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Models a r e  cons ide red  in which a p a r t i c l e  moves  in the f ie ld of two moving z e r o - r a n g e  
poten t ia l s  (ZRP). Exac t  wave functions of the t h r e e - d i m e n s i o n a l  p r o b l e m  a re  cons t ruc ted  
for  a spec ia l  choice of the ZRP t r a j e c t o r i e s .  F o r  a one-d imens iona l  model with two 
un i formly  moving ZRPs ,  s t r ipp ing  and r e a r r a n g e m e n t  a r e  inves t iga ted .  Osci l la t ions  of 
a new type in the r e a r r a n g e m e n t  p robab i l i t y  a r e  cons ide red .  In the adiabat ic  approximat ion ,  
a gene ra l  e x p r e s s i o n  i s  obtained fo r  these  osc i l l a t ions .  The r e s u l t s  of numer i ca l  ca lcula t ion  
a r e  compared  with the r e s u l t s  of the adiabat ic  approximat ion .  

1. I n t r o d u c t i o n  

Exac t ly  solvable  models  p lay  an impor tan t  ro le  in the theory  of a tomic co l l i s ions .  The s imp le s t  
and most  s tudied models  use the method of z e r o - r a n g e  po ten t ia l s  [1]. Allowance for  the motion of the 
nuclei  c l a s s i c a l l y  l eads  to p r o b l e m s  of the theory  of a tomic  co l l i s ions  with a nons ta t ionary  Schrhdinger  
equation for  the e l ec t ron  wave function. In slow co l l i s ions  of a negative ion with a neutra l  atom, the ene rg ie s  
t r a n s f e r r e d  to an e l ec t ron  a r e  sma l l ,  and it is  t he re fo re  na tura l  to s imula te  the in te rac t ion  of a weakly 
bound e lec t ron  of an ion with the co re  of the ion and the neut ra l  a tom by means  of z e r o - r a n g e  poten t ia l s  
(ZRPs).  However,  even the use  of these  poten t ia l s  l eads  to s e r ious  d i f f icul t ies  when a t t empts  a re  made to 
take into account the motion of the nuclei  (moving ZRPs) .  Usually,  the comple te  nons ta t ionar i ty  of a r ea l  
p r o b l e m  is reduced to t ime-dependen t  p a r a m e t e r s  c h a r a c t e r i z i n g  the depth of a ZRP, and the pos i t ions  of 
the ZRPs  a r e  left  fixed [1]. In this  way, the motion of the nuclei  is  taken into account ind i rec t ly .  Such an 
approach  is  equivalent  in a c e r t a i n  sense  to the adiabat ic  approximat ion  s ince it does not p e r m i t  one, for  
example ,  to take into account the effect  of momentum t r a n s f e r ,  which is a s soc i a t ed  with a Gali leo t r a n s -  
format ion .  

It would s e e m  that the f i r s t  model  that r e a l i s t i c a l l y  took into account the motion of nuclei  and 
admi t ted  exact  solution was the one -d imens iona l  model with two uni formly  moving ZRPs cons ide red  in the 
s e r i e s  of p a p e r s  [2]. An exact  wave function was cons t ruc ted  there  as  a s e r i e s  in the mul t ip l ic i ty  of 
s ca t t e r i ng  of the p a r t i c l e  on the ZRP.  F o r  the same p r o b l e m  in [3], the wave function was r e p r e s e n t e d  in 
in teg ra l  fo rm.  In [2], the d i s tance  R 0 of n e a r e s t  approach  of the ZRPs was in t roduced and al l  p r o c e s s e s  
ca lcu la ted  in the approximat ion  of l a r g e  R 0. Of course ,  this  p rec luded  d i scuss ion  of the in te res t ing  effects  
cons ide r ed  he re .  In [3], no concre te  ca lcu la t ions  were  made.  

In th is  paper ,  we use a method that  enables  us to solve not only the one-  but a l so  the t h r e e -  
d imens iona l  p r o b l e m  of the behav ior  of a p a r t i c l e  in the f ield of two moving ZRPs .  The main idea of this  
method is  to go over  f rom a Hamil tonian with moving c e n t e r s  by means  of a change of v a r i a b l e s  to a 
Hamil tonian in which the cen t e r s  a r e  at  r e s t .  F o r  a spec i a l l y  chosen t ra jec torY of the motion of the ZRPs,  
one can obtain in the new v a r i a b l e s  a Schrhdinger  equation analogous to the one cons ide red  in the D e m k o v -  
Osherov model [4], which is  solvable  by the method of contour  i n t eg ra l s .  

In the region of low ve loc i t i e s  of the ZRP motion, we make a compar i son  with the exact  r e su l t s  
for  the one-d imens iona l  model with the r e s u l t s  of the adiabat ic  approximat ion  (the one -d imens iona l i ty  of 
the Hamil tonian does not p lay  a role  in the adiabat ic  l imi t ) .  In Sec. 3, we d i scuss  osc i l l a t ions  of a new 
type in the r e a r r a n g e m e n t  p robab i l i ty .  In the f r amework  of the adiabat ic  approximat ion  for  these o s c i l l a -  
t ions,  we obtain a gene ra l i za t ion  of Demkov ' s  r e s u l t s  [5]; it  l eads  to good ag reemen t  with the r e s u l t s  of 
exac t  numer ica l  ca lcu la t ion .  
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In Sec. 4, we cons t ruc t  the wave functions of the "continuous spect rum",  which a re  used to c a l -  
cu la te  the energy distribution of the outgoing par t ic les  in the one-dimensional  model. The distribution 
obtained has one interest ing feature.  When the veloci ty of the ionized par t ic les  is equal to the ZRP ve lo-  
city, the energy distribution vanishes exactly.  The physical  nature of this effect is c lear ,  Par t ic les  with 
this veloci ty remain the whole time next to the ZRPs,  which leads to their  resonance capture in a bound 
state. Such an effect cannot be so c lear ly  expressed  in the three-dimensional  case because the outgoing 
par t ic les  are  distributed over  angles. 

2.  T h r e e - D i m e n s i o n a l  M o d e l  

In this section, we const ruct  the exact wave flmction of a three-dimensional  problem with two 
identical ZRPs moving in the XY plane; we specify their  position by the vec tors  R( t )  and - R ( t ) .  
Naturally, this problem cannot be solved for  a rb i t r a ry  t r a jec to r ies  of the ZRPs.  Moreover ,  the v e r y  
existence of an exactly solvable three-dimensional  model with moving potentials is unique. The t r a j e c t o r y  
for  which one can solve the nonstat ionary Schrhdinger equation has the form of a spiral:  

R (t) r (t) =const, 

is the angle between the X axis and the vec tor  R( t )  and R( t )  and ~( t )  depend as follows on where ~( t )  
the t ime: 

R(t) =--vt/2, (9 (t) =plvt, (1) 

is the impact pa ramete r ,  and v is the relative velocity of the ZRPs as t -~ _oo. The case p = 0 where p 
leads to the problem Of a head-on coll ision of two ZRPs moving with constant velocity.  It is e a s y  to show 
that the t r a j ec to ry  (1) is obtained for par t ic les  a t t racted in a dipole manner when the square of the angular 
momentum is equal to the dipole moment.  Of course ,  g rea t  in.retest at taches to the model in which the 
ZRPs move in opposite direct ions along paral lel  s t raight  l ines.  However, the approach used here leads 
in this case. to a fianctional equation of the fo rm f ( x  + 1 ) + f ( x  - 1 ) = F ( x ) f ( x ) ,  which cannot be 
solved analytically for  the function f ( x ) .  

The wave function �9 (r ,  t) of a par t ic le  in the field of the ZRPs satisfies the free Schrhdinger 
equation (m = h = 1) 

0 
- ' / : A , ~  =~.-o7 ~ (2) 

and boundary conditions at the points corresponding to the positions of the ZRPs [1]. We replace the 
spherical  coordinates  r, ~, ~c, and the t ime t by new var iables  r ' ,  ~', ~ ,  T: 

r'=r/R(t), ~'-=~,, 0/=c~--r (t), ~=--4Iv2t. (3) 

We represent  the wave hmction in the fo rm 

r ~0 I , 

The factor t-3/2 guarantees  conservat ion of the normal izat ion X ( r ' ,  7 ) in the new var iables ,  and the 
exponential factor  is due to allowance for the effect of momentum t ransfer  (see Sec. 5). Substituting into 
Eq. (2) the wave function in the fo rm (4) and going over  to new var iables ,  we obtain, using (I), the equation 

0 . , .pu a 

which is identical to the SchrSdinger equation for  a part icle in constant magnetic field with diamagnetic 
t e r m  ignored. The position of the ZRPs in the new variables ,  r~ and - r ~  (lr~i = 1), does not depend 
on the time. It is convenient to include the ZRPs direct ly  in Eq. (5) and not t reat  them as a boundary 
condition. This can be done as follows: 

where 

0 0 
A,  Ir'-ro'l ,  Az [r'+ro'[, 

0 ]r'-r0" I 0 lr'+ro' [ 

is the opera tor  which is the Hermit iaa  conjugate of Ai �9 

]%>-----6 ~ (r'--roQ, ]%) =5 ~ (r'§ 

The pa rame te r  ~ > 0 charac te r i zes  the 

(6) 
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depth of the isolated ZRP in the original coordinate sys tem r, t and - ~2/2 is the energy of a bound state 
in it. Equation (6) is essent ia l ly  identical to the SchrSdinger equation in the Demkov-Osherov  model [4]�9 
Because the ZRPs are  identical, the par i ty  of the wave function is conserved and •  r )  can be sought 
in symmet r ic ,  x+(r  ' ,  r), or  an t i symmetr ic ,  x - ( r ' ,  r ) ,  f o r m .  With allowance for  this c i rcumstance ,  
following [4], we obtain 

�9 E 

(7) 

where G(E ) = (I~ 0 - E )-i  i s  the Green ' s  opera tor  and N ~ is a normalizat ion factor .  The Green 's  
~anction for the Hamiltonian H 0 is given, for  example, in [6]. 

The problem considered above has one ser ious shortcoming.  The ZRP t ra jec to ry  is also a 
spiral  when t ~ 0, R( t )  --+ 0. In this connection, it is natural to reformulate  the problem as follows: the 
ZRPs move along the t r a jec to ry  (1) until a cer ta in  time t o < 0, and for t > t o the motion is along the 
t r a j ec to ry  obtained by reflection in the XY plane of the original t r a jec to ry  about the straight  line passing 
through the origin and the point R(t0), i . e . ,  

I~(t ')=R(-t ') ,  O ' ( t ' )=-O' ( - t ' ) ,  

where t '  = t - t 0, O' = ~( t )  - O(t0). The Hamiltonian in the coordinate sys tem with X axis along the 
vec tor  R( t  0) then has the following s y m m e t r y  proper ty:  

R(x, y, z, t ' )=R(x,  --y, z, -- t ' ) .  (8) 

To calculate the transit ion probability,  we use the following standard device. We take two solutions of the 
nonstat ionary SchrSdinger equation, ,I,~(r, t ' )  and ~2(r, t ' ) ,  satisfying the conditions 

lim W~(r,t')=cp,(r,t'), lira W~(r,t')---r 

The matr ix  element 

w=<~F~t T2>= ~ ~F,* (r, t') W2(r, t')dar 

does not depend on the time, and }wl 2 [8] is the probabili ty of transit ion f rom the state ~ to ~he state q~ 
of the l imit  Hamiltonian. Because of the s y m m e t r y  of the Hamiltonian (8), the SchrSdinger equation is 
satisfied by the function %*(x, - y ,  z, - t ' )  as well as by ~t(r,  t ' ) .  This enables us to calculate the 
transi t ion probabil i ty using only wave functions for which the condition is posed as t '  -~ _o~. For  t '  = 0, 
the matr ix  element w can be written as  follows: 

w ~  ~ l  (x,-Y,z,O)~2(x,Y,z,O) d~r. 

The wave function ~[(r,  t ' )  goes over  into the function ~l(r ,  t ' )  as t '  -~ - ~ .  Since the motion of the 
ZRPs right up to t '  = 0 is descr ibed by formula (1), the matr ix  elements can be calculated by means of 
the wave functions of the problem solved above. Fo r  example, the rea r rangement  probabili ty P and the 
probabil i ty of occupation of the original state, Q, have the following form: 

Q=%lw.++w-[  ~, w +- = f  ~ ( x ,  p=%jw+-w-]  ~, ~ ~ 0~ ~ ~X~ ~ ~ 0~ d3~ 

The functions ~ are  related to the functions • by Eq. (4). 

3 .  O n e - D i m e n s i o n a l  M o d e l  

In the one-dimensional  case,  the nonstat ionary SchrSdinger equation [2, 3] 

. .  

" 2'~--x ~ 2 ]J  
~ z ~  ~ , z = i ~ / ~  (9) 

can be solved exactly. In cont ras t  to the three-dimensional  problem, we can here  consider  the nonreso-  
nance case  (c~ r fi). We shall not give the wave functions corresponding to a r b i t r a r y  time, since the 
wave functions for  only t = 0 a re  needed to calculate the transi t ion probabil i ty.  At t = 0, the function 
�9 (x, t) ,  which sat isf ies  the initial condition 
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can  be e x p r e s s e d  in t e r m s  of B e s s e l  funct ions :  
iF(x, " 7-- " "-- ' . . . .  

where  F ( z )  is  the g a m m a  function,  '" ~,=~ZlV, "12=~/v, ~,=(~--~,)/2.  The wave funct ion c o r r e s p o n d i n g  to a 
bound state  at  the o the r  c e n t e r  as  t ~ - ~  is obtained by rep lac ing  ~ by ~ and x by - x  in (10). The wave 
function (10) can  be obtained e i t he r  by the method  developed in Sec.  2 o r  by the methods  used  in [2, 3]. 

We shall  c o n s i d e r  in m o r e  detai l  the reg ion  of smal l  ve loc i t i e s  v s ince the t r a n s f e r r e d  e n e r g i e s  
a r e  l a rge  in the c a s e  of l a rge  v and the method  of z e r o - r a n g e  potent ia l s  b e c o m e s  inappl icable  [7]. The 
b e h a v i o r  of the s y s t e m  in this  reg ion  is d e s c r i b e d  by the adiabat ic  approx ima t ion .  If fl > ~ > 0, the 
p r o b l e m  has  two t e r m s  E l ( t )  and E2( t )  ( ins tantaneous  e n e r g y  l eve l s  of the Hamfltonian) ,  which a r e  
found as  r o o t s  of the equat ion 

(Y-2E~ (t) --o:) (~'--2E~(t) --~) =zr exp [ - v [ t [ [ - 2 E , ( t )  ]. 

When the c e n t e r s  a r e  taken inf ini te ly  f a r  apa r t ,  E l ( t )  -+ -c~2/2,  and E2( t )  -~ -~82/2. As the Z R P s  
approach ,  the t e r m  E 2 (t)  goes  downward  and the re  a r e  few t r ans i t i ons  f r o m  it. The t e r m  E ~( t ) - t ouches  
the edge of the con t inuum at  the t ime t = - t  o = (a  + fi)/ceflv and then goes  onto the unphys ica l  sheet  of 
the ene rgy .  F o r  t > to, the bound state  c o r r e s p o n d i n g  to the t e r m  E ( t )  again a p p e a r s  and it is  popula ted  
th rough  the cap tu re  of ionized p a r t i c l e s .  The ampl i tude  f o r  the p robab i l i ty  of cap tu re  of outgoing p a r t i c l e s  
f o r  this  s i tuat ion was ca lcu la ted  in the adiabat ic  app rox ima t ion  by Demkov in [8]: 

A = - ~ ( 4 t 0 ~ t  2)-'ae~=/L M = I d , ~ -  t!-2E~(t) ! ,=~ (II~ 

In the r e s o n a n c e  ca se ,  ( a  = fi), the p a r i t y  of the wave function is c o n s e r v e d  and the t e r m s  E~(t~ and 
E ~(t) c o r r e s p o n d  to s y m m e t r i c  and a n t i s y m m e t r i c  s ta tes ,  r e s p e c t i v e l y .  F i g u r e  1 shows the r e s u l t s  of 
a n u m e r i c a l  ca lcu la t ion  on a BESM-3M c o m p u t e r  f o r  a = fi = 1. Here .  W u is  the p robab i l i ty  of o c c u p a -  
t ion of the a n t i s y m m e t r i c  s ta te .  The dashed cu rve  is the p robab i l i ty  of occupat ion of this  s tate  due ~o 
r epea t ed  cap tu re  ca l cu la t ed  in a c c o r d a n c e  with Eq .  (11). The d i s c r e p a n c y  between the adiabat ic  a p p r o x i -  
mat ion  and the exac t  ca lcu la t ion  is h e r e  g r e a t e r  than noted in [9]. This  is due to the fact that  the mot ion 
of the Z R P s  was  not taken into account  in [8, 9]. T r a n s i t i o n s  f r o m  the t e r m  E2t t )  a re ,  as  we noted above,  
few, and the p robab i l i ty  of occupat ion  of the s y m m e t r i c  s ta te  Wg is n e a r  uni ty.  In the reg ion  of l a rge  
ve loc i t i e s ,  the inf luence of the Z R P s  on each  o the r  is  smal l ,  and in the l imi t  v --) ~o the s ca t t e r i ng  
b e c o m e s  pu re ly  e l a s t i c .  The osc i l l a t ions  in the r e a r r a n g e m e n t  p robabi l i ty ,  which a r e  given for  the non-  
r e s o n a n c e  c a s e  f l r  c~ = 1 in F i g . 2 ,  and fo r  the r e s o n a n c e  c a s e  in F ig .  1, a r e  due to i n t e r f e r e n c e  between 
the t e r m s  E~(t)  and E2 ( t ) .  A d i f fe rence  f r o m  the p r e v i o u s l y  c o n s i d e r e d  si tuat ion [5] is that  the s tate  
c o r r e s p o n d i n g  to the t e r m  E~(t)  decays  when Ill  < t 0. This  l eads  to damping  of the osc i l l a t ions  as  v -~ 0. 
In [5], Demkov obtained the fol lowing r e s u l t  fo r  the p robab i l i ty  of r e a r r a n g e m e n t  at a smal l  d e p a r t u r e  
f r o m  r e s o n a n c e :  

I 

p 

Q5 

q 2 ~ 6 ~/u 

F i g .  1 

P 

o 

\ 

~=I.1 

2 4 6 W 

Fig. 2 
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T T 

- - T  - - T  

and this  can  be r e a d i l y  g e n e r a l i z e d  to our  c a s e .  Al lowance for  the decay  of the upper  t e r m  leads  to 
T 

mult ip l ica t ion  of [ ~ exp -g [ E~(t)dt] by A, the p robab i l i ty  ampl i tude  of  r epea ted  cap tu re ,  and a f t e r  this 

obtain fo r  the r e a r r a n g e m e n t  p robab i l i ty  

Pad=V'sech2(x2u72]~A }t~t+lAl~§176 i (E'-E~)dt)+5-5-~-:]}" 

w e  

(12) 

In t h e ' r e g i o n  Itl < t 0, it is  n e c e s s a r y  to se t  E l ( t )  in Eq.  (12) equal to z e r o  s ince  the occupat ion of the 
s tate  f o r  t - t o is  due to the l o w - e n e r g y  p a r t  of the s p e c t r u m  of emi t t ed  p a r t i c l e s  [8]. In [5], it was  
sugges ted  that  J should be taken equal to the s m a l l e r  ionizat ion potent ia l  (i. e . ,  J = c~2/2), but because  
of  the f o r m  of the wave function (10) ( F(~ + iT) leads  to the f a c t o r  sech~(nh/2v~2-f)) it can  be seen that  
~/~-3-- = (~ + fi)/2 or  ~ = ( 2~r~1 + 24~2)/2 , where  J1 and J2 a r e  the ionizat ion potent ia ls  of the f i r s t  
and the second c e n t e r .  The phys ica l  i n t e rp r e t a t i on  of Eq .  (12) is s imple :  f i r s t ,  as  long as  the in te rac t ion  
between the c e n t e r s  is smal l ,  the s y s t e m  fol lows a tomic  s t a t es  until the d i s tance  between the Z R P s  is 
R ( T ) : ~ 2 - ( - T ~  - 4 - 2 ] ~ i ( T )  = v. When R < R ( T ) ,  the d is tance  between the t e r m s  b e c o m e s  l a rge ,  
t he re  a r e  no t r an s i t i ons  between them,  and the mot ion of the s y s t e m  takes  p lace  in a c c o r d a n c e  with the 
adiabat ic  t e r m s  E l ( t )  and E 2( t ) .  In F ig .  2, the dashed  cu rve  shows the r e a r r a n g e m e n t  p robab i l i ty  c a l -  
cu la ted  in a c c o r d a n c e  with Eq.  (12) f o r  a = 1 and fl = 1 .1 .  It is  i n t e r e s t i ng  to note that  a l though the 
a n t i s y m m e t r i c  s ta te  decays  a l m o s t  c o m p l e t e l y  (see Fig .  1) at  smal l  v, the ampl i tude  of the osc i l l a t ions  in 
the r e a r r a n g e m e n t  p robab i l i ty  r e m a i n s  f a i r ly  s igni f icant .  This  is because  the ampl i tude  of the osc i l l a t ions  
in the r e a r r a n g e m e n t  p robab i l i ty  is d e t e r m i n e d  by  the p robab i l i ty  ampl i tude  fo r  cap ture ,  A ~ ,{-v, whe reas  
the p robab i l i ty  of cap tu re  is  I AI 2 ~ v.  In the r e s o n a n c e  ca se ,  sech ~ (nh/2vu and, s ince  the an t i -  
s y m m e t r i c  s ta te  d e c a y s  comple te ly ,  P -4 �88 as  v ~ 0. 

4 .  E n e r g y  D i s t r i b u t i o n  o f  O u t g o i n g  P a r t i c l e s  

The e n e r g y  d is t r ibu t ion  of the outgoing pa r t i c l e  is obtained by sub t rac t ing  f r o m  the wave function 
�9 (x, t)  a s  t ~ o~ the p a r t  c o r r e s p o n d i n g  to bound s ta tes  at  the f i r s t  and the second c e n t e r  and p ro jec t ing  
the r ema in ing  p a r t  of the wave funct ion ~0(x, t), which d e s c r i b e s  the packe t  of ionized p a r t i c l e s ,  onto the 
funct ions  

% (k, x, t) = ~ exp { ikx-i - -  t ~. 

Since it is  convenient  to ca lcu la te  the m a t r i x  e l e m e n t s  f o r  t = 0, we in t roduce  the funct ions ~v(k, x, t) 
that  sa t i s fy  the Schr5d inge r  equat ion (9) and go o v e r  as  t -~ ~ into the funct ions ~v0(k, x, t ) ,  Then the 
m a t r i x  e l emen t  < ~] ~0 > does  not depend on the t ime and is the ampl i tude  of the e n e r g y  d is t r ibut ion .  

We c o n s t r u c t  the funct ions  ~0(k, x, t)  f o r  the r e sonance  c a s e .  Here ,  because  of conse rva t i on  of 
pa r i ty ,  it is  m o r e  convenien t  to ca lcu la te  the funct ions  ~v• x, t ) ,  which as  t ~ ~o go o v e r  into the 
funct ions  (p0~--='/2[q~0(k, x, t)• x, t)].  

We shal l  seek  the funct ions  ~v + in the f o r m  

~0•162247 • 

with initial condition @• --> 0 as t --~ oo We introduce new variables } = - x / v t  and T = --Z/v2t, and for 

the functions ~o • we use the representation (see Sec. 2) 

r177 exp [ i ~ t  ] %• (~, ~). 

The SchrSd inge r  equat ion (9) then takes  the f o r m  

t 0 ~ a • ] (18) 

The function 

%•177247 i -{exp[i I~§ '~-k/v'2 
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with 
�9 : i x  ~- § q==t, exp [---~-  ] f~• = ~ a• (• [ ei~,~- *';'-i• ]e-~:~/~ d• 

sa t i s f i e s  Eq .  (13) e v e r y w h e r e  except  at  the points  ~ = i-~z ~ . The p r e s e n c e  of the Z R P s  at the points  ~ = +2 
r e d u c e s  to boundary  condi t ions ,  f r o m  which the funct ions  a+(~)  a r e  de t e rmined .  In tegra t ing  Eq .  (13) o v e r  
a sma l l  ne ighborhood  of  the point  ~ = ~, we obtain 

"4"ca 4"ca l ~ 

~•177215215 ~ {a•215177 l . e - ' ~ " -  dz. (14) 
J 

Here ,  we have used  the equat ion 

1/2ni~-'l~exp ri[ Ik/v• +** _ ~ = exp -~--'c+i• .] j -  L l 
In teg ra t ion  o v e r  a smal l  ne ighborhood  of the point  ~ = --21- leads  to the s a m e  equat ion.  Af te r  in tegra t ion  
by  p a r t s  on the r i gh t -hand  side of Eq .  (14) and a F o u r i e r  t r a n s f o r m a t i o n ,  we obtain a f i r s t - o r d e r  d i f f e r e n -  
tial equat ion,  f r o m  which the funct ions  a+(~)  can be r ead i ly  obtained.  

We give the funct ion ~0+(k, x, 0) ,  which is r e q u i r e d  to ca lcu la te  the e n e r g y  d is t r ibu t ion :  

l r162 
q~ (k, x, 0) = ~ T e'~X• - ' i~-  --(ei~/2+e-~=rz) >( 

2u t v 

Ivxl 

exP[ i~( iv 'x l •  l }  ~ (e"~• exp[- - i~  -(iy• ]dtt, 
0 

where  a = l k  - v/21/v, b = Ik + v/2l /v.  S imi la r ly ,  one could obtain the funct ions  ~v• r ,  t)  of the 
t h r e e - d i m e n s i o n a l  p r o b l e m .  F o r  a head -on  co l l i s ion  of the Z R P s  (p = 0) the funct ions r  r ,  0) have 
the f o r m  

~- ( k ,  r, O) 1 i - ~r y 2 (2"n, ~'~ {e'r•177177176 . dx}dy},  

where  a=lk--v/2l/v , b=]k+v/21/v , S~-=(ivr• 

uW 

g 1 2 3 E/~ 

Fig .  3 

of the outgoing p a r t i c l e s  W f o r  v = 1, 
the d i s t r ibu t ion  f o r  v = 0 .2 .  

In F ig .  3, we give the r e s u l t s  of n u m e r i c a l  ca lcu la t ion  fo r  
the e n e r g y  d i s t r ibu t ion  in the one -d imens iona l  model  with ~ = /3 = 1. 
It is  i n t e re s t ing  to note that  at  e n e r g y  E = v2/8 of  the ionized 
p a r t i c l e s  the d i s t r ibu t ion  v a n i s h e s  exac t ly .  This  r e s u l t  is  expla ined 
by the fac t  that  at  this e n e r g y  the ve loc i ty  of  the p a r t i c l e s  is equal 
to the ve loc i t y  of  the Z R P s  and because  of the infinite in t e rac t ion  
t ime between the p a r t i c l e s  and the Z R P s  the re  is r e s o n a n c e  cap tu re  
into a bound s ta te .  The dashed  c u r v e  shows the e n e r g y  d i s t r ibu t ion  
ca l cu la t ed  in the adiabat ic  app rox ima t ion  [8] f o r  v = 0 ,2 .  The 
d i f fe rence  between the adiabat ic  app rox ima t ion  and the exac t  c a l c u l a -  
t ion at low e n e r g i e s  i s  due to the ef fec t  of r e s o n a n c e  c a p t u r e :  The 
d i f fe rence  in the behav io r  fo r  l a rge  e n e r g i e s  is expla ined by the 
fact  that  in [8] Demkov c o n s i d e r e d  a p r o b l e m  in which  the t e r m s  go 
to infinity a s  t ~ ~ .  In Fig .  3, we a t so  give the e n e r g y  d i s t r ibu t ion  

and in the chosen  sca le  this  has  a shape which d i f fe rs  l i t t le  f r o m  

�9 C o n c l u s i o n s  

The app roach  used  he re  enabIes  us  to d r a w  some  gene ra l  conc lus ions .  In [101, the p r o b l e m  of 
a l lowing f o r  m o m e n t u m  t r a n s f e r  in the adiabat ic  app rox ima t ion  was  cons ide red .  F o r  the s t a t es  ~ ,  and 
�9 g c o r r e s p o n d i n g  to the s y m m e t r i c  and a n t i s y m m e t r i c  t e r m s ,  it was sugges ted  that  m o m e n t u m  t r a n s f e r  
should be taken into account  a s  fol lows:  s ince  the s u m  ~1 and the d i f fe rence  ~ of the funct ions  ~u and 
�9 g go o v e r  in the r e s o n a n c e  c a s e  into the a tomic  wave f tmctions when the a t o m s  move  a p a r t  to infinity,  
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the adiabatic  wave functions ~u and %~ should be rep laced  by the functions ~F• ..... T2. On the 
o ther  hand, the approach  used in the p r e s en t  p a p e r  leads  in the new va r i ab l e s  to a p r o b l e m  in which the 
potent ia ls  a re  at  res t ,  and the re fo re  the momen tum t r a n s f e r  effect  is  absent .  On the t rans i t ion to the new 
va r i ab le s ,  the fac tor  exp[ i r2v/2R( t ) ]  a r i s e s  in the wave function, and it is this which ensu re s  that we 
obtain the c o r r e c t  a tomic  wave functions in the case  of moving cen t e r s  with la rge  in t e rnuc lea r  d i s tances .  
Thus,  it is natural  to take into account the effect  of raomentum t r a n s f e r  fo r  the e lec t ron  htact ions ~i 
cor responding  to the t e r m  E i ( t )  by introducing this factor :  

tI~ =exp [ iPv /2Tl ( t) ] ~ .  

It should however  be noted that in this way one cannot take into account the pa r t  of the momentum t r a n s f e r  
effect  due to the rotat ion of the in t e rnuc lea r  axis .  

The th ree -d imens iona l  p r o b l e m  cons idered  in Sec. 2 can be used d i rec t ly  to calculate  r e a r r a n g e -  
ment  and s t r ipping p r o c e s s e s  in the col l is ion of a negat ive ion A-  with a neutral  a tom A. Apar t  f r o m  
these  p r o c e s s e s ,  the th ree -d imens iona l  model can be used to study ef fec ts  assoc ia ted  with orbit ing since 
the choice ~ ( t  0) = nv leads to the p r o b l e m  in which the cen te r s  revolve  around each other  n t imes .  So 
f a r  as  we know, the influence of such rotat ion on r e a r r a n g e m e n t  and s t r ipping has  not hi ther to been 
invest igated.  

I a m  v e r y  grateful  to Yu. N. Demkov, G. F. Drukarev ,  and V. N. Ostrovski i  for  d iscuss ing 
the re sults .  
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