible to obtain formulas in
terms of 0 functions. Another open question is the correspondence between the obtained

solutions and the wave functions of the quantum Hamiltonian.
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*After this paper had been sent to press, I succeeded in clarifying this question and in
finding new integrable systems of such type.

450



