
ROBERT ~OLDBLATT Parallel Action: 
Concurrent Dynamic 
Logic with Independent 
Modalities 

A b s t r a c t  Regular dynamic logic is extended by the program construct a Nil, meaning "e~ 
and/~ executed in parallel". In a semantics due to Peleg, each command a is interpreted as 
a set of pairs (s, T), with T being the set of states "reachable" from s by a single execution 
of or, possibly involving several processes acting in parallel. The modalities < a > and [ a ] 
are given the interpretations 

< a > A  is true at s iff there exists T with sR~T and A true throughout T, 

a n d  

[a]A is true at s iff for all T, if sR~T then A is true throughout T, 

which make < a > and [ a ] no longer interdefinable via negation, as they are in the regular 
case .  

We prove that the logic defined by this modelling is finitely axiomatisable and has the 
finite model property, hence is decidable. This requires the development a new theory of 
canonical models and filtrations for "teachability" relations. 

Introduction 

The system of concurren t  dynamic logic due to Peleg [3] extends regular 
dynamic logic by introducing the combina t ion  a N fl of commands a and 
/3, interpreted as "a  and fl executed in parallel". We envisage a and/~ as 
r ep re sen t ing  c o m p u t i n g  processes  act ing i nd ep en d en t l y  at the same time. 

For  example ,  we migh t  con templa t e  a c o m m a n d  of  the  f o r m  go to l and m, 

which  causes a p r o g r a m  to  execute  the  comman d s  label led b y  I and  m simul- 

t ane ous ly  a nd  in paral lel .  We might  also imagine  a and  fl as r ep resen t ing  
para l l e l  ac t ions  by  agents  o the r  t h a n  computers .  

Now in regu la r  d y n a m i c  logic, a p r o g r a m  a is i n t e rp r e t ed  as a r e l a t i on  

R~ on  a s t a t e - s e t  S, w i th  the  presence  of  the  pai r  (s, t)  in R~ signifying t h a t  
t he r e  is art execu t ion  of  the  p r o g r a m  tha t  s ta r t s  in s ta te  s and  t e r m i n a t e s  

in  s t a t e  t. Assoc ia ted  wi th  a are modal i t ies  [ a ]  and  < a >.  The  fo rmula  

[ a ] A  m e a n s  "a f te r  a ,  A" ,  i.e. "a f te r  every  t e rmina t ing  execu t ion  of  a ,  A is 

t r u e "  (a l lowing t h a t  a non -de t e rmin i s t i c  a m a y  be execu ted  in m o r e  t h a n  

one  way) .  < c~ > A  means  " a  enables A" ,  i.e. " the re  is an  execu t ion  of  a t h a t  
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terminates with A true". These meanings are formaiised in the satisfaction 
relation for a model  A4 on S by requiring that  

M ~ 8 < a > A  iff there e x i s t s t E S w i t h s R ~ t a n d M ] = t A ,  

and 
M ~ s [ a ] A  itf for a l l t � 9  sR~t implies M ~ t A .  

Then [ a ]A is equivalent to -,< a >~A, and < a > A to ~[ a ]-~A. 

Now in the context of concurrency, the result of an execution started in 
state s will not be be a single terminal state t, but  rather a set T of states 
representing the terminal situations of all the parallel processes involved. 
Thus the relation R~ is no longer a set of pairs (s, t) ,  but rather a set of 
pairs (s ,T) ,  w i t h s  E S a n d T  C S. So instead o f R ~  C S x  S, we have 
R~ C S x 2 s. 

To keep the two types of relation distinct, we will refer to a subset of 
S x S simply as a binary relation on S, and a subset of S • 2 s as a teachability 
relation on S. When sRaT, this signifies that  T is "reachable" from s by an 
execution of a. There may be many ways of executing a,  and hence many 
different state-sets T reachable from s by doing a. 

To retain the meaning of < a >A as "there is an execution of a that  
terminates with A true", we specify 

M ~ s < a > A  iff there e x i s t s T C _ S w i t h s R a T a n d T C M ( A ) ,  (i) 

where 
M ( A )  = {t �9 S :  M ~ A}. 

I f [ a ]  continues to be identified with -~< a >7,  as in Peleg [3], the condition 
for t ru th  of [a  ]A at s becomes 

8RaT implies T ~ J ~ ( A )  # O. 

Nerode and Wijesekera [2] suggest that  in this context a more appropriate 
modelling of "after every terminating execution of a, A is true",  would be 

A4 ~s  [a ]A iff sR~T implies T_C A4(A), (ii) 

making [ a ] and < a > no longer interdefinable via -~. 

The extension of the system P D L  of regular propositional dynamic logic 
having [a  ] and < a > interpreted according to (i) and (ii) has not been 
investigated in the literature to date. Here we will demonstrate  finite ax- 
iomatisability and decidability for this extension, by developing the theory 
of canonical models and filtrations for teachability relations. 
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Notice tha t  if a binary relation R~ is defined by 

sR~t iff t E U{T:sR~T} ,  

then  (ii) becomes 

M ~ 8 [ a ] A  iff sR~t implies A d ~ , A .  

This observation will allow us to relate much of the new theory of [ a ]  given 
by (ii) to our known analysis of the binary relation semantics for PDL, as 
presented for example in [1]. At the same time, a whole new analysis is 
needed for < a >. 

This paper  is wri t ten  in the general notat ion and framework of [1], to which 
it m a y  be an advantage if the reader had access. 

S y n t a x  a n d  S e m a n t i c s  

The formal language of Concurrent Propositional Dynamic Logic ( C P D L ) 
is as for PDL, with the addition of N and the independent t rea tment  of [ a ]  
and < a >. Given a countable set r of atomic formulae and a countable set 
II of  atomic programs, the syntax of CPDL is generated in Backus-Naur  
form as follows. 

Atomic formulae: 
Atomic programs: 
Formulae: 
Programs: 

p E r  
7rEII 
A E Fma(~,II)  
a E Prog(~,H) 

A : : = p l L I A  1 --+ A21<a>AI[a]A  

a ::---- 7rlOtl]Ot 2 ] a  1 U ot 2 lo l l  N o t  2 la*lA? 

In tended meanings of commartds are: 

a l ;  a2 do a l  and then a2 (composition), 
a l  U a2 do either a l  or a2 non-determinist ically (alternation), 
a l  n a2 do a l  and a2 concurrently (combination), 
c~* repeat  a some finite number (> 0) of times (iteration), 
A? test A: continue if A is true, otherwise "fail". 

The t ru th- func t iona l  connectives -~, A, V, and +-+ are defined in the s tandard  
way. We write T for ~_L, and skip for T?. 

A CPDL-model  is a structure 

= : E Prog( , n)}, V), 
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with R~ a reachability relation on S for each program a, i.e. R~ _C S • 2 s, 
and V a function from ~ to 2 s. The satisfaction relation ".4 is true (holds) 
at point s in model M ", denoted ~4 ~ ,  A, is defined inductively on the 
formation of A as follows. 

M b . p  
MV:,• 
.M (A1 A2) 
M b~ < a > A  

iff s E V(p) 
(i.e. not M ~ ,  •  

iff ,~A ~ ,  A1 implies M ~ ,  A: 
iff there exists T _C S with sRaT and T C_ M ( A )  
iff for all T C S, sR~T implies M ~ ,  A. 

A is true in model J~4, denoted A,t ~ A, if it is true at all points in Azl, i.e. 
if 

M ~ A for all s E S. 

Operations on Reachability Relations 

Let R and Q be teachability relations on a set S. 

Composition. The relation R .  Q _ S • 2 s is defined by 

s (R .  Q)T iff there exist U _C S with sRU, and a collection 
{T** : u E U} of subsets of T with uQT~ for all 
u E U, such that  T = U{T~ : u  E U}. 

Combination. 

R |  { ( s , T U W )  : s R T  and sQW}.  

Iteration. Let 
•  {(s,{s}) : s e S}, 

and define a sequence of teachability relations R (n) inductively by 

R (~ = Id  
R (r~+*) = I d U R . R  (n). 

Then put  
R(*) = U{R(") : n E w}. 

LEMMA 1. 
(1) Q c_ Q' implies R . Q c_ R . Q'. 
(2) ( R U R ' ) . Q = R . Q U R ' . Q .  
(3) R(n) C_ R(n+l). Hence the operation R (n) is monotonic in n: n <_ m 
implies R(~) C_ R(m). 



Parallel Act ion. . .  555 

Standard Models  

A C P D L - m o d e l  is standard if it satisfies 

R~;O = R~'Rt3; 
R=uo = R~UR~;  
Rant3 = Ra @ R[3; 

R(*). ROt* ~ Ot 

RA? = { ( s , { s } ) : M  ~s  A}. 

Thus in a standard model, Rsldp = Id. The standard-model condition on 
N ensures that  < a fl/3 >A gets the meaning "a and/3 can be executed in 
parallel so that on termination (in both computations) A is true". 

To understand the meaning of the new iteration operation R (*)" that 
interprets a*, consider the schema 

< a * > A  ~ AV < a > < a *  >A, (iii) 

which intuitively is true under the intended meaning of a* as "repeat a some 
finite number (>_ 0) of times". In the binary relation semantics for P D L ,  
where R~. is the ancestral (reflexive transitive closure) R* [1, w t ruth of 
this schema in standard models is a consequence of the fact that 

where 

R* -= id U R~ o R*, 

id = { ( s , , )  : ,  e S } .  

(Note also that in such standard models, id = Rskip, and A ~ < skip >A 
is true.) 

Now in fact to have (iii) come out true in a PDL-model ,  it would suffice 
to interpret a* by any binary relation Q satisfying 

Q = id U R~ o Q. (iv) 

The characteristic property of the ancestral R* is that it is the least solution 
of equation (iv), i.e. if (i) holds then R* C_ Q. Thus in a P D L - m o d e l  in 
which (iii) is true, we must have R* C R~.. But then by requiring R=* itself 
to be the least solution of (iv) we add the converse inclusion Ra* c_C_ R*, 
which is just what is necessary to verify the PDL-ax iom  

I n d :  [ a * ] ( A - - * [ ~ ] A ) - - . ( A - - , [ a * ] A ) .  

Now if we put 
F(Q,) = idU R~ o Q 
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for an arbitrary binary relation Q, then (iv) asserts that Q is a fixed point of 
the operator F,  i.e. F(Q) = Q. There is a general theory about fixed points 
of operators like F that is fundamental to the study of recursive definitions: 
putting F (~ = F(0), and F('~+1) = F(F(n)), then knowing only that F is 
monotonic, i.e. that 

Q c Q' implies F(Q) c F(Q') ,  

it can be shown that F must have a least fixed point, namely the relation 

U{F(~) :n ~ ~}. 

We applied this theory above in defining R(*), using the monotonic operator 

F(Q) = I d u  R . Q  

on reachability relations Q (cf. Lemma 1(1)). Thus R(*) is defined as the 
least solution of the equation 

Q = I d U R . Q ,  

and so R (*) in turn is the least reachability relation that interprets c~* to 
make schema (iii) come out true. 

Further insight into the nature of the relation R(*) is given in Theorem 
4(7) below. 

LEMMA 2. If programs a(n) are defined inductively by 

a(~ = skip 
c~('~+1) = skip U (a; a(~)), 

then the following hold in any standard model. 

(1) R~(o) = R(:  ) 

(2) A4 ~8 [a  (n) ]A iff sR(d~)T implies T C_ A4(A) 

iff sR(')t implies ~ ]=t A. 

(3) .hi ~8 < a (~) >A iff there exists T with sR(n)T and T C .hA(A). 

(4) ~ ~ [~* ]A iZfor all n > 0, ~4 ~ [~(")]g. 

(5) ~4 ~ < a* >A isyfo~ some n > O, A4 ~ < ~(~) > g .  
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R e d u c t i o n  to B i n a r y  Re la t ions  

For an arbi t rary teachability relation R, define the binary relation R by 

s-Rt iff t E U{T : sRT}  
iff for some T C_ S, sRT  and t E T. 

LEMMA 3. For any CPDL-mode1.1~4, standard or not, 

J~4 ~ ,  [a]A iff sR~t implies J~4 ~ t  A. 

We now investigate the properties of the relation R, and for this we need 
the binary relations R-~ and the ancestral R*, which can be specified using 
the binary relation composition o, where 

We have 

R, o R~ = {(s , t ) :  3~(sRlu ~ ~R2t)}. 

~o = id 

2 -~+~ = ~ o 2 " = 2 - " o 2  

~ *  = U { 2 "  :,~ E ".4. 

THEOREM 4. 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 

(3) 

For any reachability relations Ri, R, Q: 

UiezR~ = U ~ e I ~ .  
R C Q implies R c Q. 
R . Q C _ R o Q .  
If  l d  C_ Q, then R . Q = R o Q. 
R(n+l) = id U -R o R(n). 
R(") = ~o u . . .  u -~. 
R(*) = 2 * .  

P~OOF. (1) and (2) are straightforward, and left as exercises. 

Suppose tha t  s R .  Qt. Then s(R �9 Q)T for some T with t E T. From 
the definition of R �9 Q, it follows that  there exists U with sRU, and some 
u E U for which there is a T~ C_ T with uQT~ and t E T~. But then sRu 
and uQt, showing that  sR o Qt. 

(4) If Id  C Q, we want the converse of (3). Suppose then that  sR o Qt, 
so tha t  sRu  and uQt for some u. Then sRU for some U with u E U, and 
uQT~ for some T~, with t E T~. Let 

T = U { { " }  ' - '  # " ~ ~ }  u T,,. 
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Since Id  C_ Q, we have vQ{v} in general, so it follows (with Tv = {v} for 
v ~ u) tha t  s (R.  Q)T, and hence as t �9 T tha t  sR .  Qt. 

(5) Since Id  C_ R('~), R .  R(n) = -R o R(n) by (4). But  as I-d -~ id, (5) then  
follows f rom the definition of / / (n+l )  and (1). 

(6) By induct ion  on n. The case n = 0 asserts tha t  R(~ = ~0, which is 
just  the  t rue s ta tement  tha t  Id  = id. 

Assuming the result for n, then  f rom (5) and this induct ion  hypothesis  
we get 

R(n+l) = id U-R o (~~ .. .  u-R~) 

----- ~ U ~1 U . . -  U ~-n-I-1, 

which gives the result for n § 1. 

(7) F rom the definition of R(*), applying (1) and then  (5), we calculate 

R(*) = U,~eo~R('~) 

= U,~e~ R('0 
= u . . .  u 

= U~c~R 
= R* �9 

COROLLARY 5. In a standard model .~4, 

J~4 ~s  [ a* ]A iff s-~* t implies .h4 ~ t  A. 

PROOF. In a s tandard  model,  Theorem 4(7) implies R~, = R-=~ *, so the 
result  follows f rom Lemma  3. �9 

This  Corollary simplifies the de terminat ion  of t ru th -va lues  of formulae con- 
ta ining [a* ]. For instance, it makes it easy to show tha t  the PDL-axiom 
Ind  is t rue  in s tandard  CPLD-models.  

LEMMA 6. 

and 

If  A4 is standard, then 

~ - [ a * ] ( < a > A  ~ A) ~ [ a* ] (<a (n )  > A  ~ A), 

A4 ~ [ a * ] ( < a > A  ~ A) ~ ( < a * > A  ~ A). 

PROOF. The  first result is shown by induct ion  on n. The  second then  
follows by f rom the first and Lemma  2(5). The  details are left to  the  reader.  
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N o r m a l  L o g i c s  

A logic is defined to be any set A C_ Fma(ff~,II) such that 

�9 A includes all tautologies, and 

�9 A is closed under the rule of Detachment, i.e., 

if A, A ~ B E A then B E A. 

The members of A are referred to as theorems, and we usually write F-2t A 
to mean that A is a A-theorem (i.e. A E A), and VA A when A 6 A. 

A logic is normal if it contains all instances of the schema 

B - K :  [ a ] ( A ~ B ) ~ ( [ a ] A ~ [ a ] B ) ,  

and is closed under the rule of Necessitation, i.e., 

if F-A A, then ~-A [ c~ ]A. 

AXIOMS FOR C P D L  

the smallest normal logic in Fma(ff~, II) that contains the Let C P D L  be 
schemata 

B-Comp: 
B-Aft: 
B-Comb: 
B-Mi~: 
B-In& 
B-Test: 

D-K: 
D-C omp: 
D-Alt: 
D-Comb: 
D-Mi$: 
D-Ind: 
D-Test: 

B-D: 

[a;fl]A ~ [a][fl]A, 
[ a U fl ]A e+ [ a ]A A [ fl ]A, 
[a n f l ]A  ~ ( < a > T  ~ [fl]A)A ( < f l > T  ~ [a]A),  
[a*]A ~ A h [ a ] [ a * ] A ,  
[a* ](A ~ [a]A)--+ (A ~ [a* ]A), 
[A?]B ~ (A ~ B), 

[ a ] ( g  ~ B ) - ~  ( < a > A - - e  < a > B ) ,  
< a ; f l > A  ~ < a > < f l > A ,  
< a  Uf l>A ~ < a > A  V < f l>A,  
< a N f l > A  ~ < a > A h  < / 3 > A ,  
AV < a > < a * > A  ~ < a* >A, 
[ a * ] ( < a > d  --+ A ) ~  (<a*  >A ~ A), 
< A t > B  ~ (A A B), 

[a]_L V < a > T ,  

(The B- and D- prefixes stand for "Box" and "Diamond".) For the sake of 
legibility we will abbreviate ~OPDL A simply to F- A. 

It will be shown that this logic has the finite model property with respect 
to standard CPDL-models ,  i.e. any non-theorem of C P D L  is falsifiable in 
a finite model of this type. 
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LEMMA 7. 

(1)(Soundness) If  F A, then A is true in all standard CPDL-models.  
(2) F A ~ B impliesF [a ]A ~ [ a ]B .  
(3) F A ~ B implies F < a > A  ~ < a > B .  
(4) I- [c~]A V < a > T .  
(5) F [ a ] A ~ ( < a > B ~ < a > ( A A B ) ) .  

D e d u c i b i l i t y  a n d  C o n s i s t e n c y  

If r u {A} C Fma(&, If), then A is deducible from r ,  denoted r F A, if there 
exist B 0 , . . . ,  B,~-I E r such that  

F B0 ~ ( . . .  ~ (B, -1  ~ A ) . . . )  

(in the case n = 0, this means that  F A). We write r ~/A when A is not 
deducible from r .  

r is consistent if r ~/• 

MAXIMAL SETS 

A set r c Fma(@,II) is maximal if 

�9 r is consistent, and 

�9 for any A E Fma(&,II),  either A E r or ~A E r .  

Any maximal set r satisfies the following properties, which will be used 
extensively below without reference. 

�9 r F A implies A E r .  

�9 If A ~ r ,  then r u  {A) is not consistent. IIence i f r  c_ A and A is 
consistent, then r = A (whence the use of the adjective "maximal"). 

�9 For any formula A, exactly one of A and ~A belongs to r ,  i.e., 

 AEr iff A tr. 

�9 C P D L  C_ r. 

. • 1 6 2  
�9 (A - .  B) E r iff (A E r implies B E r ) .  

� 9  B E r .  

�9 A V B  E F i f f A  E F or B E r .  

�9 ( A ~ B)  E r iff (A E r iff B E r) .  

Every consistent set can be extended to a maximal set (Lindenbaum's 
Lemma).  From this it can be shown that  for any r c_ Fma(q~,II), 
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r I-" A iff  A belongs to every maximal set that includes r 

(cf. w of [1] for details). 

Now let S TM be the  set of all maximal  subsets of F m a ( ~ ,  H). For each formula 
A, let 

IIAII = {s E s ' ~ :  A E s}. 

For each s E S TM and p rogram a,  let 

s~ = { A : [ a ] A E s } ,  and 

IIs~,ll = It E s ~ :  s~ c t}.  

Thus  I1~11 = N{ I IAI I  : [ ~ ] A  E s}. 

THEOREM 8. 

(1) k A if/IIAII = S TM. 

(2) k A ~ B i f f  [IAIJ c_ IIBll. 

(3) IIA v BII -- llAII u IIBII. 

(4) IIA A BII = IIAII n IIBII. 
(5) lls~ll c IIAII imp l i e s [~ ]A  E s. 

(6) Iflls~ll n IIBII c IIAtl and < a > B  E s, then < a > A  E s. 

(7) I f  s , u  E S TM and s~ C_ u, then lluHI c IIs~;~ll, 

(s)  IIs~u~ll = IIs~ll u IIs~ll. 
(9) I f  < a > T , < f l > T  E s, then Ilso~;ll = I1~o~11 u IIsHI. 

PROOF. (1)-(4) follow from properties of maximal  sets, as above. 

(5) If  [ts~]l ___ IIAH, then  every maximal  extension of s~ contains A, and so 
sa k A. Hence 

I- B0 -~ ( . . .  ~ (B , -1  ~ A ) . . . )  

for some n,  and some formulae Bi with [ a ]Bi E s. Then  using Necessi tat ion 
(directly if n = 0) and axiom B-K,  

~- [ a ]B0  ~ (""--+ ([ot]Bn_i ---+ [ a ]A) - - - ) ,  

f rom which [a  ]A E s follows because s contains all theorems and is closed 
under  Detachment .  

(6) Let t E S have s~ C_ t. Then  if B E t, t E [Iso~l[ n IIBI[, so as [Iso~[I n IIBtl c_ 
IIAII, then A E t. Thus (B ~ A) E t. This ~hows that Ilso~ll _C liB ~ All, so 
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by (5), [ a ] ( B  --* A) E s. But  then  by axiom D-K,  (< a > B  --+ < a > A )  E s, 
giving the desired result tha t  if < a > B  E s then  < a > A  E s. 

(7) Let Sa C u. Then  if t E [lu/~[[, we reason as follows. I f  A E sa;/~, t hen  
[a; f l ]A  E s, so [ a ] [ f l ]A  E s by axiom S -Comp ,  whence [f l]A E s~ C u, 
giving A E u/~ _C_ t. This shows sa;13 c.C_ t, i.e. t E [[sa;~[I. 

(8) Here we want to show tha t  

Sau~C_t iff s ~ _ C t o r s / 3 C _ t .  

The  implicat ion f rom right to left is straightforward,  wi th  the aid of B-Air. 
For the converse, suppose tha t  sa ~ t and s/~ ~ t. Then  there  mus t  be 
formulae A and B with [ a ] A , [ f l ] B  E s, but  A ~ t and B ~ t. Now 
[a]A  -+ [ a ] ( A  V B) is a theorem (cf. L e m m a  7(2)), so [ a ] ( A  V B) E s. 
Similarly, [f l](A V B) E s. Hence by S-Al t ,  [ a U f l ] ( A  V B)  E s. Since 
(A V B) ~ s, this shows tha t  S~u/~ ~ t. 

(9) If  < a > T, < fl > T E s, then  by axiom B-Comb,  

[ a n l ~ ] A E  s iff 

But  this allows us to prove tha t  

Sanf~ C t iff 

in the same manner  as for (8). 

[a]A E s and [f l]A E s. 

sa C_ t or s/~ C_ t, 

[] 

R e a c h a b i l i t y  f o r  M a x i m a l  S e t s  

Let s E S TM and T C S TM. For each p rogram a,  put  

s R ~ T  iff there e x i s t s B w i t h < a > B  E s a n d T = [ [ s ~ [ ] N [ ] B l ] .  

THEOREM 9. 

(1) < a > A  E s i f f  there exists T with s R a T  and T C_ [IA[[. 

(2) < a > T  E s implies sa,,lls~ll. 
(3) sR t iff _c t. 
(4) e i# R T implies T C_ IIAII- 

PROOF. 

(1) ff  < a > A  E s, then  defining T = IIs~ll n IIAII immedia te ly  gives s R ~ T  
and T _C. [[A[[. Conversely, if s R ~ T  C_ [IA[[, then  there exists B wi th  
< a > B  E s and T = I]sa[[MHBII. But  then  [[sa[[N[[BI] C [[A[[, so 
Theorem 8(6) gives < a > A  E s, as desired. 
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(2) F rom the definition of R~, since IIs~ll n IITII = IIs~ll. 

(3) If  sR~t ,  t hen  t E T for some T of the form 1ls~ll n []BII. But  then  
t E []s~l], i.e. s~ C_ t. 

Conversely, if s~ C_ t, then  since • ~ t, we get [a]_l_ ~ s, so by axiom 
B-D,  < a > T  e s. Hence by (2), sR~l]~l l .  Since t e I1~11, this gives 
s Rat  . 

(4) By Theorem 8(5) and the definition of s~, it follows tha t  to have 
[ a  ]A E s it is necessary and sufficient tha t  

s~ C_t implies A E t ,  

which is equivalent by (3) to 

sR~t  implies A E t, 

which in tu rn  holds if, and only if, 

s R ~ T  imphes T C_ NAIl. �9 

COROLLARY 10. I f  there exists some t with sRat ,  then < a > T  E s. 

PROOF. If  sR--~t, there must  be some T with sR~T .  Since T C_ ]IT[I, 
9(1) t hen  gives < a > T  E s. �9 

C a n o n i c a l  M o d e l  

The  canonical  model  for C P D L  is the s tructure 

M TM = (S TM, { R ~ : a  E Prog(~ , I I ) } ,V '~ ) ,  

where S TM is the set of all maximal  sets, R~ is as defined prior to Theorem 
9, and V'~(p) = {s e S ~  : p e s}. 

TRUTH LEMMA 11. For any A E F m a ( ~ , I I ) ,  

M ~ ( A )  = IIAII, 

i.e. for  all s E S TM, 
A4m ~ A iff  A E s. 

PROOF. By induct ion on the formation of A. The  case A = p E �9 holds 
by definit ion of V TM, and the t ru th - func t iona l  cases are taken care of by the 
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properties of maximal  sets listed earlier. The inductive cases A = < a > B  
and A = [ a ]B follow from 9(1) and 9(4) respectively. �9 

As with PDL, the canonical model A4 TM determines the logic CPDL,  but 
cannot be shown to be s tandard (cf. [1]). Some properties tha t  it does enjoy, 
and tha t  will be used in our completeness theorem, are collected in the next 
result. 

TItBOREM 12. The following hold in the canonical CPDL-model. 

(1) Tests are standard, i.e. sRA?T iff T = {s} and .~4 TM ~ A. 

( 2 ) / f  sRa;~T, then s(R~ . R~)W for some W C_ T. 

(3) / f  sR~u/3T, then s(R~ U R~)Wfor some W C_ T. 

(4) c | 

PROOF. 

(i) Noting that  .h4 TM ~ ,  A iff A �9 s, we have tha t  if  .h4 "~ ~-~ A, then 
B �9 s i f f ( A  ~ B) �9 s for any formula B, so by axiom B-Teat, 
[A? ]B �9 s iff B �9 s, showing that  SA? = s. Moreover, this in tu rn  

implies that  IlsA?tl = {s}, since s is maximal.  

Thus if sRA?T, then T = IIsA?JJ M IIBII for some B with < A ?  > B  �9 s. 
Hence from axiom D-Test, A ,B  �9 s, whence IlsA?ll = {s} as above, 
and {s} _C IIBII. Thus T = {s} N IIBII = {s}, with 2~4 TM ~ A as 
desired. 

Conversely, if .hi TM ha  A and T = {s}, then IlsA?ll = {s} and T = 
lisA?l[ N HAll. Hence SRA?T, since D-Test gives < A ?  > A  �9 s. 

(2) Let sRa;~T. Then T = Ilsa;~I] M IIAII for some A with < a; fl > A  e s. 
Then by D-Comp, < a > < f l > A  E s, s o  sRaU, where U = tlsail M 

II<fl>All. 

For each u C U, put T~ = Iiu~iIM I]AII, so that  uRzT~, since < f~ > A  e u. 
Also, as u �9 Iisail, i.e. s~ c_ u, Theorem 8(7) yields Iiu~ll c Iis~;~lI, 
showing that  Tu C_ T. Thus the desired result follows by put t ing 

w = U{T  : �9 v}.  

(3) If sR~u~T, then r = ]lS~u~ll N IIAII for some A with < a U f l > A  e s. 
Axiom D-Alt then implies that  one of < a > A  and < ~ > A  is in s. If, 
say, < a > A  e s, then sR~W, where W = Iis~l] M IIAI[. By Theorem 
8(8), IIs~ll C Iisau~II, so w c T. Similarly, if < / 3 > A  C s, we take 
W = IIs~IIMIIBI], and get s R z W  C_ T. In either case, s(R~UR~)W C T. 
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(4) If sR~n~T, then T = II*~n~ll n IIAll for some A with < a N fi >A  E 
s. Then by D-Comb, < a > A , < f l > A  �9 s, so sR~(]]s~ H Cl I]A]I) and 

, ~ ( l l s e l l  n IIAII). Hence s(R~ | Rg)U, where 

u = ( l l ~ t l  n IIAII) u (s~ n IIAII) = ( l l ~ l l  u Ilsell) n IIAII. 

But since sR~n~T C_ IITll, < a N f l > T  E s, so by D-Comb, < a > T  and 
< / ~ > T  belong to s, whence by 8(9) U = T. �9 

E x e c u t i o n  R e l a t i o n s  

If sRat, then  intuitively there is an execution of a from s that  produces a set 
T of terminal  states including t. We may  regard this execution as generating 
a tree of states, with T being the set of leaves of the tree. There will be a 
pa th  through this tree from s to t, comprising a sequence of executions of 
atomic programs and /o r  tests (cf. w of Peleg [4] for an indication of how 
to formalise this idea). 

If  fur ther  tR~u, then there will be a similar computat ion tree contain- 
ing a pa th  f rom t to u as a result of executing fl f rom t. We then have 
sR~ o R~u, but  we cannot conclude that  sR~.et without first showing tha t  
f i -computa t ion  trees can be at tached to every state in T, and not just  t. 
Nonetheless one might suggest that  u has been arrived at f rom s by an 
instance of "doing a and then fl". 

These observations may provide some motivation for the following techni- 
cal definition of relations R + whose chief purpose is to give a representat ion 
of p rogram composition ct;fl by binary relation composition o, and which 
will be used in defining filtrations of CPDL-models. 

Given a CPDL-model 

34 = ( S , { / ~  : c, E Prog(~,II)},g),  

define a family {R + : a E Prog(~,II)} of binary relations on S inductively 
by 

and 

R+: = )~A:; 

Re +. = (~t)*;  

iff for some T, either 

(i) sR+t and sR~T, 
(ii)~R~T and ~ t .  

o r  
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THEOREM 13. In a model that is standard except possibly for tests, R~ C 
It+. 

PRooF .  By induction on the formation of a.  The cases a = r and 
a = A? are immediate  by definition of R +. For the inductive cases, assume 
the result for a and ft. 

Composition: 

R ~  = R ~ . R  E 
C_ R~ o R E 

+ 
= Ra; E. 

s tandard condition for a; fl 
4(3) 
hypothesis on a and fl 

Alternation: 

R~uf~ = R~ U R E 
= Ra U R E 
_c u 

+ 
= R~u E. 

s tandard condition for a U fl 
4(1) 
hypothesis on a and fl 

Iteration: 

R~, = R (*) s tandard condition for a* 

= ~ 4(7) 
C_ (R+) * hypothesis on a 

= R+,.  

Combination: If sR~nE t, then by  the s tandard condition there are T, W 
with sR~T, sREW , and t E T U W. Now i f t  E T, then sR~t, so sR+t 
by the hypothesis on a,  whence as sREW we get sR+nEt. On the other  

hand, if  t E W we similarly get sR~t  and sR~T, leading again to the  desired 

conclusion SR+nEt. �9 

THEORBM 14. Let 2VI be a model that is standard except possibly for tests. 
I f  a is any program, then for all formulae A we have 

M ~ [a]A iff sR+t implies .h4 ~ t  A. 

PROOF. Since in general 

.h4 ~-s [ a ] A  iff sR~t implies .h4 ~ t  A 
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(Lemma 3), the fact that  R---~ C_ R + implies directly that  the statement of 
the Theorem holds from right to left. We prove the converse by induction 
on the formation of a. 

The cases a = lr and a = A? are immediate, as then R + = R~. For the 
inductive cases, assume the result for a and ft. 

Composition. Let M ~8 [ a; fl ]A and + sRa;~t. Then there exists u with sR+u 
and uR~t. Since A4 is s tandard for composition, it verifies B-Comp, and 
so .hi ~s  [a][fl]A. The induction hypothesis on a then gives M ~,,  [fl]A, 
from which the hypothesis on fl yields the desired conclusion jr4 ~ ,  A. 

Alternation. If ~4 I=~ [a U fl ]A and 8R+u~t, then either sR+t or BRat, so 
as M verifies B-Aft, the hypothesis on a and fl leads to M ~ t  A. 

Iteration. Let M ~s  [a* ]A. Then we first show that  for any n, 

s(R +)at implies M ~ [ a* ]A. (~) 

The base case n = 0 is immediate, since then s = t. Assuming the result 
for n, suppose that  s(R+a)n+lt. Then for some u, s(R+a)nu and uR+t. By 
the hypothesis on n, M ~ [a*]A. Hence M ~ [a ] [a*]A,  since jr4 
verifies B-Mi$, so by the hypothesis on a, M ~ ,  [a*]A. This completes 
the inductive proof of (t). 

Now if sR+.t, then s(R+)nt for some n, and so M ~ t  [a*]A by (t). 
Again since M verifies B-Mi~, this implies jr4 ~ t  A. 

Combination. Let M ~ ,  [a  N fl ]A and 8R+n~t. Then there exists T such 

that  either (i) sR+t and BRAT, or else (ii) s/ /~T and sR~t.  

Now if (i) holds, then sR~T implies M ~ ,  < f l > T ,  so as /t4 verifies 
B-Comb, jr4 ~ [a]A. But then the hypothesis on a gives M ~ ,  A. 
Similarly, if (ii) holds we are led to M ~ A by the other conjunct of 
B-Comb and the hypothesis on ft. �9 

F i l t r a t i o n s  

The technique of "filtration" is designed to collapse the canonical model to a 
finite model  while leaving invariant the truth/falsi ty of a prescribed formula. 
Here we adapt to CPDL the method as expounded in [1, w167 
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A set r of formulae is defined to be closed if the following hold: 

r is closed under subformulae; 
[B? ]D E r implies B E r ;  
[a ; f l ]B E r implies [a] [ f l ]B E r ;  
[a  U/3]B E r implies [a]B,[ f l ]B E F; 
[ .  nZ]B e r implies [a]B, [ f l ]B,<a>T,  </3>T E r; 
[ ,*  ]B e r implies [ a ][ a* ]B E r ;  
< B? >D E r implies B E r ;  
< a ; f l > B  E r implies < a > < f l > B  E r ;  
< a u f l > B  E r implies < a > B ,  < f l > B  E r ;  
< a N f l > B  E r implies < a > B , < f l > B  E r ;  
< a * > B  E r implies < a > < a * > B  E r .  

By methods that are well-established (e.g. Lemma 10.5 of [1]), it can be 
shown that 

LEMMA 15. For any A E Fma(O,II)  there is a finite closed set r with 
A E F .  

Now let r be a finite closed set. Take Progr to be the smallest set of 
programs that includes all atomic programs and tests occurring in members 
of r ,  and is closed under ;, U, N, and *. For s, t E S TM, put 

s , ,~r t  iff s n r = t n r ,  
IsI = {t E S ~ : s  ~ r  t}, 

Sr = {I s I: s E S'*}, 

and for T C_ S m, and X _c St,  put 

LEMMA 16. 

(1) 

(2) 
(3) 
(4) 
(5) 
(6) 

[TI = {Isl: s E T}, 
Sx = {s E s TM : Is le  x } .  

T y V implies ITI C_ UI. 
X C Y implies Sx  C_ Sy.  

Sx  C T implies X C_ IT I. 

X=lSxl. 
T a_ SIT I. 
Isl = S{i,i}. 

The finiteness of r ensures that Sr is finite. Moreover, each subset of SF is 
definable by a formula which is a truth-functional combination of members 
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of F, i.e. if X C_ Sr  then  there is some such formula A x  such tha t  for all 
s E S ,  

A x E s  iff I s I E X  

(cf. Definability Lemmas  8.14 and 9.7 of [1] for details). 

Now let 
.t~4' = (S t ,  {p~ : a  E Progr}, Vr), 

be a CPDL-model  based on S t ,  wi th  

{Is]: s E V'~(p)}, i f p  E F; 
Vr(p) = 0, otherwise. 

Then  the  teachabil i ty relation p~ on Sr  is defined to be a F-filtration of the  
relat ion Ra f rom the canonical model  ,~A TM if, and only if, the following four 
condit ions are satisfied. 

(B1) 

(82)  

(D1) 

(D2) 

sR~t implies I s [ p + l t l  . 

Isl~-~[tl implies { B :  [c~]B E s n r}  c t. 

sR~T implies Islp~X for some X C_ ITI. 

if Isip~X and Sx  C_ IIBII, then  < a > B  E F implies < a > B  E s. 

Pa will be called strong if it satisfies 

sRoT impnes Islp lTI. 

Any strong relat ion p= obviously satisfies (D1). But  it also satisfies (B1): if 
sR~t t hen  sR~T for some T with t E T, hence lalp~[TI and Itl E ITI, showing 
]s]~-~lt ]. But  then  ]sip+It[ since in general ~ C p+ by Theorem 13. 

The  model  J~41 will be called a F-filtration of the canonical model  .tA n if p~ 
is a r - f i l t r a t ion  of Re for all a E Progr. 

FILTRATION LEMMA 17. Let )~4 ~ be a r-filtration of +~4 m that is standard 
except possibly for tests. Then for any B E r and s E S TM, 

M TM B i g  B. 

PROOF. By induct ion  on the formation of B. The  case B = p E �9 is 
given by the  definitions of Vr and ~ r ,  the case B = • is immedia te ,  a n d  the  
induct ive  case B = (81 -+ 82) is straightforward. 
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For the inductive case for [a] ,  assume the result for B. Then if [a  ]B E r 
and .~4 t ~lsl [a  ]B, since ~4' is standard except possibly for tests we get that 

181p+ltl implies M '  ~ltl B, 

by Theorem 14. From (B1) and the induction hypothesis on B, we then get 

sR~t implies .M TM ~t  B. 

This in turn gives A4 TM ~ [a]B by Lemma 3. 
Conversely, if .~4 TM ~ ,  [a]B,  i.e. [a]B E s, then from (B2) and the 

induction hypothesis we get that 

Is l~l t l  implies .M' ~ltl B, 

which implies ~d' ~1~1 [a]B by Lemma 3 again. 

Now for the inductive case of < a > .  First, if < a > B  E r and .~4 TM ~s 
<a>B,  then there exists T C_ S TM with sR~T C []B[[. Thus if the Lemma 
holds for B, then for t E T we have B E t, whence .~4' ~ltl B, showing that 
]T] C_ .tA'(B). But by (D1), ]s[p~X for some Z C [T[. Then X C_ Ad'(B), 
giving .tA' ~lsl < a >B.  

Conversely, if ~4' ]=1~1 < a >B,  then [s[paX for some X C_ ~4'(B).  The 
inductive hypothesis on B then yields Sx C []B[], and so (D2) gives .h4 m ~ 
<a>B.  �9 

Existence of Filtrations 

For a E Progr, define 

pax iff (i) ]t]e X implies {B: [a]B C s n r }  c t; and 
(ii) S x C ] ] B ] ] a n d < a > B E r  implies < a > B E s .  

THEOREM 18. p~ is a r-filtration of Ra, and is in fact the largest one. 

P~ooF.  First we show that p~ is strong, taking care of (B1) and (D1). 
So, let sR~T, with the objective of showing that ]s[p~]T], i.e. that (i) and 
(ii) above hold with X = [T[. We have T = []s~][ N ][C[], for some C with 
<a>C E s. 

Now for (i), if [t] E ]T], then t ~ r  u for some u E T, so that if[ a ]B E s a t  
then T C [[B]] as sRaT, hence B E u, and so B E t as B E r .  

For (ii), suppose that SIT I C [[Bt[ and < a > B  E r .  Then as T C_ SITI, 
we have sRaT C_ IIBll, and so < a > B  E s follows by Theorem 9(1). This 
completes the proof that p~ is strong. 
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Next we show that  (B2) holds for p~: if I~lp~ltl then Islp X and Itl e X 
for some X,  so that  by part  (i) of the definition of p~, { B :  [ a ]B E sMF} C_ t. 

Noting that  (D2) for p~ is immediate from (ii), we have now shown that  
p~ is a filtration. The proof that  it is the largest is left as an exercise. �9 

T h e  F i n i t e  M o d e l  

Given a finite closed r ,  construct a model 

A i r  = (St ,  {p~ : a  E Progr}, Vr), 

by lett ing p~r be any r-f i l t rat ion of R~, 

PB? = {(Isl ,{Isl}):  B} ,  

and otherwise defining p~ inductively by the s tandard-model  condition on 
Or. 

THEOttEM 19. A4r is a r-filtration of the canonical CPDL-model A4"L 

P~OOF. We have to show that p~ is a F-filtration o f / / ~  for each 
a E Progr. 

Tests. Suppose B? E Progr. H sRB?T, then by 12(1), T = {s} and .h4 "~ ~ 
B. Hence ITI -- {Isl}, and so IslPB?lT] by definition o fps? .  This shows that  
PB? is strong, and so fulfils (B1) and (D1). 

For (S2), let Isl-fi~.ltl, so that  Isl = It] and B E s. Then if [ B? ]D E sMr,  
we get D E s via B-Test, and so D E t as s ~ r  t. 

For (D2), let ]slpB?Z and Sx C_ ]IDI]. Then X = {]sl} and B E s, so 
that  s E Sx,  giving D E s. Hence by D-Test, < B ? > D  E s. 

This completes the proof that  PB? is a F-filtration of Rs?.  

The proof of the first filtration condition (B1) in the inductive cases will 
use the following idea. Given s E S m, let A~ be a formula such that  for all 
t E  S TM, 

As E t ifr I lP+ltl 

(A~ exists by the definability of any subset of Sr noted earlier). Then to 
show that  

sRat implies Isip+ltI, 

it suffices to prove that  In]As E s, for then ifsR~t we get A~ E t as desired. 

Composition. Suppose that  (a;fl)  E Progr, and, inductively, that  p~ and 
pf~ are F-filtrations of Ra and R~, respectively. 
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(B1): For s E S, let A, be a formula having 

A, E t i f f  I , I p + ~ l t l  . 

If sR~uR#t, then by (B1) for a and/3, I,Ip+lub$1tl . Hence I,Ip + o p$1tl, i.e. 
Islp+;/3ltl by definition of p+;/~, and so As E t. This shows that  [ a ][/3 ]As E s, 

and hence by axiom B-Comp, [a;/3 ]A~ E s as needed to ensure that  sRa;zt 
implies Islp+,lt[. 

(82): Let [slp-~;~ltl, i.e. [s[~:--p--~It[. Then Is[~-~a o ~--~[t I by Theorem 4(3), 
so for some u, Is[~-~lul and [ul~-~[t ] . Then if [ a; /3 ]B E s N r ,  [a] [ /3]B E sMr  
by Comp, so (82) for a and/3 give [/3]B E u and thence B E t. 

(D1): Let sR~;~T. Then by Theorem 12(2), there exists U C_ S m with 
sRaU, such that  for each u E U there exists T,  C_ T with uR/3T,. By 
(D1) for a there exists X C Sr with Isip~X C_ IU[. Then i r a  E X ,  we 
have a = lu[ for some u E U, so by (D1) for fl, there exists ]I= C_ Sr with 
ap~Y= C_ [T~,[ c ITI . Thus putt ing 

z = U{Y= := E X},  

w e  have I*l(Pa" p~)Z, hence I*IP~;~Z C ITI. 
(D2): If I,Ip~;~x, i.e. I*t(p~.pe)x, then there exists Y C_ Sr  with I*IP~Y, 

such that  X = U{Xy : y E Y}, with yp~Xy for all y E Y. 
Now suppose Sx C_ IIBII and < a ; f l > B  E F. We want < a ; f l > B  E s. 

But if t E Sy, then I t ] E Y and SXl,i C_ Sx C IIBII, so as </3>B E r and 
]tipt~Xltl, (D2) for/3 gives < / 3 > B  E t. This shows that  Sy C []</3>BI]. 
Since < a > < / 3 > B  E Y and IslpaY, (D2) for a then gives < a > < / 3 > B  E s, 
so D-Comp yields < a;/3 > B  E s as desired. 

Alternation. 
(81).  Let A, be a formula having 

s + A, E t iff I IP~u~ltl. 
Using (B1) for a and fl and the definition of + Paul,  we get A, E t whenever 
sRat or sR~t. Hence [a]As,[/3]A~ E s, so [ a  U/3]A~ E s by 8-Alt. 

(B2). If Is]~-b-~ltl, then either Isl~--~ltl or else Isl~-~lt]. Since S-Aft gives 
[ a U f l ] B  E s only i f[a]B,[fl]B e s, ( 8 2 ) f o r  a and/3  then readily yield 
{ B :  [~ U/3]B E 8 n r }  c_t. 

(D1). If sR~u~T, then by 12(3) there exists W _C T with sR~W or 
sR~W. Assuming (D1) for a and/3,  it follows that  there is some X __ ]W I 
with I , t p~x  or I,b~x. Hence Islpau~X c ITI. 
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(D2). Let I~lP,,u~X, Sx C IIBII, and < a  U ~ > B  E r. Then either 
[s]p~X or Islp~X, and < a > B , < f l > S  E r .  Hence by (D2) for a and f~, one 
of <a>B,  and <fl>B is in s, implying < a U f l > B  E s  by D-Alt. 

Combination. 
(B1). Let As be a formula having 

As E t iff I~lp+~lfl. 
We show that  

( < a > T  -+ [fl]A,),  ( < f l > T  ~ In ]A, )  E ~, (t) 

which gives [ a M fl ]As E s by B-Comb. 
To prove (t), let < a > T  E s. Then 8R~T for some T, and so by (D1) 

for a ,  IslpaX for some X.  Then if sR~t we have Islp~ltl by (S l )  for fl, so 

with  Islp~X we get IslP+n~ltl, hence A8 E t. This shows that  [fl ]As E s. 
We have now shown that  (< a > T --* [ fl ]As) E s. The proof that  (< fl > T --~ 
[a ]As)  E s is similar. 

(B2). Let Isl~-~--filtl. Then there exist X , Y  with 18lp~X, Islpl3Y, and 
either ItI E Z or ItI E Y. 

Now suppose [afl f l]B E s N r .  Then < a > T , < f l > T  E r .  Since 
S x , S y  c ]]Tll , (D2) for a and fl then give < a > T , < f l > T  E s. Hence 
axiom B-Comp implies [~]B,[a]B E 8. B u t  if I t] E X,  then ]siP~it], so 
(B2) for a gives B E t. If however It] E Y, we get the same conclusion from 
(B2) for ft. 

(D1). If BRuneT, then by 12(4) there exist W1, W2 with sR~W1, sRf3W2, 
and T = W1 U W2. By (D1) for a and fl, it follows that  there exist X1, X2 
with Is]paX1 C_ IWll and ]sip~X2 C_ IW21. Hence 

I~lPo, n,~(X~ U x2) c_ IW~l u IW2l c ITI. 

(D2). Let Islp~n~X, Sx c_ IIBll, and < a U fl > B  E r .  Then by defini- 
t ion of P~n~, there exist Y,Z with ]81p~Y , ]81p~Z , and X = Y U Z. But 
< a > B , < f l > B  E r ,  and S y , S z  c_ Sx c_ IIBII, s o b y  (D2) for a and f~ we 
get < a > B ,  <fl>B E s. Axiom D-Comb then implies < a M  f~>B E 8. 

Iteration. 
(B1). Let As be a formula having 

A8 E t i f f  Islp+.ltI . 

We show that  
~- As -~ [a]As. (t) 
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For, if  t E S TM and A8 E t, then I~l(p~ +)*ltl, and so I~l(p~ +)nltl for some ~ > O. 
Then it tR~u, (B1) for ~ implies ItlP+lul, hence I~l(p+)"+Xlul, so I~lP+.lul, 
and therefore A8 E ~. This shows [~ ]A. E t, as reqnired for (t). 

By Necessitation for [a*]  and axiom B-Ind, we then have (A, 

[a* ]A.) E ~. But A. E ~ as I~l(p+)~ so [~* ]As E ~, yielding (B1) for a*. 

(B2). Since p~. = p(*) = (~--g~)*, we want to show that  

I~l(~)*ltl implies { B :  [a*]B E , n r }  c t. 

First we show, for all n >__ 0, that  

lsl(y~)nitI implies {[a*]B:[a*]BEsnr}c_t. (t) 

The case n = 0 is immediate,  since Is[ = It[ implies s M r = t M r .  Assuming 
the result for n, suppose [8[(~--g~)"+lIt[. Then [s[(~-~-~)'~]u[ and [ui(~--g~)[t[, for 
some u. Thus if [ a* ]B E s N r ,  we have [ a* ]B E u by the hypothesis on n, 
and so [ a ] [ a *  ]B E u M r by the axiom B-Mi~e and the definition of r .  But 
then [ a* ]B E t, by (B2) for a.  This completes the inductive proof  of ($). 

It follows that  if  [si(~-ga)*It[, we have [si(-~-da)nIt] for some n, so if[  a* ]B E sMr,  
($) gives [ a* ]B E t, and then B-Mix  gives B E t. 

(D1). For any set T C_ S TM, let AT be a formula such tha t  for all s E S m, 

AT E s iff [s[p~.X for some X _C ITI. 

We will prove 

and 

T C IIATI], (I) 

< a > A T  --~ AT. 

From these we derive (D1) for a* as follows. 

(t) 
If sRa*T, then  f rom (t)  we 

get < a* >AT E 8 (Theorem 9(1)). But from ($) by Necessitation for a* and 
axiom D-Ind, 

< a* >AT --~ AT, 

so AT E s, giving Isip~.X for some X _C ]TI as desired. 

To prove (t) ,  let t E T. Then ]ttp~.{itI}, since Id  c p(*) = Pa*, and 
{ItI} c ]TI, so with X = {ItI} we fulfill AT E t, and hence t E ]IATI]. 

For ($) it suffices to show that  any maximal  set containing < a >AT must 
also contain AT. So, let s E S TM have < a >AT E s. Then sR~U for some 
U C_ IIATI]. By (D1) for a,  Islp, X for some X _c ]UI. Thus for some k E w 
we have X = {luol , . . . , iuk_lI} ,  for some Uo, . . . ,Uk_l  E U. 
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Now for each i with 0 < i < k we have AT E ul, since U C [IATI], 
and so luilp~.]~ for some Yi C ITI. Since M r  is s tandard for ce*, it follows 

tha t  luilp{~ni)Yi for some nl. Let n be  the maximum of n o , . . .  ,nk-1.  Then 

since the reachabili ty relations p('~) increase monotonically with m (Lemma 

1(3)), we have ]uilp('~)Yi for all i < k. Thus if Y = U{IQ : 0 _< i < k}, 

then ]sJ(pa" p(n))y, hence Islp('~+l)Y, and so Jslp(*)Y. Therefore we have 
Jslpa.Y C ]T], which ensures that  AT E s as desired. 

(D2). If  Isipa.X, then ]slp(n)X for some n. Hence it suffices to prove 
that  for all n > 0, and all s E S m, 

if [s[p(n)X and Sx  C_ liB[I, then < a* > B  E r implies < a* > B  E s. ( t )  

For the case n = 0, if [s[p(~ i.e. [siIdX, then X = {[s[}, so if Sx  c_ [IB[], 
then as s E Sx  it foUows that  B E s, and hence that  < a* > B  E s by  axiom 
D-Mix.  

Now make the inductive assumption that  ( t)  holds for n, and 

let Is]p(n+l)X, Sx  C_ lIB[I, and < a * > B  E r .  Then either [s[p~)X, whence 

the desired result follows as above, or else ]si(p~. p(n))X. In the la t ter  case 
there must  then be some Y with Is[paY such that  X = U{Xy : y E Y}, with 

yp(n)Xy for all y E Y. 

Then i f t  E Sy, we have It] E Y, so Sxltl C_ Sx  C lIB[I, whence as 

[tlp(n)Xltl, the hypothesis on n gives < a * > B  E t. Thus Sy C [ l<a*>Bi ] .  
But  <ce><ce*>B E r,  and Is]paY, so by  (D2) for a, < a > < a * > B  E s. 
Hence by  D-Mix we get our desideratum < a* > B  E s. 

This show that  ( t )  holds for n + 1, completing the inductive proof  tha t  
it holds for all n, and hence completing the proof  of Theorem 19. [] 

COROLLARY 20. .h/lr is a standard CPDL-model. 

PROOF. By definition, M r  is s tandard except possibly for tests.  Since 
it is a filtration of M TM, the Fil trat ion Lemma 17 then implies that  

p . ?  = Mr B} 

for B? E Progr, so that  M r  is also s tandard for tests. [] 

THEOREM 21. Any non-theorem of C PDL is falsifiable in a finite standard 
C P D L-model. Hence C P D L has the finite model property with respect to 
standard models, and is decidable. 

PROOF. Suppose ~/A. Then there is some maximal set s with A ~ s, 
so that  .M TM ~ s  A. Let r be a finite closed set containing A (Lemma 15). 
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Then M r  is a finite s tandard model in which A is false at ]s I (Theorems 19 
and 20, and Fil trat ion Lemma 17). 

Since C P D L  is finitely axiomatisable, its decidability then follows as in 
[1, w �9 

N o r m a l i t y  for  < a > 

A natura l  condition to impose on models is that  

sR~T  implies T # 0, 

i.e~ 

not-sRa0,  

since if s R ~ T  then T is the result of a terminating execution of a from s: 
ternfination implies the existence of a terminal  state. 

The corresponding axiom schema is 

D-N : -1< a >_1_, 

which is always true under the binary relation semantics. Indeed it requires 
only the schema 

[ a ] ~ A  ~ -~<a>A 

to derive D-N from [ a ] T ,  which itself is a theorem of any logic that  is 
normal  for [ a ]. 

LEMMA 22. 

(1) Let A be a normal logic containing C P D L .  

(i) Relative to A, the schema D-N is equivalent to each of  the schemata 

[a]-~A -+ - < a > A  

< a >-~A -~ ~[ a ]A, 

i.e. A contains one of these three schemata if, and only if, it contains 
the others. 

(ii) I f  ~A -1< rc > 3_ for all atomic programs lr, then ~A -~< a > 3_ for  all 
programs a. 

(iii) I f  ~A -~< a > 3_, then in the canonical model for A, not-sRaO. 
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(2) In a standard model, if no t -sR,  O for all atomic it, then not-sR~O for all 
Ol. 

To prove the finite model  property for the smallest normal  logic obtained by 
adding D-N to C P D L ,  we modify the closure conditions on r to require tha t  
< 7r > • E I ~ whenever Ir occurs in r .  Then in the finite filtration M r  it can 
be shown tha t  not - l s lp ,0  for all atomic 7r E Progr. To see this, observe that  
if  ]slp,~O , then  since S o = 0 = 113-11, property (D2) ofp~  implies < ~ > •  E s, 
which is inconsistent with D-N. 

By Lemma 22(2) above, it then follows that  not-lslpa0 for all a E Progr, 
and so .Mr  is a D-N-model .  

Sequential A t o m s  

The reachabihty  relation Ra will be called sequential if 

sR~T implies T = {t} for some t. 

The corresponding axiom schema is 

Seq,~ : [a]-.A ~ -~<a>A, 

f rom which-~< a >  • is derivable (22(1)0)). 

LEMMA 23. In the canonical model for a normal logic containing C P D L  
and Seq~, 

< a > A c s itf there ezists t with sRat and A E t. 

PttOOF. Recall that  sR~t iff s~ C_ t. Thus if < a > A  E s, it suffices 
to show so U {A} is consistent. But if it were not, then so ~- ~A, hence 
[ a ] ~ A  C s (8(5)), so ~ < a > A  E s by Seqa, contrary to the consistency of 
8 .  

Conversely, if s~ C_ t and A 6 t, then ~A ~ t, so [a  ]-~A ~ t, whence by 
Seqa and maximal i ty  of s, < a >A E s. 

By a sequential model we will mean  one in which the atomic relations R,~ are 
sequential, so that  parallelism depends on the presence of the combination 
connective a N fl on programs. The (normal) logic determined by the class 
of sequential models is decidable, and is generated by adding the schemata 
Seq,~ for all atomic ~" to CPDL.  To show this, we modify the definition of 
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p~ in 2~4r, by defining it as the following sequential  reachabil i ty re la t ion on 
St. 

ifr 3 ,  e �9 3t  e 

Thus  
$p+y iff ~p-u iff q s E ~  q t E y ( s ~ C t ) ,  

f rom which it follows readily tha t  p~ meets  fi l tration condit ions (B1) and 
(82) .  

To prove (D1) for p~, let sR,~T in the canonical  model .  Then  T ?~ 0, 
since -~<Tr>_L is derivable f rom Seq~. Taking any t E T,  we get sR~t, and 
so Isip~{It]} c_ IT I. 

For (D2), let Islp~X, Sx C_ IIBII, and < ~ r > B  e r .  Then  there is some 
s' e ]s], and s o m e t  such tha t  X = {]t]} a n d s F ~ t .  But  t h e n t  E Sx, so 
B E t, and  hence by Lemma  23, < I r > B  E s ~. Since < I r > B  E r ,  we then  
get <~r > B  E s as desired. 

This completes the proof  tha t  p~ is a r - f i l t r a t ion  of R~ whenever  1r C 
Progr. Thus  M r  in this case is a finite sequential  model  tha t  is a f i l trat ion 
of the  canonical  model.  The  rest of the story is as usual.  �9 
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