ROBERT GOLDBLATT Parallel Action:
Concurrent Dynamic

Logic with Independent
Modalities

Abstract Regular dynamic logic is extended by the program construct ang, meaning “o
and B executed in parallel”. In a semantics due to Peleg, each command « is interpreted as
a set of pairs (s,T), with T being the set of states “reachable” from s by a single execution
of a, possibly involving several processes acting in parallel. The modalities <a > and [a]
are given the interpretations

<a>Ais true at s iff there exists T with sR,T and A true throughout T,

and

[o]A is true at s iff for all T, if sR.T then A is true throughout T,

which make <a > and [a] no longer interdefinable via negation, as they are in the regular
case.

We prove that the logic defined by this modelling is finitely axiomatisable and has the
finite model property, hence is decidable. This requires the development a new theory of
canonical models and filtrations for “reachability” relations.

Introduction

The system of concurrent dynamic logic due to Peleg [3] extends regular
dynamic logic by introducing the combination a N B of commands a and
B, interpreted as “a and 8 executed in parallel”. We envisage o and B as
representing computing processes acting independently at the same time.
For example, we might contemplate a command of the form go to [ and m,
which causes a program to execute the commands labelled by [ and m simul-
taneously and in parallel. We might also imagine a and 8 as representing
parallel actions by agents other than computers.

Now in regular dynamic logic, a program « is interpreted as a relation
R, on a state-set S, with the presence of the pair (s,t) in R, signifying that
there is an execution of the program that starts in state s and terminates
in state t. Associated with a are modalities [a] and <a>. The formula
[@]A means “after a, A”, i.e. “after every terminating execution of «, A is
true” (allowing that a non-detérministic @ may be executed in more than
one way). < a>A means “a enables A”, i.e. “there is an execution of o that
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terminates with A true”. These meanings are formalised in the satisfaction
relation for a model M on S by requiring that

M, <a>A iff there exists t € S with sR,t and M |=; A,

and

M, [a]A iff forallt€ S, sR,t implies M = A.
Then [a]A is equivalent to ~<a>-4, and <a>A4 to -[a]-A.

Now in the context of concurrency, the result of an execution started in
state s will not be be a single terminal state ¢, but rather a set T' of states
representing the terminal situations of all the parallel processes involved.
Thus the relation R, is no longer a set of pairs (s,t), but rather a set of
pairs (s,T), with s € S and T' C S. So instead of R, C 5 X §, we have
R, C 8§ x25.

To keep the two types of relation distinct, we will refer to a subset of
S x S simply as a binary relation on S, and a subset of S x 25 as a reachability
relation on §. When sR,T, this signifies that T is “reachable” from s by an
execution of a. There may be many ways of executing «, and hence many
different state—sets T reachable from s by doing a.

To retain the meaning of <a>A as “there is an execution of a that
terminates with A true”, we specify

M, <a>A  iff there exists T C S with sR,T and T C M(A4), (i)

where

M(A) = {te§: M= A}.

If [ @] continues to be identified with =< a >-, as in Peleg [3], the condition
for truth of [« ]A at s becomes

sR,T implies T NM(A)#9.

Nerode and Wijesekera [2] suggest that in this context a more appropriate
modelling of “after every terminating execution of a, A is true”, would be

M, [a]lA iff sR,T implies T C M(A), (ii)

making [ a] and < a> no longer interdefinable via —.

The extension of the system P.DL of regular propositional dynamic logic
having [a] and <a> interpreted according to (i) and (ii) has not been
investigated in the literature to date. Here we will demonstrate finite ax-
iomatisability and decidability for this extension, by developing the theory
of canonical models and filtrations for reachability relations.
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Notice that if a binary relation R, is defined by
sRot iff teU{T:sR.T},
then (ii) becomes
M, [a]A iff sR,t implies M |=; A.

This observation will allow us to relate much of the new theory of [ ] given
by (ii) to our known analysis of the binary relation semantics for PDL, as
presented for example in [1]. At the same time, a whole new analysis is
needed for <a>. ‘

This paper is written in the general notation and framework of [1], to which
it may be an advantage if the reader had access.

Syntax and Semantics

The formal language of Concurrent Propositional Dynamic Logic (CPDL)
is as for PDL, with the addition of N and the independent treatment of [ ]
and <a>. Given a countable set ® of atomic formulae and a countable set
IT of atomic programs, the syntax of CPDL is generated in Backus—Naur
form as follows.

Atomic formulae: pe @
Atomic programs: 7 €1l
Formulae: A € Fma(2,1I)
Programs: a € Prog(®,II)

Au=p|L|A; - Ay|<a>A|[a]A
az=r|agjaz|ogUaz|ag Nay|a®| A?
Intended meanings of commands are:

ag; Qs do a; and then ay (composition),

arUaz do either oy or as non-deterministically (alternation),
a;Naz do a; and ay concurrently (combination),

a* repeat o some finite number (> 0) of times (iteration),
A? test A: continue if A4 is true, otherwise “fail”.

The truth—functional connectives ~, A, V, and « are defined in the standard
way. We write T for L, and skip for T?.

A CPDIL—model is a structure

M = (5,{Ra : a € Prog(®,1)},V),
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with R, a reachability relation on S for each program «, i.e. R, C S x 25,
and V a function from & to 2°. The satisfaction relation “4 is true (holds)
at point s in model M”, denoted M [, A, is defined inductively on the
formation of A as follows.

M, p iff seV(p)

ME, L (i.e. not M |, L)

ME, (A — A4;) if M|, A; implies M =, 4,

ME; <a>A iff  there exists T C § with sR,T and T C M(4)
M, [a]A iff forallT C S, sR,T implies M |=; A.

A is true in model M, denoted M |= A, if it is true at all points in M, i.e.
if
M, Aforall se S.

Operations on Reachability Relations

Let R and @ be reachability relations on a set §.
Composition. The relation R-Q C S x 25 is defined by

s(R-Q)T iff there exist U C S with sRU, and a collection
{T. : uw € U} of subsets of T with uQT,, for all
u € U, such that T = J{T\, : v € U}.

Combination.
R®Q={(s,TUW):sRT and sQW}.

Lteration. Let

Id={(s,{s}): s € S},
and define a sequence of reachability relations R(™) inductively by

RO =1d

R(™+1) = IdUR- R™.
Then put

R™ = {R™ :n e w).

LeEMMA 1.

(1) Q CQ impliesR-Q CR-Q'.

(2) (RUR)-@Q=R-QUER -Q.

(3) R™ C RV, Hence the operation R™ is monotonic in n: n < m
implies R™ C R(™),
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Standard Models
A CPDL-model is standard if it satisfies

Rop = Ra-Rg;
RaUB = Ry U Rﬁ,
Raﬂﬂ = Ry ® Rﬂv
Ry = RS,*);
Rar = {(s,{s}): M =, A}.

Thus in a standard model, Rgyjp = Id. The standard-model condition on
N ensures that <a N B>A gets the meaning “a and B can be executed in
parallel so that on termination (in both computations) A is true”.

To understand the meaning of the new iteration operation RS that
interprets a*, consider the schema

<a*>A o AV<a><a®>A, (idd)

which intuitively is true under the intended meaning of a* as “repeat a some
finite number (> 0) of times”. In the binary relation semantics for PDL,
where R+ is the ancestral (reflexive transitive closure) R% [1, §10], truth of
this schema in standard models is a consequence of the fact that

R, =idU R, o R},

where

id = {(s,8) : s € S}.

(Note also that in such standard models, id = Rgyjp, and A « <skip >4
is true.)

Now in fact to have (iii) come out true in a PDL-model, it would suffice
to interpret o* by any binary relation @ satisfying

Q:'LdURaoQ (iV)

The characteristic property of the ancestral R}, is that it is the least solution
of equation (iv), i.e. if (i) holds then R} C Q. Thus in a PDL-model in
which (iii) is true, we must have R}, C Ro+. But then by requiring R+ itself
to be the least solution of (iv) we add the converse inclusion R,» C R},
which is just what is necessary to verify the PDL—axiom

Ind: [a"](A—[a]d)— (A [a"]4).

Now if we put
F(Q)=1idUR,0Q
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for an arbitrary binary relation @, then (iv) asserts that () is a fized point of
the operator F, i.e. F(Q) = Q. There is a general theory about fixed points
of operators like F' that is fundamental to the study of recursive definitions:
putting F©) = F((), and F(**1) = F(F(®), then knowing only that F is
monotonic, i.e. that

Qc Q' implies F(Q)C F(Q),
it can be shown that F must have a least fixed point, namely the relation
U{F™ :n e w}.
We applied this theory above in defining R*), using the monotonic operator
FQ)=IdUR-Q

on reachability relations Q (cf. Lemma 1(1)). Thus R™) is defined as the
least solution of the equation

Q=IdUR-Q,

and so RE,*) in turn is the least reachability relation that interprets a* to
make schema (iii) come out true.

Further insight into the nature of the relation R*) is given in Theorem
4(7) below.

LEMMA 2. If programs a(™ are defined inductively by

al® = skip
o™t = skip U (a; a(™),

then the following hold in any standard model.
(1) Ry =R,
(2) M, [a™]A4 iff sREIT implies T C M(A)
iff s@t tmplies M |=; A.
(3) M, <a™ >4 iff there exists T with sRS'T and T C M(A).
(4) M=, [a*)A iff for alin >0, M =, [a™]A.
(5) M=, <a*>A iff for somen >0, M |, <a® >A.
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Reduction to Binary Relations

For an arbitrary reachability relation R, define the binary relation R by

sRt iff teU{T:sRT}
iff for some T C S, sSRT andt € T.

LEMMA 3. For any CPDL-model M, standard or not,

M=, [alA iff sR,t implies M A

We now investigate the properties of the relation R, and for this we need
the binary relations R~ and the ancestral R*, which can be specified using
the binary relation composition o, where

Ry o Ry = {(s,t) : Ju(sRyu & uRst)}.

We have Y
R =i
B = RoR*"=R"oR

*

B = UR :necw)

THEOREM 4. For any reachability relations R;, R, Q:

(1) U'LEIR UzEI‘R

(2) RCQ implies R C Q.

(3) R-QCRoQ.

(4) IfI1dcCQ, then R-Q = Ro Q.
(5) R®+1) =4idURo RM.

(6) R®W=R'uU---UR"
(1) R®=TR".

ProorF. (1) and (2) are straightforward, and left as exercises.

(3) Suppose that sR-Qt. Then s(R - Q)T for some T with ¢t € T. From
the definition of R - @, it follows that there exists U with sRU, and some
u € U for which there is a T, C T with uQT, and t € T,. But then sRu
and uQt, showing that sR o Qt.

(4) If Id C Q, we want the converse of (3). Suppose then that sR o Qt,
so that sRu and uQt for some u. Then sRU for some U with « € U, and
uQT, for some T, with t € T,. Let

T=U{{v}:ufvelU}UT..
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Since Id C @, we have v@Q{v} in general, so it follows (with T, = {v} for
v # u) that s(R-Q)T, and hence as ¢ € T that sR - Qt.

(5) Since Id C R™, R-R(" = R o R() by (4). But as Id = id, (5) then
follows from the definition of R(™*1) and (1).

(6) By induction on n. The case n = 0 asserts that R() = R’, which is
just the true statement that Id = id.

Assuming the result for n, then from (5) and this induction hypothesis
we get
RO = idURo(R'U---UR")
=RURoRU---URo
=R uR'y.--.UR,
which gives the result for n + 1.

R

(7) From the definition of R(*), applying (1) and then (5), we calculate

RM) =, coR™
= Unew}—z_(—n_)-
U (B U---URY
= dejﬂ
=R ]

COROLLARY 5. In a standard model M,
M, [a*|A iff sR,t implies M |=; A.

PrROOF. In a standard model, Theorem 4(7) implies Ry+ = Ry , S0 the
result follows from Lemma 3. [ |

This Corollary simplifies the determination of truth—values of formulae con-
taining [a*]. For instance, it makes it easy to show that the PDL-axiom
Ind is true in standard C'PLD-models.

LemMma 6. If M is standard, then
M [a*(<a>4 — A) - [a*](<a™® >4 - A),

and
ME[a*](<a>a = A) = (<a*>A — A).
Proor. The first result is shown by induction on n. The second then

follows by from the first and Lemma 2(5). The details are left to the reader.
|
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Normal Logics

A logic is defined to be any set A C Fma(®,1II) such that

e A includes all tautologies, and
o A is closed under the rule of Detachment, i.e.,

if A, A— B € Athen B € A.

The members of A are referred to as theorems, and we usually write -, A
to mean that A is a A-theorem (i.e. A € A), and (/s A when A ¢ A.

A logic is normal if it contains all instances of the schema
B-K: [a](A— B)— ([a]A— [a]B),
and is closed under the rule of Necessitation, i.e.,

if 5 A, then I—A[Q]A.

AxioMms For CPDL

Let CPDL be the smallest normal logic in Fma(®,II) that contains the
schemata
B-Comp: [a;8]A < [a][B]4,
B-Alt: [aUB]A < [a]AA[B]A,
B-Comb: [anNB]Ae (<a>T = [BlAA(KB>T - [ald),
B-Miz: [a*]A— AA[a][a*]A4,

B-Ind: [e*](A - [a]A) = (A — [a*]A),
B-Test: [A?]B « (A — B),

D-K: [a](A— B) - (<a>A — <a>B),
D-Comp: <a;B8>A & <a><B>A,

D-Alt: <aUf>A o <a>AV<B>A,

D-Comb: <aNf>A o <a>AANSG>A,
D-Miz: AV<a><a*>A - <a*>A,

D-Ind: [a*](<a>4 = A) - (<a*>A — 4),
D-Test: <A?>B < (AN B),
B-D: [a]LV<a>T,

(The B- and D- prefixes stand for “Box” and “Diamond”.) For the sake of
legibility we will abbreviate Foppr, A simply to F A.

It will be shown that this logic has the finite model property with respect
to standard C P DL-models, i.e. any non—theorem of C PDL is falsifiable in
a finite model of this type.
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LEMMA 7.

(1)(Soundness) Ift A, then A is true in all standard C P DL-models.
(2) FA— B impliest [a]A— [a]B.

(3) FA— B impliest <a>A — <a>B.

(4) Fla]AV<a>T.

(5) Fla]A— (<a>B - <a>(AA B)).

Deducibility and Consistency

IfTU{A} C Fma(®,1I), then A is deducible from T', denoted I' - A, if there
exist Bg,...,B,_1 € I such that

|—BO__)(—)(Bn__1-—>A))

(in the case n = 0, this means that - A). We write I' [/ A when A is not
deducible from T'.

T is consistent if T' i/ L.

MAXIMAL SETS

A set T' C Fma(®,II) is mazimal if

¢ I is consistent, and

o for any A € Fma(®,1II), either A€ T or -4 €T.

Any maximal set I' satisfies the following properties, which will be used
extensively below without reference.

e ' A implies A € T'.

e If A ¢ T, then I' U {A} is not consistent. Hence if I' C A and A is
consistent, then I' = A (whence the use of the adjective “maximal”).

e For any formula A, ezactly one of A and - A belongs to I, i.e.,
~Ael iff A¢T.

e CPDL CT.
e L ¢T.
¢ (A— B)eT iff (4 €T implies B € T).
e ANBeTIiff A)Be€T.
e AVBeTiffAeTor Bel.
e (A B)eTiff(AcTiff BeT).
Every consistent set can be extended to a maximal set (Lindenbaum’s
Lemma). From this it can be shown that for any T' C Fma(®,II),
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T' - A iff A belongs to every mazimal set that includes T
(cf. §2 of [1] for details).

Now let S™ be the set of all maximal subsets of Fma(®,II). For each formula
A, let
|All = {s € 5™: A€ s}

For each s € S™ and program a, let

sa ={A:[a]A€ s}, and
llsall ={t€5™:s.Ct}.

Thus [|sal| = N{|All : [«]4 € s},

THEOREM 8.

(1) FASf|All=5™.

(2) FA- B (Al c|B.

(3) llAv Bl =[AfjullB].

(4) lAAB|=[Alln]B].

(5) ||sall C ||Al| implies [a]A € s.

(6) Ifllsall N||B|| C ||A]| and <a>B € s, then <a>A € s.

(7) Ifs,u€ S™ and so C u, then |jug|| C ||sa;8]l-

(8) Mlsausll = lIsall U llsall-

(9) If<a>T,<B>T € s, then ||sang|l = |||l U [|s8l]-
Proor. (1)-(4) follow from properties of maximal sets, as above.

(5) If ||so]] C ||Al|, then every maximal extension of s, contains A, and so
sq F A. Hence
F By — (- — (Bnoy — A)--)

for some n, and some formulae B; with [a|B; € s. Then using Necessitation
(directly if n = 0) and axiom B-K,

FlalBo— (- = ([@]Bp1 — [a]4)--),
from which [a]A € s follows because s contains all theorems and is closed

under Detachment.

(6) Let t € S have s, Ct. Thenif B €t,t € ||sq||N{|B||, so as ||sa||N||Bl] €
[|A]|, then A € t. Thus (B — A) € t. This shows that ||s,]| C ||B — 4|, so
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by (5), [@](B — A) € s. But then by axiom D-K, (<a>B — <a>A4) € s,
giving the desired result that if <a>B € s then <a>A ¢ s.

(7) Let so C u. Then if ¢ € ||ug||, we reason as follows. If A € s5,.5, then
[a;B8]A € s, 50 [a][f]A € s by axiom B-Comp, whence [B]4 € s, C u,
giving A € ug C t. This shows s,,5 Ct,i.e. t € |54l

(8) Here we want to show that
Squg Ct iff s, CtorsgCt.

The implication from right to left is straightforward, with the aid of B-Alt.
For the converse, suppose that s, ¢ t and sg € t. Then there must be
formulae A and B with [a]A,[B]B € s, but A ¢ t and B ¢ t. Now
[@]A — [a](AV B) is a theorem (cf. Lemma 7(2)), so [a](AV B) € s.
Similarly, [8](AV B) € s. Hence by B-Alt, [aUB](AV B) € s. Since
(AV B) ¢ s, this shows that saug Z t.

(9) I <a>T,<B>T € s, then by axiom B-Comb,
[anplAes ff [a]A€sand[B]Acs.
But this allows us to prove that
Sqrp Ct iff s, CtorsgCl,

in the same manner as for (8). m

Reachability for Maximal Sets
Let s € §™ and T C §™. For each program a, put
sR,T iff there exists B with <a>B € s and T = ||so|| N || B

THEOREM 9.

(1) <a>A € s iff there exists T with sRoT and T C || 4]|.
(2) <a>T € s implies sRy||sqa]|-
(3) sRat iff 5o C t.
(4) [a]A € s iff sR,T implies T C ||AJ|.
Proor.
(1) If <a>A € s, then defining T = ||sof| N || 4| immediately gives sR,T
and T C {|4||. Conversely, if sR,T C ||A||, then there exists B with

<a>B € sand T = ||so|| N ||B]. But then ||ss|| N ||B]| C ||4]], so
Theorem 8(6) gives <a>A € s, as desired.



Parallel Action... 563

(2) From the definition of Ry, since ||so|| N [|T(| = ||sal|-

(3) If sR,t, then t € T for some T of the form [|s4|| N || B||. But then
t € ||sell, ie sa Ct.

Conversely, if s, C t, then since L ¢ ¢, we get [a]L ¢ s, so by axiom
B-D, <a>T € s. Hence by (2), sR,||sal|- Since t € ||so|l, this gives
sR,t.

(4) By Theorem 8(5) and the definition of s,, it follows that to have
[a]A € s it is necessary and sufficient that

5o Ct implies A€t
which is equivalent by (3) to
sR,t implies A €t,
which in turn holds if, and only if,
sR,T implies T C [|A]]. ]

COROLLARY 10. If there ezists some t with sR,t, then <a>T € s.

ProoF. If sR,t, there must be some T with sR,T. Since T C ||T||,
9(1) then gives <a>T € s. |

Canonical Model

The canonical model for CPDL is the structure
M™ = (8™, {Rqy : @ € Prog(%,II)},V™),

where S™ is the set of all maximal sets, R, is as defined prior to Theorem
9,and V™(p) = {s € S™ :p€ s}.

TrRUTH LEMMA 11. For any A € Fma(®,1I),
M™(A) = || All,
i.e. for all s € S™,

MM, AiffAcs.

ProoF. By induction on the formation of A. The case A = p € ® holds
by definition of V'™, and the truth-functional cases are taken care of by the
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properties of maximal sets listed earlier. The inductive cases A = <a>B
and A = [a]B follow from 9(1) and 9(4) respectively. |

As with PDL, the canonical model M™ determines the logic CPDL, but
cannot be shown to be standard (cf. [1]). Some properties that it does enjoy,
and that will be used in our completeness theorem, are collected in the next
result.

THEOREM 12. The following hold in the canonical C P DL-model.
(1) Tests are standard, i.e. sR4:T iff T = {s} and M™ |=, A.

(2) If sRagT, then s(Ry - Rg)W for some W CT.

(3) If sRaugT, then s(Ry U Rg)W for some W C T'.

(4) Rarp C B ® Rp.

Proor.

(1) Noting that M™ =, A iff A € s, we have that if M™ |=, A, then
B ¢ s iff (A - B) € s for any formula B, so by axiom B-Test,
[A?]B € s iff B € s, showing that sy7 = s. Moreover, this in turn
implies that ||s47|| = {s}, since s is maximal.

Thus if sR 4T, then T = ||s47|| N || B|| for some B with <A?>B € s.
Hence from axiom D-Test, A,B € s, whence ||sa7|| = {s} as above,
and {s} C ||B||. Thus T = {s} n||B|| = {s}, with M™ |, A as
desired.

Conversely, if M™ =, A and T = {s}, then ||s42|] = {s} and T =
[|saz]] N {|A||. Hence sR4+T, since D-Test gives < A?>A € s.

(2) Let sR,8T. Then T = ||sq.g]| N ||A|| for some A with <a;8>A € s.
Then by D-Comp, <a><f>A € s, so sR,U, where U = [|so|| N
|<B>Al.

For each u € U, put T, = ||ug||N|| 4|, so that uRgT,,, since <G>A € u.
Also, as u € ||sq|, i.e. so C u, Theorem 8(7) yields [Jug| C ||sa:8ll
showing that 7,, C T. Thus the desired result follows by putting
W=U{Ty:ue U}

(3) If sR,ugT, then T = ||squgl| N || A] for some A with <aUB>A € s.
Axiom D-Alt then implies that one of <a>A4 and <f#>A4 is in s. If,
say, <a>A € s, then sR,W, where W = ||s4]| N ||4]]. By Theorem
8(8), lIsall € ||saugll, so W C T. Similarly, if <8>A € s, we take
W = ||sglIn||B||, and get sRgW C T'. In either case, s(R,URg)W C T.
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(4) ¥ sRungT, then T = ||sqngl] N |J4|| for some A with <aNfB>A €
s. Then by D-Comb, <a>4,<f>4 € s, 50 sRa(]|5al| N ||Al|) and
sRg(||spll N [|All). Hence s(Ra ® Rg)U, where

U = (lsall n{lAN) U (sg N ]JAN = (llsall U llsall) N I1A]l-

But since sRygT C || T, <anNB>T € s, 50 by D-Comb, <a>T and
<fB>T belong to s, whence by 8(9) U =T. |

Execution Relations

If sR,t, then intuitively there is an execution of a from s that produces a set
T of terminal states including ¢. We may regard this execution as generating
a tree of states, with T being the set of leaves of the tree. There will be a
path through this tree from s to ¢, comprising a sequence of executions of
atomic programs and/or tests (cf. §2.2 of Peleg (4] for an indication of how
to formalise this idea).

If further tji_[;u, then there will be a similar computation tree contain-
ing a path from ¢ to u as a result of executing § from . We then have
sR, o Rgu, but we cannot conclude that sR,.t without first showing that
B—computation trees can be attached to every state in T, and not just ¢.
Nonetheless one might suggest that w has been arrived at from s by an
instance of “doing o and then 8”.

These observations may provide some motivation for the following techni-
cal definition of relations R} whose chief purpose is to give a representation
of program composition a; 8 by binary relation composition o, and which
will be used in defining filtrations of C P D L-models.

Given a CPDL-model
M = (8,{Ra: a € Prog(®,I)},V),

define a family {RT : a € Prog(®,II)} of binary relations on S inductively

by

Rf = R.;
RE? = Ryr;
— +.
Ra;ﬁ - R$ o Rﬁ )
R:uﬁ = RIU RZ;
Ry = (RY),
and
sRZnﬁt iff  for some T, either

(1) sRYt and sRgT,

(it)sR,T and ngt.

or
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THEOREM 13. In a model that is standard except possibly for tests, Ro C
RE.

Proor. By induction on the formation of «. The cases a = 7 and
a = A? are immediate by definition of R}. For the inductive cases, assume
the result for a and 3.

Composition:
Ry = & . @E standard condition for ;8
CR,oRg 4(3)
CRYo Rg hypothesis on a and 8
= Rz;ﬁ'
Alternation:

Rop =R,URg standard condition for a U g

=R,URs 4(1)

CRIURS hypothesis on o and 8

= R:Uﬂ'

Tteration:
Royv = Rg*) standard condition for o*

=Rs A7)
C (Rf)* hypothesis on o
- R*.

Combination: If sRynpt, then by the standard condition there are T, W
with sR,T, sRgW, and t € T UW. Now if ¢t € T, then sR,t, so sR}t
by the hypothesis on a, whence as sRgW we get sRZnﬁt. On the other
hand, ift € W we similarly get sREt and sR,T, leading again to the desired
conclusion sR;’nﬁt. [ |

THEOREM 14. Let M be a model that is standard except possibly for tests.
If a is any program, then for all formulae A we have

M=, [a]A iff sRIt implies M= A

Proor. Since in general

M=, [a]A iff sR,t implies M= A
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(Lemma 3), the fact that Ro C RY implies directly that the statement of
the Theorem holds from right to left. We prove the converse by induction
on the formation of a.

The cases a = 7 and a = A? are immediate, as then RY = R,. For the
inductive cases, assume the result for o and S.

Composition. Let M =, [a;]A and sR;’;ﬂt. Then there exists u with sRt u
and uRgt. Since M is standard for composition, it verifies B-Comp, and
so M |=, [a][8]A. The induction hypothesis on « then gives M |=, [B]A4,
from which the hypothesis on 3 yields the desired conclusion M |=; A.

Alternation. If M |=, [aUS]A and sRIUﬂt, then either sR}t or sR;t, s0
as M verifies B-Alt, the hypothesis on a and B leads to M |=; A.

Iteration. Let M |=, [a*]A. Then we first show that for any n,
s(R})*t implies M | [a”]A. (H)

The base case n = 0 is immediate, since then s = t. Assuming the result
for n, suppose that s(R})"t't. Then for some u, s(RS)"u and uR}t. By
the hypothesis on n, M |, [a*]A. Hence M |=y [a][a*]A, since M
verifies B-Miz, so by the hypothesis on a, M | [a*]A. This completes
the inductive proof of (}).

Now if sR}.t, then s(R})"t for some n, and so M |=; [a*]A by (}).
Again since M verifies B-Miz, this implies M |=; A.

Combination. Let M |, [aNB]A and st;nﬁt. Then there exists 7' such
that either (i) sRIt and sRgT, or else (ii) sR,T and sR}t.

Now if (i) holds, then sRgT implies M |=, <B>T, so as M verifies
B-Comb, M |=, [a]A. But then the hypothesis on a gives M |=; A.

Similarly, if (i) holds we are led to M |=; A by the other conjunct of
B-Comb and the hypothesis on 3. [ |

Filtrations

The technique of “filtration” is designed to collapse the canonical model to a
finite model while leaving invariant the truth/falsity of a prescribed formula.
Here we adapt to CPDL the method as expounded in [1, §84,10].
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A set T' of formulae is defined to be closed if the following hold:

T is closed under subformulae;

[B?]D €T implies B € T

[a;B]B €T implies [¢][B]B € T;

[aUB]B €I implies [a|B,[B]B € T}
[aNB]B €T implies [a]B,[B]|B,<a>T,<p>T €T}
[a*]B € T implies [a][a*]B € T}

<B?>D ¢ T implies B € T;

<a;B>B €T implies <a><fA>B T}
<aUB>B T implies <a>B,<f>B eT;
<anp>B el implies <a>B,<B>B €T
<a*>B e T implies <a><a*>B eI

By methods that are well-established (e.g. Lemma 10.5 of [1]), it can be
shown that

LEMMA 15.  For any A € Fma(®,1II) there is a finite closed set T' with
Ael.

Now let T' be a finite closed set. Take Progr to be the smallest set of
programs that includes all atomic programs and tests occurring in members
of T', and is closed under ;, U, N, and *. For s,t € §™, put

s~pt iff snT=¢nT,
|s|={te S™:s~rt},
Sp ={|s|:s € 5™},

and for 7' C §™, and X C Sr, put

IT| = {|s]:s€T},
Sx = {sefS™:s|le X}.
LemMA 16.
(1) T C U implies |T| C |U|.
(2) X CY implies Sx C Sy.
(3) Sx C T implies X C|T|.

(4) X =|5x|
(5) TC S!Tl-
(6) sl = Sgepp-

The finiteness of I' ensures that St is finite. Moreover, each subset of Sr is
definable by a formmla which is a truth—functional combination of members
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of T, i.e. if X C Spr then there is some such formula Ay such that for all
se€ s, '
Ax es iff |sleX

(cf. Definability Lemmas 8.14 and 9.7 of [1] for details).
Now let

MI = (SI‘,{Pa rac Progr}vVF),
be a CPDL-model based on St, with

i) = { il € VO peT

otherwise.
Then the reachability relation p, on St is defined to be a I'-filtration of the
relation R, from the canonical model M™ if, and only if, the following four
conditions are satisfied.
(B1) sRat implies |s|p|t|.
(B2) |s|palt| implies {B :[a]B € sNT} Ct.
(D1) sR,T implies |s|p,X for some X C |T|.

(D2) if |s{paX and Sx C ||B||, then <a>B €T implies <a>B € s.

pa Will be called strong if it satisfies
$R,T implies |s|pa|T|.

Any strong relation p, obviously satisfies (D1). But it also satisfies (B1): if
sR,t then sR,T for some T with t € T, hence ls|pa|T| and |t| € |T|, showing
|s|Palt|- But then |s|p|t| since in general p, C p} by Theorem 13.

The model M’ will be called a T'-filtration of the canoniéal model M™ if p,,
is a I'filtration of R, for all a € Progr.

FILTRATION LEMMA 17. Let M’ be a T'-filtration of M™ that is standard
ezcept possibly for tests. Then for any B € T and s € S™,

M™ =, B iff M' =, B.

Proor. By induction on the formation of B. The case B=p € & is
given by the definitions of Vr and ~r, the case B = L is immediate, and the
inductive case B = (B; — B,) is straightforward.
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For the inductive case for [ a ], assume the result for B. Then if [a]BeT
and M’ |5, [a]B, since M is standard except possibly for tests we get that

slotlel implies M’ =y B,
by Theorem 14. From (B1) and the induction hypothesis on B, we then get
sRut implies M™ |=; B.

This in turn gives M™ |=, [a|B by Lemma 3.
Conversely, if M™ |=, [a]B, i.e. [a]B € s, then from (B2) and the
induction hypothesis we get that

slpalt] implies M’ |y B,

which implies M’ |=|,| [a]B by Lemma 3 again.

Now for the inductive case of <a>. First, if <a>B € T and M™ |,
<a>B, then there exists T C S™ with sR,T C ||B||. Thus if the Lemma
holds for B, then for t € T we have B € t, whence M’ |z B, showing that
|T| € M'(B). But by (D1), |s|poX for some X C |T|. Then X C M'(B),
giving M' |5, <a>B.

Conversely, if M’ |=|,| <a>B, then |s|p,X for some X C M'(B). The
inductive hypothesis on B then yields Sx C || B||, and so (D2) gives M™ =,
<a>B. |

Existence of Filtrations
For o € Progrp, define

|s|paX if (i) |t|€ X implies {B:[a]BecsnNT}Ct and
(ii) Sx C||B|] and <a>B €T implies <a>B € s.

THEOREM 18. p) is a T'-filtration of R, and is in fact the largest one.

ProoF. First we show that p)) is strong, taking care of (B1) and (D1).
So, let sR,T, with the objective of showing that |s|p,|T|, i.e. that (i) and
(ii) above hold with X = |T|. We have T = ||s,|| N ||C||, for some C with
<a>C € s.

Now for (i), if |t| € |T|, then t ~r ufor some u € T, so thatif[a]B € sNT
then T' C ||Bj| as sR,T, hence B c u,and so B¢t as B ¢T.

For (ii), suppose that Sz C ||B|| and <a>B € T. Then as T C gy,
we have sR,T C ||B||, and so <a>B € s follows by Theorem 9(1). This
completes the proof that p) is strong.
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Next we show that (B2) holds for p)): if |s|F§‘t| then |s|pAX and |t| € X
for some X, so that by part (i) of the definition of p}, {B : [«]B € sNT'} C ¢.

Noting that (D2) for p) is immediate from (ii), we have now shown that
p2 is a filtration. The proof that it is the largest is left as an exercise. m

The Finite Model

Given a finite closed T, construct a model
Mr = (Sr,{pa : @ € Progr}, V1),

by letting p, be any I'filtration of R,

pp? = {(Isl,{Is|}) : M™ |z, B},

and otherwise defining p, inductively by the standard~model condition on
a.

THEOREM 19. Mr is a T'—filtration of the canonical C P DL-model M™.

PrOOF. We have to show that p, is a I'filtration of R, for each
a € Progr.

Tests. Suppose B? € Progr. If sRp»T, then by 12(1), T = {s} and M™ =,
B. Hence |T| = {|s|}, and so |s|pp+|T’| by definition of pg;. This shows that
pB? is strong, and so fulfils (B1) and (D1).

For (B2), let |s|5B7]t], so that |s| = |t| and B € s. Thenif [B?]D € sNT,
we get D € s via B-Test, and so D € t as s ~p L.

For (D2), let |s|ppsX and Sx C ||D|]. Then X = {|s|} and B € s, so
that s € Sx, giving D € s. Hence by D-Test, <B?>D € s.

This completes the proof that pg; is a I'filtration of Rg-.

The proof of the first filtration condition (B1) in the inductive cases will
use the following idea. Given s € §™, let A, be a formula such that for all
teS™,

A et iff |s|pl)t|

(A, exists by the definability of any subset of Sp noted earlier). Then to
show that

sRot implies |s|pf|t|,
it suffices to prove that [a]A, € s, for then if sR,t we get A, € t as desired.

Composition. Suppose that (a;3) € Progr, and, inductively, that p, and
pp are I'-filtrations of R, and Rg, respectively.
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(B1): For s € S, let A, be a formula having
A, et iff |s|p;;ﬂ|t|.

If sRouRgt, then by (B1) for a and 3, slpX |ulpf|t]. Hence [s|p} opilt], ie.
[s|pi';ﬂ|t] by definition ofpi';ﬁ, and so A, € t. This shows that [a][3]4, € s,
and hence by axiom B-Comp, [a; 8]A, € s as needed to ensure that sR, st
implies |s|p:;ﬂ|t|. _

(B2): Let |s|pa;plt], i-e. |s|pa - pglt]. Then |s|pa o pglt| by Theorem 4(3),
so for some u, |s|pg|u| and |u|pg|t| . Thenif [a;8]B € snT, [a][B]B € sNT
by Comp, so (B2) for a and 3 give [3]B € u and thence B € t.

(D1): Let sR,T. Then by Theorem 12(2), there exists U C $™ with
38R U, such that for each u € U there exists T, C T with uRgT,. By
(D1) for o there exists X C Sp with |s|poX C |U|. Then if z € X, we
have z = |u| for some u € U, so by (D1) for 3, there exists ¥, C Sp with
zpgY, C |Ty| C |T|. Thus putting

Z=H{Ys:2€ X},

we have |s|(pq - pg)Z, hence |s|p,.0Z C |T|.

(D2): ¥ |s]pa;pX, i.e. |s|(pa-pg)X, then there exists Y C St with [s|paY,
such that X = (J{Xy,:y € Y}, with ypgX, forally € Y.

Now suppose Sx C ||B|| and <o;8>B € T. We want <a;3>B € s.
But if ¢ € Sy, then |t| € Y and Sx, C Sx C ||B||, so as <f>B €T and
|tlpg X, (D2) for B gives <B>B € t. This shows that Sy C [[<8>B||.
Since <a><B>B €T and |s|p,Y, (D2) for a then gives <a><B>B € s,
so D-Comp yields <a;8>B € s as desired.

Alternation.
(B1). Let A, be a formula having

A, et iff |s|pl'uﬁ|t|.

Using (B1) for a and 8 and the definition of piuﬂ, we get A, € t whenever
sRqt or sRgt. Hence [a]4,,[8]4, € s, s0 [a UB]A, € s by B-Alt.

(B2). If |s|pasplt|, then either |s|p5lt| or else |s|pa|t|. Since B-Alt gives
[¢UB]B € s only if [a]B,[B]B € s, (B2) for a and 3 then readily yield
{B:[aupB]BesnT}Ct.

(D1). If sR,ugT, then by 12(3) there exists W C T with sR,W or
sRgW. Assuming (D1) for a and g, it follows that there is some X C |W]|
with |s|poX or |s|pgX. Hence |s|papX C |T).
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(D2). Let |s|paugX, Sx C ||B||, and <aUB>B € T'. Then either
|s|paX or |s|pgX, and <a>B,<f>B € T. Hence by (D2) for a and 3, one
of <a>B,and <B>B is in s, implying <a U 8>B € s by D-Alt.

Combination.
(B1). Let A, be a formula having

A, et iff |s|p;'nﬂ|t].
We show that
(<a>T = [B]A,), (<B>T —[a]4,) € s, (1)

which gives [a N B]A, € s by B-Comb.

To prove (}), let <a>T € s. Then sR,T for some T, and so by (D1)
for o, |s|poX for some X. Then if sRgt we have |s|pg|t| by (B1) for 8, so
with |s|paX we get |s|pinﬁ|t|, hence A, € t. This shows that [§]4, € s.
We have now shown that (<a>T — [B]A4,) € s. The proof that (<f>T —
[@]A,) € s is similar.

(B2). Let |s|pang|t|. Then there exist X,Y with |s|p.X, |s|pgY, and
either [tj e X or [t| €Y.

Now suppose [aNB]B € sNT. Then <a>T,<B>T € I'. Since
Sx,8 C |||}, (D2) for a and B then give <a>T,<B>T € s. Hence
axiom B-Comp implies [B]B,[a]B € s. But if |t| € X, then |s|p,|t|, so
(B2) for a gives B € t. If however |t| € Y, we get the same conclusion from
(B2) for 8.

(D1). If sRongT, then by 12(4) there exist Wy, W, with sR, Wy, sRgWs,
and T = W7 U W,. By (D1) for a and 8, it follows that there exist X;, X,
with |s|poX1 C |W1| and |s|pgXs C |Ws|. Hence

|$lpanp(X1 U X2) C [Wi| U|Ws| C [T

(D2). Let |s|pangX, Sx C ||B||, and <aUB>B € T'. Then by defini-
tion of pang, there exist Y, Z with |s|p.Y, |s|pgZ, and X = Y U Z. But
<a>B,<B>B €T, and §y,5z C Sx C ||B|, so by (D2) for « and 8 we
get <a>B,<fB>B € s. Axiom D-Comb then implies <anN B>B € s.

Iteration. :
(B1). Let A, be a formula having

A, et iff |s|pl.|t|.

We show that
FA, - [a]4,. (1)
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For, if t € S™ and 4, € t, then |s|(p})*|t|, and so |s|(pf)"|¢t| for some n > 0.
Then if tR,u, (B1) for o implies |t|p|u|, hence |s|(p2 )"t |ul, so |s|ptu|ul,
and therefore A, € u. This shows [a]A, € t, as required for (}).

By Necessitation for [a*] and axiom B-Ind, we then have (4, —
[a*]A,) € s. But A, € s as [s|(pF)°]s], so [a*]4s € s, yielding (B1) for a*.

B2). Since por = p((,*) = (pa)*, we want to show that
p

|s|(Pa)*|t| implies {B:[a*]|BesnT}Ct.
First we show, for all n > 0, that
[s|(Pa)"|t|] implies {[a"]B:[a*]BesnT} Ct. (1)

The case n = 0 is immediate, since |s| = |¢| implies s NT' = ¢t NT'. Assuming
the result for n, suppose |s|(pa)"|t|. Then |s|(pa)"|u| and |u|(pa)|t], for
some u. Thus if [a* ]B € sNT, we have [a*|B € u by the hypothesis on n,
and so [a][e*]B € uNT by the axiom B-M:z and the definition of I'. But
then [a*|B € t, by (B2) for a. This completes the inductive proof of (}).
It follows that if |s|(pz)*|t], we have |s|(pg)™|t| for some n, soif [a* |B € sNT,
(1) gives [a* |B € t, and then B-Miz gives B € t.

(D1). For any set T C S™, let Ar be a formula such that for all s € 5™,
Ar € s iff |s|py*X for some X C |T)|.

We will prove
T C ||Arll, (1)

and
F<a>Ar — Ap. (1)

From these we derive (D1) for a* as follows. If sR,«T, then from (}) we
get <a*>Ag € s (Theorem 9(1)). But from (}) by Necessitation for a* and
axiom D-Ind,

F<a*>Ap — Ar,

so Ar € s, giving |s|pa+X for some X C |T| as desired.
To prove (f), let t € T. Then |t|pa+{|t|}, since Id C pg,*) = po*, and
{It]} € |T|, so with X = {|¢|} we fulfill AT € ¢, and hence ¢ € || A7]|.

For (1) it suffices to show that any maximal set containing < o > A7 must
also contain Ag. So, let s € S™ have <a>Ar € s. Then sR,U for some
U C ||Ar|)- By (D1) for a, |s|paX for some X C |U|. Thus for some k € w
we have X = {|ug|,...,|ug-1]|}, for some ug,...,up_1 € U.
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Now for each i with 0 < 7 < k we have Ar € wu;, since U C ||Ar|],
and so |u;|pa+Y; for some Y; C |T|. Since My is standard for o*, it follows
that ]uilp((,"‘)lfi for some n;. Let n be the maximum of ng,...,n;z_1. Then
since the reachability relations p,(xm) increase monotonically with m (Lemma
1(3)), we have |u;|pY; for all i < k. Thus if ¥ = U{¥; : 0 < i < k},
then |s|(pa - pgn))Y, hence ls[p&""’l)Y, and so lslpg*)Y. Therefore we have
|s|parxY C |T|, which ensures that Ar € s as desired.

(D2). I |s|pa*X, then |s|p<(,n)X for some n. Hence it suffices to prove
that for all » > 0, and all s € 5™,

if |s|p((1")X and Sx C ||B||, then <a*>B €T implies <a*>B € s. (1)

For the case n = 0, if |s|pg))X, ie. [s|Id X, then X = {|s|}, so if Sx C ||B|,
then as s € Sy it follows that B € s, and hence that <a*>B ¢ s by axiom
D-Miz.

Now make the inductive assumption that (}) holds for =, and
let {s]pglﬂ)X, Sx C ||B||, and <a*>B € T. Then either |s|p£,0)X, whence
the desired result follows as above, or else |s|(pq - p&n))X . In the latter case
there must then be some Y with |s|p,Y such that X = J{X,:y € Y}, with
yp((,n)Xy forallyeY.

Then if t € Sy, we have |t| € Y, so Sx,, C Sx C [|B]||, whence as
|tlpc(,n)X|t|, the hypothesis on n gives <a*>B € t. Thus Sy C ||<a*>B|.
But <a><a*>B €T, and |s|p,Y, so by (D2) for o, <a><a*>B € s.
Hence by D-Miz we get our desideratum <a*>B € s.

This show that () holds for n + 1, completing the inductive proof that
it holds for all n, and hence completing the proof of Theorem 19. m

COROLLARY 20. Mr is a standard C PDL-model.

Proor. By definition, Mr is standard except possibly for tests. Since
it is a filtration of M™, the Filtration Lemma 17 then implies that

ppr = {(2,{2}) : Mr |=; B}

for B? € Progr, so that My is also standard for tests. [

THEOREM 21. Any non-theorem of C PDL is falsifiable in a finite standard
CPDL-model. Hence CPDL has the finite model property with respect to
standard models, and is decidable.

PrOOF. Suppose I/ A. Then there is some maximal set s with A ¢ s,
so that M™ £, A. Let T be a finite closed set containing A (Lemma 15).
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Then Mr is a finite standard model in which A is false at |s| (Theorems 19
and 20, and Filtration Lemma 17).

Since CPDL is finitely axiomatisable, its decidability then follows as in
(1, §4]. ]
Normality for <a>

A natural condition to impose on models is that
sR,T implies T # 0,

ie.
not-sR.0,

since if sR,T then T is the result of a terminating execution of a from s:
termination implies the existence of a terminal state.
The corresponding axiom schema is

D-N: —<a>Ll,

which is always true under the binary relation semantics. Indeed it requires
only the schema

[a]-A - ~<a>4

to derive D-N from [a]T, which itself is a theorem of any logic that is
normal for [a].

LeMMma 22,
(1) Let A be a normal logic containing CPDL.

(i) Relative to A, the schema D-N is equivalent to each of the schemata
[ a ]—|A — a<a>A

<a>—4 — —»[a]A,

t.e. A contains one of these three schemata if, and only if, it contains
the others.

(i) IfFa ~<m>L for all atomic programs w, then by ~<a>L1 for all
programs o.

(iii) IfkFp m<a>L1, then in the canonical model for A, not-sR,0.
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(2) In a standard model, if not-sRx0 for all atomic w, then not-sR,0 for all
a.

To prove the finite model property for the smallest normal logic obtained by
adding D-N to C PDL, we modify the closure conditions on T to require that
<7 >1 €T whenever 7 occurs in I'. Then in the finite filtration Mr it can
be shown that not—|s|p,0 for all atomic 7 € Progr. To see this, observe that
if |s|p.0, then since Sy = @ = || L||, property (D2) of p, implies <7 >L € s,
which is inconsistent with D-N.

By Lemma 22(2) above, it then follows that not—|s|p,0 for all @ € Progr,
and so Mr is a D-N-model.

Sequential Atoms

The reachability relation R, will be called sequential if )
sR,T implies T = {t} for some t.
The corresponding axiom schema is
Seqn: [a]-4 & <a>A,
from which =< a>1 is derivable (22(1)(i)).

LEMMA 23. In the canonical model for a normal logic containing CPDL
and Seq,,

<a>A€s iff there existst with sRot and A € t.

ProoF. Recall that sR,t iff s, C t. Thus if <a>A € s, it suffices
to show s, U {A} is consistent. But if it were not, then s, - —A, hence
[a]-A € s (8(5)), so "~<a>A € s by Seq,, contrary to the consistency of
s.

Conversely, if s, Ct and A € ¢, then =A ¢ ¢, so [a]-4 ¢ t, whence by
Seq, and maximality of s, <a>A4 € s.

By a sequential model we will mean one in which the atomic relations R, are
sequential, so that parallelism depends on the presence of the combination
connective a N § on programs. The (normal) logic determined by the class
of sequential models is decidable, and is generated by adding the schemata
Seq, for all atomic # to CPDL. To show this, we modify the definition of
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px in Mr, by defining it as the following sequential reachability relation on
St.
zp-{y} iff 3s €z 3tcy(skyt).

Thus
epty iff zpyy iff JseczItcy(s, Ct),

from which it follows readily that p, meets filtration conditions (B1) and
(B2). ,

To prove (D1) for py, let sR,T in the canonical model. Then T # 0,
since ~< 7 >1 is derivable from Seg,. Taking any ¢t € T, we get sR,t, and
so lslpatl} C ITI.

For (D2), let |s|p=X, Sx C [|B|, and <7 >B € I'. Then there is some
s’ € |s|, and some t such that X = {|t|} and s'R,t. But then t € Sx, so
B € t, and hence by Lemma 23, <n#>B € s'. Since <7 >B € I, we then
get <7 >B € s as desired.

This completes the proof that p, is a I'filtration of R, whenever 7« €
Progr. Thus Mr in this case is a finite sequential model that is a filtration
of the canonical model. The rest of the story is as usual. ®
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