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INTEGRATION OF THE STATIONARY PROBLEM FOR 

A CLASSICAL SPIN CHAIN 

A. P. Veselov 

A general solution is found to the stationary problem for an anisotropic 
discrete Heisenberg chain with classical spins and also its natural 
generalization -- the discrete analog of the n-dimensional Neumann problem. 
Explicit expressions are obtained for the solutions in terms of 0 functions, 
and also expressions for the energy of these solutions. The integration 
is based on the interpretation of the solutions in terms of a Bloch eigen- 
function of a finite-gap difference SchrSdinger operator. 

Several recent physics studies have been devoted to discrete chains with classical 
spins [1-3]. There are several reasons for the interest in such chains; in particular, 
Pokrovskii and Khokhlachev [4] have shown that the problem of the wave functions of the 
Hamiltonian in the Heisenberg model leads to the integration of such chains. Particular 
solutions and integrals of the corresponding anisotropic chain with classical spins have 
been found by Granovskii and Zhedanov [2,3], who have shown that the obtained system is a 
natural discrete analog of the classical Neumann system [5]. 

In the present paper, we investigate the general solution of this problem and its 
n-dimensional generalization in the framework of finite-gap theory of the difference 
SchrSdinger operator. 

i. We consider a discrete chain at the sites of which there are variables Sh (k6Z), 
S~6~ n+i, ISkl=i with interaction energy 

H = - -  ~ (S~, ]S~.+O, ( 1 ) 
t:6Z 

where J=diag(J~,. . . ,  J~+~), and 0<J~<...<J,~+, For n = 2, we have the anisotropic Heisenberg 
chain with classical spin [3]. The stationary states are found from the equation 

Sk~,+Sh-~=~J-'Sh, (2) 

which is obtained from (i) by variation with respect to Sk subject to the constraint IShl=l. 
In contrast to the continuum case, the multiplier X k is not determined uniquely by the 
constraint condition; one can readily show that there are two possibilities: either 
X k = 0, or 

k~=2(S~_,, J-'Sa)/]]-'S~] ~. (3) 
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We shall consider only the second case, which corresponds to the correct continuum 
limit [l,B,]. 

Thus, we consider the system of nonlinear difference equations (2), (3). We define 
the function 

0 (~, S~, Str = + 2  (4 )  
- i 2  - -  s (I1~ 2 - -  s  2 -  ~,) , 

where (xfg)~=x~y~-x~g ~, I=J -~, I~=J~-'. 

PROPOSITION i. By virtue of (2), (3) the equation @(~, S~, S~+~)=@(~, S~+~, S~+~) holds, 

and, therefore, the functions F~(S~, S~+~)=res~l~=~ do not depend on the number k and are 
integrals of the system (2), (3). 

The form of the integrals 

(is~ A s/r ( 5 ) F~ = ,.(&D ~ + / ,  
~#= I ~  ~ - -  I ~  ~ 

clearly resembles the integrals of the Neumann problem [5] and for n = 2 was obtained by 
granovskii and Zhedanov [3]. 

2. 

which establishes a correspondence between the solutions of Eqs. (2) and (3) and finite- 
gap difference SchrSdinger operators. In the simplest "sol• case, this fact was 
noted in [3]. We recall the necessary facts from the finite-gap theory of the difference 
SchrSdinger operator, which was begun in the work of Novikov, Tanaka, and Date and 
developed by Krichever (see [7,8]). We shall be interested in the class of operators of 
the form 

which  was u s e d  by Manakov t o  i n t e g r a t e  t h e  d i f f e r e n c e  K o r t e w e g - d e  V r i e s  e q u a t i o n  and in  
t h e  f r a m e w o r k  o f  f i n i t e - g a p  t h e o r y  was i d e n t i f i e d  by Nov ikov  [ 7 ] .  I n  a d d i t i o n ,  we s h a l l  
c o n s i d e r  o n l y  o p e r a t o r s  w i t h  odd number  o f  s p e c t r a l  b a n d s .  Such o p e r a t o r s  h a v e  t h e  
f o l l o w i n g  a l g e b r a i c - g e o m e t r i c  d e s c r i p t i o n  ( s e e  [ 8 ] ) .  

2~ 
We c o n s i d e r  a h y p e r e l l i p t i c  c u r v e  F o f  t h e  f o r m  gs=B(z), R ( z ) = ~  (z ~ - z ~  ~) and a non -  

i=O 
s i n g u l a r  d i v i s o r  D o f  d e g r e e  2n i n v a r i a n t  w i t h  r e s p e c t  t o  i n v o l u t i o n  o f  t h e  c u r v e  x: 
( y ,  z)  + ( - - y ,  - - z )  ( i n  t h e  d e f i n i t i o n  o f  �9 in  t h e  r e v i e w  [8]  t h e r e  i s  an e r r o r  in  t h e  
s i g n ) .  On F, we d e f i n e  f u n c t i o n s  ~m h a v i n g  a t  t h e  p o i n t s  o f  t h e  d i v i s o r  D s i m p l e  p o l e s  
and in  t h e  n e i g h b o r h o o d  o f  t h e  i n f i n i t e l y  d i s t a n t  p o i n t s  P• t h e  a s y m p t o t i c  b e h a v i o r  
r177177 Such f u n c t i o n s  a r e  d e t e r m i n e d  up t o  t h e  s i g n .  They a r e  B loch  e i g e n f u n c t i o n s  
f o r  t h e  d i f f e r e n c e  o p e r a t o r  

(L~) k=C~+~+,+Ch~k-~=Z~k, Ch=a,~--~ah -~, ( 7 ) 

for which • i are the ends of the bands of the spectrum. 

The following relation holds: 

where 

We show that there is a discrete analog of the Moser-Trubovits isomorphism [5,6], 

r ~ (o (p)) =p~ (z)/p(z), 

: @, z) ~ ( -  y,  ~), p (z) = I f  (z~ - y~ ) ,  p ~  (z) = (z~ - ~ @)), 
i = l  i=1 

and • and •  a r e ,  r e s p e c t i v e l y ,  t h e  p r o j e c t i o n s  o f  t h e  d i v i s o r  o f  t h e  p o l e s  D and 
t h e  d i v i s o r s  o f  t h e  z e r o s  o f  t h e  f u n c t i o n  ~k o n t o  t h e  z p l a n e .  For  r e a l i t y  o f  Ck, i t  i s  
n e c e s s a r y  t o  r e q u i r e ,  b e s i d e s  r e a l i t y  o f  z i ,  t h a t  •  l i e  s e p a r a t e l y  in  f i n i t e  f o r b i d d e n  
bands  (where  R ( z )  > 0 ) .  Us ing  t h e  f r e e d o m  in  t h e  c h o i c e  o f  t h e  s i g n  o f  ~k,  we can  
assume t h a t  a k and ,  h e n c e ,  c k t o o ,  a r e  p o s i t i v e .  

Now s u p p o s e  t h e  p o l y n o m i a l  R ( z )  h a s  t h e  fo rm 

(8) 
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fi n+l n (z) = (~  - E ? )  ~I ( ~  - 471, ( 9 )  

so that I~ is a set of ends of bands such that between nearest ones there is just one gap 
(forbidden band). We consider the sequence of vectors p~ formed from normalized Bloch 
functions at the ends of the bands, 

p~:'~-~-b=~ (I~), b ~ -  F /  P (I~) / ~  (l~ -- ItfZ). (i0) 

LEMMA. The sequence p~ satisfies the equations 

The proof of the lemma is completely analogous to the proof of the continuum case [6]. 

We consider a transformation of the unit sphere S=](p): S=]p/IJpl. 

THEOREM. Let ph be a sequence of vectors formed from the normalized Bloch eigenfunc- 
tions of the finite-gap operator (7), (9) at the ends of the bands (i0). Then S~=](pk) is 
a general solution of the system (2), (3). 

The proof uses the following directly verified identity: 

[ Jpk 12- det J2Ph (0). ( 12 ) 

S u b s t i t u t i n g  ph=]-'(Sk)=J-~Sh]]pk[ in (11) ,  we ob ta in  

c,+, [ Jp~+, [ Sk+,+ekl Jp,-, I Sh-,= [ Jpk [ d-tSh. 

It follows from Eq. (7) for z = 0 and the identities (8) and (12) that Ck+~[dp~+~[=Ck[gph-~l, 
whence S~+I+S~-~-----L~]-IS~, Lkr 

The reciprocal correspondence is established by means of the relations 

n+l 
I~2(S~~ ~ P~(k) Q(O) (13) 
l~ -- I~ Q (E) P~ (0)'  

f l  n~-I n+s i~F ~ T(~) Q(0) T(~ , ) :  (~--E~2), Q(L)= I I  (~-1~2) .  (14) 
~=~ l~ -- I= z q (~) T (0) ' ,=~ o~=~ 

Note that formulas (13) and (14) can be regarded as the discrete analog of Dubrovin's 
equations for the zeros of the Bloch function. Another way of obtaining such relations 
has been noted by Novikov [6]. 

3. To obtain explicit expressions for the solutions, we can, for example, use the 
review of [7]; however, the expressions given there refer to a general operator of 
second order and are expressed in terms of a 0 function of the curve F of the kind 2n. 
In our symmetric case, everything reduces to 8 functions of the kind n. Since such 
formulas are known only for the case n = 1 [9], we give their explicit form in the general 
case, using the relations of [i0]. 

On F we choose a basis of cycles a~, b~ (i------i,..., 2n) such that a i hang above the gaps 
and T(ai)=ai+~, ~(b~)=b~+~ (i=1,...,n). We determine the basis of holomorphic forms mi = fi(z) 

y-ldz normalized by the conditions ~ ej------~ij, and the basis of ~-invariant forms ~=~+~,+~ 
ai 

(i=i ..... n), and also the matrix Bi~j (i,]---I ..... n). 
b i 

The matrix B is the Riemann matrix of the curve F0, the factor of the curve r with 
respect to the action of ~; from it, one can construct in the standard manner (see, for 
example, [7]) the O function 8(u). Further, suppose 

e= (z~+~,z2~-~+. �9 .+ ~) y-~dz (15) 

is an Abelian differential of the third kind normalized by the conditions ~ ~0, U is 
a~ 
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the vector of its b periods: Uk~--- 2~ T ~2 
b k 

by t h e  e q u a t i o n  

P 

A ( P / =  ! =i 
P +  

PROPOSITION 2. 

( k = l  . . . . .  n),, and the mapping A(P) is determined 

( i = 1  . . . . .  n), P ~ P .  

The Bloch function of the finite-gap operator and the general solution 
corresponding to it of the stationary problem (2), (3) have the form 

P 

,m(p)=•  f~) 0 ( A ( P ) + m U +  ~) (16)  
o (A (p) + ~) ' 

Po 

o [v~] (mU + ~) (17)  
Sm ~ = i 3 ~ b j ~  0 Ivy] (0 ' 

where P0 is the largest point of the spectrum, ~m is determined from the condition [Sm]=i,  
and v~ are the characteristics corresponding to the semiperiods A(I=). 

The integrals in the definition of A(P) and in the exponential are made consistent 
by means of the natural path from P0 to P+, and the constant ~ is found from the relation 

_~ 0 (mU + $) 0 ((m - -  2) U + .~) 
7,(i m = 

0 (~) 0 (--  2U + ~) 

which follows from the Riemann relation A(P-)=-2U. For completeness, we also give the 
formula for the corresponding coefficients Cm: 

0 ( ( m - - ! ) U §  ~_~, 
c~2-- o (,nu + ~) o ((m - 3) 0 + ~) 

where ~ is determined from the condition 

P 0  

When some of  t h e  r o o t s  o f  t h e  p o l y n o m i a l  R(z )  c o i n c i d e ,  t h e r e  i s  a d e g e n e r a c y  of  t h e  
O functions, which corresponds to a decrease in the kind of the curve. Thus, the solutions 
found in [2] and expressed in terms of elliptic functions correspond to E~ = E22. 

4. We consider the question of the energy of the obtained solutions: 

E = N-~olim -~- ~Y' (S:~+i, dS~+i+~) = (Sk. ]S~+~). 

PROPOSITION 3. The energy of the solution (16) is 

E=~ r  det J~, 

where ~n is the coefficient in the formula for the differential ~ (15), and r:=(S~, J-'S~+~) 
is one of the integrals of the problem and it is related to the ends of the spectral bands 
by the relation 

n n + l  

r 2 = I I  e-~ II  z~ ~ . 
i : l  C ~ = l  

The proof follows from the chain of equations 

I 2 2 E=~/2((Sk, JS~+~)+(Sk, JSk- ,))=/2%h=1]-  Sh[- r=r[Jphl2=rPk(O)det] = ~ r d e t  J 2, 

since ~=Ph(z)y-ldz. The expression for the integral r is obtained by means of the relation 
(14): 

,§ fl ~+~ r2 = E I~ZF~ = -- Q (0)/r (0) = E~ -3 Icr z. 
cr i=t o~=l 
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The coefficient ~n is found from the system of linear equations for ~i: 

~ ~ -  0 ~ K i j ~ j  -~- K i o  ~ O, K i j  ~ -  i ~ t . . . . .  n .  

a i j : l  a i V -'R~(Z) 

5. We end by d i s c u s s i n g  some open q u e s t i o n s .  The c o n s i d e r e d  p r o b l e m  ( 2 ) ,  (3 )  h a s  a l l  
t h e  f e a t u r e s  o f  an i n t e g r a b l e  ( e v e n  a l g e b r a i c a l l y )  s y s t e m ,  i . e . ,  i t  i s  an example  of  what  
one may n a t u r a l l y  c a l l  an  i n t e g r a b l e  map. I t  would be i n t e r e s t i n g  t o  u n d e r s t a n d  t h e  
mechanism of its integrability in the sense of a certain analog of Liouville's theorem.* 
It would seem that hitherto only one example of such a system has been found -- the 
ellipsoidal billiard table. One can show that for it there is also a connection with a 
certain class of difference operators, this making it possible to obtain formulas in 
terms of 8 functions. Another open question is the correspondence between the obtained 
solutions and the wave functions of the quantum Hamiltonian. 
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