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In theor ies  with nonl inear  s y m m e t r y  rea l iza t ion  one can in a n u m b e r  of c a s e s  e l iminate  
some of the original  Goldstone and gauge f ields by equating to ze ro  the cor responding  
covar ian t  Car tan  fo rms ;  this is  the i nve r se  Higgs effect .  We d iscuss  the genera l  condi-  
t ions of appl icabi l i ty  of the i nve r se  Higgs effect  in gauge and s p a c e - t i m e  s y m m e t r i e s ,  
and we a lso  cons ide r  some examples :  the e l iminat ion of inessent ia l  gauge f ie lds  in 
ch i ra l  dynamics  and a nonl inear  rea l iza t ion  of s u p e r s y m m e t r y ,  the el iminat ion of i ne s sen -  
tial Goldstone f ie lds  in spontaneously broken conformal  and pro jec t ive  s y m m e t r i e s .  

1.  I n t r o d u c t i o n  

In models  with dynamical  s y m m e t r y ,  Goldstone and gauge f ie lds  play a pa r t i cu l a r  ro le .  Because  
of the specia l  in te rac t ions  with these  f ields,  invar iance  under  some group of dynamical  s y m m e t r y  is 
achieved.  

In a num ber  of c a s e s ,  some  of the Goldstone and gauge f ields in t roduced in accordance  with the 
fo rma l  p r e s c r i p t i o n s  a r e  in fact  inessent ia l  and "redundant"  in the sense  that  they can e i ther  be e l iminated 
by a redefini t ion of the remain ing  fields,  o r  they can be e x p r e s s e d  in t e r m s  of them.  F o r  example ,  in 
theo r i e s  with spontaneously broken gauge s y m m e t r y  the Goldstone f ields a r e  inessent ia l  va r i ab l e s  since 
they can be e l iminated  f r o m  the invar ian t  Lagrangian  by a gauge t r an s fo rma t ion  (Higgs effect  [1-3]). 

We wish to d raw at tention to the fact  that  in models  with nonl inear  rea l iza t ion  of s y m m e t r y  [4-8] 
one can e l iminate  the redundant  Goldstone and gauge f ields by imposing invar ian t  conditions on the Caf tan  
f o r m s .  Any Car tan  f o r m  with homogeneous  law of group t r ans fo rma t ion  can be put equal to ze ro  without 
affect ing any of the invar ian t  p r o p e r t i e s  of the theory .  Solving the resul t ing  equations,  one can e x p r e s s  
some of the or iginal  Goldstone and gauge f ie lds  in t e r m s  of the r e m a i n d e r .  Those of the v a r i a b l e s  that  
cannot be e l iminated in this way a r e  the "true Goldstone" and "true gauge" f ields.  

We shall  cal l  this  e l iminat ion of inessent ia l  f ields by equating Car tan  f o r m s  to ze ro  the inve r se  
Higgs effect  s ince for  gauge s y m m e t r i e s  this effect  i s  the opposi te  of the o rd inary  Higgs effect  in th ree  
r e s p e c t s .  

F i r s t ,  the two ef fee ts  a r e  e s sen t i a l ly  opposi te  in nature .  The d i rec t  Higgs effect  cons i s t s  of the 
spontaneous occu r r ence  of m a s s  of the gauge f ie lds  : g # ( x )  assoc ia ted  with the g e n e r a t o r s  of the t r a n s -  
fo rmat ions  under  which the vacuum  is  noninvar iant  [1-3]. Another  a spec t  of the effect  is  the exis tence  of 
a gauge in which the Goldstone f ie lds  ~i (x)  d i s appea r  f r o m  the invar iant  Lagrangian (gauge ~i (x)  = 0), 
and the field ~ '  s a t i s f i e s  the condition 

~ , '  (z)It=o = V,~' = -]-o~'(z)+~2(z)I~,o + 0(~), (1.1) 

where  v p~i i s  the covar i an t  de r iva t ive  of the field ~i {x) and f i s  a constant .  Thus,  in the case  of the 
d i rec t  Higgs effect  the Goldstone field ~i (x)  is  e l iminated because  of i t s  "absorpt ion"  by the field ~#(x ) .  
At the s ame  t ime,  in the case  of {he inve r se  Higgs effect ,  i . e . ,  when one imposes  the invar ian t  condition 

V,~i=0, (1.2) 

one e l imina tes  the field ~ ( x ) ,  and this by solving the equation (1.2) can be e x p r e s s e d  in t e r m s  of ~i (x)  
and the t rue  gauge f ield 7P~a(x), which c o r r e s p o n d s  to the a lgebra ic  subgroup (which l eaves  the vacuum 
invar iant ) .  
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Second, the two effec ts  have di f ferent  reg ions  of applicat ion.  The d i rec t  effect  holds for  invar ian t  
Lagrangians ,  i . e . ,  when the gauge s y m m e t r y  i s  b roken  only spontaneously.  If to the invar ian t  Lagrangian  
one adds a t e r m  of the type ~ ~ r  %~.,_~/~ ~+ . . . ,  which d i rec t ly  b r e a k s  the gauge s y m m e t r y ,  the Goldstone 
f ields become  physica l  and cannot be e l iminated .  Converse ly ,  the i n v e r s e  Higgs effect  is  cons t ruc t ive  
p r e c i s e l y  when there  is  d i r ec t  b reak ing  of s y m m e t r y .  In this  case ,  the condition (1.2) l eads  to a model 
that r e p r o d u c e s  all the consequences  of broken  gauge s y m m e t r y  and, at  the s ame  t ime,  does  not requi re  
introduction of the field ~ , ' .  * Essen t ia l  v a r i a b l e s  a r e  the f ields ~i and Y',~. 

Final ly,  the two ef fec ts  a r e  opposi te  in the sense  that  in the case  of the d i rec t  Higgs effect  the 
kinetic t e r m  of the Goldstone f ields ~ V ~ ' V ~  ~ a f t e r  the i r  e l iminat ion can be t r a n s f o r m e d  into the m a s s  
t e r m  of the f ie lds  ~,~l~=0, whereas  a f t e r  the i nve r se  Higgs effect  has been used  the m a s s  t e r m  of the 
f ie lds  ~ leads  to the kinetic t e r m  of the Goldstone p a r t i c l e s .  

The inve r se  Higgs ef fec t  can a lso  be used  to e l iminate  inessent ia l  Goldstone f ields.  This  p o s s i b i -  
l i ty  can be observed ,  for  example ,  in nonl inear  r ea l i za t ions  of a number  of s p a c e - t i m e  s y m m e t r i e s  [10]. 

We reca l l  that nonl inear  models  with spontaneous s y m m e t r y  b reak ing  a r e  nonrenorma l i zab le  and 
p re tend  only to a phenomenological  descr ip t ion  of the l ow-ene rgy  region.  

The plan of the p r e s e n t  pape r  is  as  fol lows.  In the second sect ion we give the genera l  theory  of 
the i nve r se  Higgs effect  for  gauge f ie lds  and we cons ider  two examples .  F o r  the f i r s t  example ,  we 
b r i e f ly  d i scuss  the model of SU(2) • SU(2) a lgebra  of f ields with e l imina ted  axial  field [11]. Unfor tu-  
nately,  the pred ic t ions  of this model  do not ag ree  with expe r imen t s .  The second example  is  for  a non-  
l i nea r  rea l iza t ion  of s u p e r s y m m e t r y ,  which was cons idered  by Volkov et a l . ,  [12, 13]. The inve r se  Higgs 
effect  enables  one to e l iminate  f ields a s soc i a t ed  with g e n e r a t o r s  of spinor  t r ans l a t ions  [13]. 

In the th i rd  sect ion we d i scuss  the i nve r se  Higgs effect  for  Goldstone f ie lds  in nonl inear  r e a l i z a -  
t ions of s p a c e - t i m e  s y m m e t r i e s .  We p rove  a n e c e s s a r y  and sufficient  c r i t e r i on  for  a p a r t i c u l a r  Goldstone 
field to be inessent ia l .  We cons ide r  two examples :  nonl inear  rea l iza t ion  of conformal  s y m m e t r y  [5-7, 10] 
and nonl inear  rea l iza t ion  of the p ro jec t ive  group i somorphic  to the group SL(5,  R ). The f i r s t  mode! 
r educes  a f t e r  applicat ion of the i nve r se  Higgs effect  to a nonl inear  rea l iza t ion  of sca le  s y m m e t r y  (the 
essen t ia l  field is  a dilaton) [14]. The second model r educes  to a nonl inear  rea l iza t ion  of the affine group 
P4 (D GL(4,  R) ,  which was cons ide red  in [10] (the Goldstone t ensor  field hpv(x)  co r respond ing  to p r o p e r  
affine t r a n s f o r m a t i o n s  is  essent ia l ) .  

2 .  I n v e r s e  H i g g s  E f f e c t  f o r  G a u g e  F i e l d s  

Let  G be a dynamical  s y m m e t r y  group with the a lgebra  

[z,, z~] =ic,~,z,+iC~V~, [v~, Z,]=iC~Z~, IVy, v~] =iC~v.~, (2.1) 

where  C a re  s t ruc tu re  cons tants .  The g e n e r a t o r s  V~ co r r e spond  to the vacuum stabi l i ty  subgroup H. 
In the ca se  of s p a c e - t i m e  s y m m e t r i e s ,  the g e n e r a t o r s  Z i mus t  include the gene ra to r  Pt~ of fou r -  
t r ans la t ions  [7]. If G defines a s u p e r s y m m e t r y  [12, 13], some of the gene ra to r s  Z i sa t i s fy  a n t i c o m m u t a -  
tion re la t ions .  

The group G is  r ea l i zed  by lef t  shif ts  on the fac tor  space  G/H whose points a re  p a r a m e t r i z e d  by 
the Ooldstone f ields ~i (x } [4-8]: 

G (~) = e ~ - - ~  gG (~) =e ~ ~e 't~ (~.g)v~. (2.2) 

The shift  (2.2) induces a t r an s fo rm a t i on  of the f ields ~i (x) :  

8~i(x) =:F'i~(~) ~i~+~'~&C '~p~, (2.3) 

where  fik and aP a r e  group p a r a m e t e r s  and 2r~(~) is  a nons ingular  ma t r ix  that i s  nonl inear  in ~i (x ) .  

The other  f ie lds  ~ ( x ) ,  and a lso  the covar tan t  d i f fe ren t ia l s  of the f ields ~ (x)  and ~ (x )  a r e  t r a n s -  
fo rmed  in the group G with r e s p e c t  to r ep r e sen t a t i ons  of the group H with the function p a r a m e t e r s  UC~(~, g). 

* The s tandard  scheme  with canonical  field ~ ( x )  c o r r e s p o n d s  to the different  covar ian t  condition .~,~(z)= 
(l//)v,~,, where  the f ie ld  ~,* t r a n s f o r m s  by definition l ike Vp~ i (a condition of this type is  used by 

Kawarabayash i  and Kitakado [9] in SU( 2 ) • SU( 2 ) ch i ra l  s y m m e t r y  to e l iminate  Goldstone f ields f r o m  the 
gauge- inva r i an t  pa r t  of the Lagrangian) .  The formula t ions  of the theory  in t e r m s  of z~* or  ~Z,* a r e  
equivalent .  
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We shall be in t e re s t ed  in the case  of gauge s y m m e t r y ,  when the p a r a m e t e r s  fik and a o  do not 
depend on the coord ina tes  x p .  The covar i an t  d i f fe ren t ia l s  of the f ields ~ i (x)  and ~ ( x ) ,  ~0~ (d)  and D,t, 
a r e  de t e rmined  by the s tandard  exp res s ions  [4-8] 

G-' (~) [ d+if(k~*Z~+V/'~V;) ]G (~) =io)a(d)Z~+iO~'(d) V:. (2.4) 

DW~dW-t-iO~(d) F~V~, (2.5) 

where  Vc~ a r e  the g e n e r a t o r s  of the subgroup H in the �9 r ep resen ta t ion .  Then ~ and 7 p~ a r e  re la ted  
to the gauge f ields ~ ,  7z,~ by 

~[ ,~-~)(x)dx , ,  ~'=7~ (2.6) 

and they have the t r an s fo rm a t i on  p r o p e r t i e s  

t d 6~=:,~,5~CP~ + ~PC~'P~+,,,~k(z~C k~ -- ~ [i ~, (2.7) 

67o~=~al~C~p+~C~ p _ 1 d~,  (2.8) 
! 

where f is  a constant .  F o r  what follows, it  is impor tan t  that  the Car tan  f o r m  cJ (d)  t r a n s f o r m s  in the 
group G homogeneously .  The d i f fe ren t ia l s  co s (d)  and D,~ a r e  re la ted  to the eovar ian t  de r iva t ives  Vp ~i 
and ~ ~, 

D W = V , W o ~ ( d ) ,  o~(d)=V~,~ko,~(d), 

where ~ ( d )  is  the covar ian t  Car tan  f o r m  cor responding  to the g e n e r a t o r  Pp of fou r - t r ans l a t i ons .  [Here 
and in what follows it  is a s s u m e d  that  Pt~ is  t r a n s f o r m e d  in H independently of the remain ing  g e n e r a t o r s  
Z~. In the case  of in ternal  s y m m e t r i e s ,  ~ ( d )  = dx# .] 

We show that the re  ex is t  nonl inear  functions of the f ields ~i (x)  and ]e,~(x) which have the t r a n s -  
fo rmat ion  p r o p e r t i e s  (2.7) of the field ~ ,  for  whose introduction the re  is  thus no d i rec t  need.  To con-  
s t ruc t  invar ian t  Lagrangians  it is suff icient  to have at  ones disposal  the f ie lds  ~', ~ .  

We impose  the condition 
o)~(~, d~, ~ ,  "f) =0 (2.9) 

o r  

V;~=0 ((%~ (d) :~0). (2.9')  

By the homogenei ty  of the group t r an s fo rm a t ion  of the f o r m  ~0i (d) ,  Eq. (2.9) is  invar ian t  under  the action 
of the group G. The solution of this equation i's found in the Appendix: 

~ ,  (~, ~ )  = _ _~ (:7--, (~) ) ~,~ (d~m+]~C,~ , , ) .  (2.10) 

Using the t r an s fo rm a t i on  laws (2.3) and (2.8), and a l so  the Jacobi  ident i t ies  for  the ma t r ix  ~ ' (~) ,  which 
follow f r o m  the group p r o p e r t i e s  of the t r a n s f o r m a t i o n  (2.3), one can show that  the function ~ ( ~ ,  ~)  
t r a n s f o r m s  in accordance  with the law (2.7). It  is  a l so  ea sy  to prove  the covar iance  of the express ion  
(2.10) under  a canonical  subst i tut ion of the f ields ~i(x). 

We emphas i s e  that  if  some function ~*(~, F)  t r a n s f o r m s  in accordance  with (2.7), then when it is  
subst i tuted into the Car tan  f o r m  o~(~, d~, ~ ,  F)  the condition (2.9) is  sa t i s f ied  ident ical ly.  This  follows 
f r o m  the obvious p r o p e r t i e s  

g~ 

and the exis tence  of a gauge t r a n s f o r m a t i o n  g9 such that  (0'(~, d~, ~ ,  7~)i~(o*(0, 0, 0, ~ ) ;  

We have t h e r e f o r e  p roved  

THEOREM I .  In nonl inear  rea l i za t ions  of gauge s y m m e t r i e s  one cart a lways  cons t ruc t  a function 
~ , ' (~ ,  d~, ~ )  With the t r an s fo rm a t i on  p r o p e r t i e s  of the gauge field ~,~ (2.7) by equating to ze ro  the 
covar i an t  Car tan  f o r m  0)~(~, d~, ~ ,  7~). Converse ly  if such a function ex is t s  then i ts  substi tution ins tead 
of the field 2;~ ~ into the f o r m  (o*(~, d~, ~ ,  7 ~) makes  the l a t t e r  vanish  ident ical ly.  

It  mus t  be emphas ized  that the gauge field ~ :  cannot be e l iminated since the re  do not exis t  
Caf t an  f o r m s  with homogeneous  law of group t r an s fo rma t ion  whose equating to ze ro  would lead to equa-  
t ions . that  a r e  solvable  for  7~,% The field ~ ,~  is  essen t ia l  and mus t  be introduced as a canonical  field. 
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The inessent ia l  f ie lds  2;, ~ need not be r e f e r r e d  to at  al l .  

We reca l l  that  the components  of the covar i an t  de r iva t ive  V~}i that a r e  i r r educ ib le  with r e s p e c t  
to H t r a n s f o r m  in the group G independently of one another .  The re fo re ,  conditions of the type (2.9')  can 
be imposed  s e p a r a t e l y  for  each  r ep re sen t a t i on  of the subgroup H contained in ~ } i .  In o ther  words ,  if  
de s i r ed  one need not e l imina te  all  the f ie lds  2;~ but only those belonging to a chosen r ep re sen t a t i on  of the 
subgroup H. Such a si tuat ion obtains,  for  example ,  in nonl inear  r ea l i za t ions  of s p a c e - t i m e  s y m m e t r i e s ,  
in which it is  mean ing les s  to equate to ze ro  the Caf tan  f o r m  c ~ ( d )  since it  is used to cons t ruc t  the 
invar ian t  e l emen t  of fou r -vo lume .  The gauge field a s soc ia t ed  with the t rans la t ion  subgroup cannot be 
e l iminated  and is  t he re fo re  a t rue  gauge field. 

When not all  the f ields 2 ; j  a r e  e l iminated,  i t  is  difficult to obtain genera l  equations of the type 
(2.10). In one s imple  case ,  however ,  one can sti l l  use  the express ion  (2.10). 

Suppose the g e n e r a t o r s  Z W c o r r e s p o n d  to an invar iant  subgroup, i . e . ,  they f o r m  an ideal of the 
a lgeb ra  (2.1), [Z, Z~,]~Z~,, [V, Z~,]-Z~.. We denote the Goldstone and gauge f ields co r respond ing  to the 
remain ing  g e n e r a t o r s  Zk,, by }k" and 2;~".  Then 

THEOREM 2. The gauge field 2;h,, can be e x p r e s s e d  in t e r m s  of the f ie lds  }k" and ~,~ in 
accordance  with the equation 

2 ;  ~.. = _ i__(#,.  , (~,,) ) , , . , . ,  (a,~z. ,+]~, , ,y2opC ,,O,,,). (2.11) ] 

where ~-~,.v, is the matr ix  of the nonlinear transformation 5~"'=~F "z''~''(~') ~ " .  

The expres s ion  (2.11) can be obtained in the same  way as  (2.10) by bear ing  in mind that the field 
~"' t r a n s f o r m s  independently of ~k,. 

The el iminat ion of gauge f ie lds  by imposing  invar ian t  condit ions of the type (2.9) is  essen t ia l ly  
opposite to the Higgs effect  [1-3]. The point is  that  in this ca se  the field 2;,~ is  e l iminated  in t e r m s  of the 
Goldstone f ie lds  ~i (x) ,  whereas  in the Higgs effect  the f ields ~i (x)  a r e  "absorbed"  by the gauge field 2;~ 
[choice of the "uni tary"  gauge }~ (x)  = 0 in the invar ian t  Lagrangian] .  With al lowance for  this r e m a r k ,  it 
is  na tura l  to r e f e r  to the i nve r se  Higgs effect .  

In con t r a s t  to the o rd ina ry  Higgs effect,  the i nve r se  effect  leads  to nontr ivia l  r e su l t s  if  a t e r m  
which d i rec t ly  b r eaks  the gauge s y m m e t r y  is  added to the invar ian t  Lagrangian.  In this  case ,  the use  of 
conditions of the type (2.9')  and (2.9) enables  one to re ta in  all the r e s t r i c t i ons  of the b roken  gauge s y m -  
m e t r y  under  the subgroup H and achieve  invar iance  under  nonl inear  t r ans fo rma t ions  of the group G with 
constant  p a r a m e t e r s  without introducing the fields 2;~. This  invar iance  is now mani fes ted  only in the 
connect ions between the min imal  and nonminimal  ( f rom the point of view of the subgroup H) in te rac t ions  
of the f ie lds  ~i (x)  and ~ , : (x) .  Note that  the kinetic t e r m  of the Goldstone pa r t i c l e s  can now appea r  only 
f r o m  the p a r t  of the breaking  which is  nonl inear  in 2;,: (~, ~ )  : 2;~(~, ~)2;o ~(~, yz) =]-~ao~o~+ . . . .  

The kinetic t e r m  of the gauge f ie lds  yz:  can be introduced by means  of the cova r i an t  different ia l  
f o r m  of second o r d e r  [10, 13] B~, ~, 

"B~ o~/~0~ ~V/d~ ,J ~ (0~ (d~) - -  o~v (d~) o ~  (d,)) :d~O~ (d~) --d~Or --C~'~O~(d~) O~(d~), 

where  O~(d) is  defined by the expansion (2.4) 

Let  us now cons ide r  two examples  of the use  of the inve r se  Higgs effect  in gauge theor i e s .  

1.  M o d e l  o f  S U ( 2 )  • S U ( 2 )  a l g e b r a  o f  f i e l d s  w i t h o u t  t h e  A t m e s o n .  I n t h e  
r ev iew [11] a model of SU(2) X SU(2) a lgebra  of f ields is  cons t ruc ted  in which a function A~(g, p) with 
app rop r i a t e  t r a n s f o r m a t i o n  p r o p e r t i e s  is  used  ins tead  of the field of the A~ meson .  In the p a r a m e t r i z a -  
tion of the nonl inear  s igma  model the genera l  equation (2.10) gives  

Z~ -'~' i 
A . ( ~ ,  p) = - -  (a;r-g,p.Xn), ( 2 . 1 2 )  

where  gp and Zp a re  the un ive r sa l  coupling constant  and the r enormal i za t ion  constant  of the p meson  and 
f ~  -~ 94 MeV is  the pion decay constant .  

The invar ian t  Lagrangian  has  the f o r m  
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where  

" ~ ' ~  - - - -  - -  4 ] .~- -n = P '@" --  )'-~'=~ (P"~)  (P"~)  ' (2.  !3 )  

p,.=om.-o~p,-gm,• ( ~. p)XA,(~, p). (2.14) 

The stIXlcture of the mass term ~B. of the field p/~ is uniquely determined by the requirement of 
chiral invarianoe and by the oon~tion that the field p/~ be coupled to a conserved current: 

~Br=--'/2mpZ(p;~p~+ZpAt~(g, p) A,(x, p)). (2.15) 

The conse rved  axial  cu r r en t  and vec to r  c u r r e n t  ca lcula ted  by the Ge11-Mann-Levi  method sa t i s fy  the s t an-  
dard  commuta t ion  re la t ions  of the SU( 2 ) • SU( 2 ) a lgebra  of f ields [15] despi te  the absence  of the canon-  
lea1 field of the A1 meson  in the axial  cu r r en t .  

Thus,  the r equ i r emen t  of ch i ra l  invar iance  can be reconc i led  with the assumpt ion  of a coupling of 
the field pp to the conse rved  c u r r e n t  without introducing the field of the As meson.  A choice between this 
model and the s tandard  approach  can be made only a f t e r  the i r  p red ic t ions  have been c o m p a r e d  with the 
expe r imen t s .  

F o r  the c o r r e c t  no rmal i za t ion  of the kinetic t e r m  of the pions in (2.16) it  is  n e c e s s a r y  that the 
following sum rule  be sa t i s f ied  [11]: 

m,2=g~f~ 2, (2.16) 

and this  does not ag ree  with the empi r i ca l  K a w a r a b a y a s h i - S u z u k i - R i a z u d d i n - F a y y a z u d d i n  re la t ion [16]: 

mp2=2gp~f~ 2. (2.17) 

This  d i s c repancy  means  e s sen t i a l ly  that  in the p r e sen t  model the va lues  of the par t ia l  widths of the p meson  
a r e  much lower  than the p red ic t ions  of the o rd ina ry  approach  [11]. 

A m o r e  se r ious  shor tcoming  of the model ,  in our  opinion, i s  the imposs ib i l i ty  of const ruct ing a 
gauge- invar i an t  ~rN in terac t ion ,  which, in the lowest  o rde r  in 7r, would give the pseudovec to r  coupling 
N%~-eNO~, which is  needed to desc r ibe  the p -wave  pa r t  of xN sca t t e r ing  [17]. This  is due to the van i -  
shing of the covar i an t  de r iva t ive  of the pion. 

Let  us  make a f u r t he r  r e m a r k  concerning the K a w a r a b a y a s h i - S u z u k i - R i a z u d d i n - F a y y a z u d d i n  
re la t ion .  It  i s  well known that  i t  cannot be de r ived  in the f r a m e w o r k  of only the assumpt ion  of p domi -  
nance and cu r r en t  a lgebra  [18]. On the o ther  hand, f r o m  the assumpt ion  of vanishing of the pion covar ian t  
de r iva t ive  and the choice of the breaking  in the f o r m  (2.15) the sum rule  (2.16), which is  incompat ib le  with 
(2. i7),  n e c e s s a r i l y  follows. The re fo re ,  for  the fulf i l lment  of the K a w a r a b a y a s h i - S u z u k i - R i a z u d d i n -  
Fayyazuddin rule  i t  is  n e c e s s a r y  that  the covar ian t  de r iva t ive  of the pion be nonzero,  i . e . ,  that in the p a r t  
of the axial  c u r r e n t  with quantum n u m b e r s  1 + the A~ meson  be predominant  (this condition is  of cou r se  

i n s u f f i c i e n t ) .  

It i s  in te res t ing  that  the p r e s en t  model is the l imit ing case  m ~ , ~  of the s tandard  model with 
AI meson .  

2 .  E l i m i n a t i o n  o f  g a u g e  f i e l d s  i n  s u p e r s y m m e t r y  m o d e l .  In [13], Vo lkovand  
Soroka d i scussed  the e l iminat ion of gauge f ie lds  in a nonl inear  rea l iza t ion  of s u p e r s y m m e t r y  [12]. In this 
case ,  the f ac to r  space  is  p a r a m e t r i z e d  by Goldstone sp inors  ~'a and ~,+ (a  is  the subsc r ip t  of a nonl inear  
in ternal  s y m m e t r y ) ,  which co r r e spond  to spinor  t r ans la t ions ,  and by o rd inary  coordina tes  x # ,  which 
s e r v e  as  "Goldstone f ie lds"  of the subgroup of f ou r - t r ans l a t i ons .  The g e n e r a t o r s  of the spinor  t r ans la t ions  
a r e  a s soc ia t ed  with the gauge f ie lds  Co ~, O~ ~+ [13]. 

T h e  g e n e r a t o r s  P# f o r m  an ideal of the comple te  a lgebra ,  and the re fo re ,  in accordance  with 
T h e o r e m  2, the f ield Ca ~ can be e x p r e s s e d  in t e r m s  of the Goldstone sp inors  and the gauge f ie lds  ~,p and 
Vo p, which c o r r e s p o n d  to the Lorentz  subgroup and the in ternal  s y m m e t r y  group.  Applying (2.11), we 
obtain 

@ ~ = - - ] -  ( t0~qf~+i-~]~, ,~LpT'~+ifVb~I~~ (2.18) 

where  L~ ~, L a r e  the g e n e r a t o r s  of the s tabi l i ty  subgroup in the <I~ r ep resen ta t ion .  The fact  that  the 
f ie lds  @o~, @o"+ a r e  inessent ia l  was noted in [13]. 
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3.  I n v e r s e  H i g g s  E f f e c t  f o r  G o l d s t o n e  F i e l d s  

The solvabi l i ty  of Eqs .  (2.9) "for ~ is  a s soc i a t ed  with the fact  that  these  f ie lds  en te r  the c o r r e -  
sponding covar i an t  de r iva t ives  l i nea r l y  and addit ively.  

If a covar i an t  de r iva t ive  contains a t e r m  that  is  addit ive with r e s p e c t  to a Goldstone field, i t  can 
a lso  be e l imina ted  and it can be e x p r e s s e d  in t e r m s  of the t rue  Goldstone f ields by equating the covar ian t  
de r iva t ive  to ze ro .  This  phenomenon occurs ,  for  example ,  in nonl inear  rea l iza t ions  of a n u m b e r  of sp ace -  
t ime  s y m m e t r i e s .  We shall  call  the e l iminat ion of inessent ia l  Goldstone f ields by means  of conditions of 
the type (2.9) and (2.9 ' )  the i nve r se  Higgs effect  by analogy with the co r respond ing  effect  for  gauge f ields.  
In this section,  we d i scuss  the e l iminat ion of Goldstone fields in nonl inear  rea l iza t ions  of s p a c e - t i m e  
s y m m e t r i c  s. 

Suppose such a s y m m e t r y  is  defined by the re la t ions  (2.1).  The subgroup H contains  the h o m o -  
geneous Lorentz  group.  The g e n e r a t o r s  Z i mus t  include the g e n e r a t o r  Pp of f ou r - t r an s l a t i ons  [7, 8]. 
The remain ing  g e n e r a t o r s  of nonl inear  t r a n s f o r m a t i o n s  and the re la ted  Goldstone f ields will be denoted 
by Z'i and ~i �9 Thus,  the points  of the fac tor  space  G/H a re  c h a r a c t e r i z e d  by the coord ina tes  xp  and 
~i (x ) .  

We shall  r e s t r i c t  ou r se lves  to the case  of s y m m e t r i e s  that sa t i s fy  two requ i remen t s :  1) the 
product  of the r ep r e s en t a t i ons  of the subgroup H is comple te ly  reducible  with r e spec t  to H, 2) the g e n e -  
r a t o r s  P~ and Z~ t r a n s f o r m  in H independently of one another .  

With al lowance for  the second condition, the f ields ~ t r a n s f o r m  in acco rdance  with a l inea r  r e p -  
resen ta t ion  D(h)  of the group H, which can be decomposed  into a d i r ec t  s u m  of i r r educ ib l e  r e p r e s e n t a -  
t ions R g ( h ) .  The f ields }i a r e  then decomposed  onto subspaces  ~,.~.that a r e  i r r educ ib le  with r e spec t  
to H. The der iva t ive  0~ t r a n s f o r m s  in H in accordance  with the r ep re sen ta t i on  TP(h)  with r e spec t  to 
which the g e n e r a t o r  Pp t r a n s f o r m s .  

In this case ,  G(}) (2.2) has the f o r m  [7,8] 

G(x, ~)=e%P~,e ~'z~'. (3.1) 

The Caf tan  f o r m s  co r (of, 0 ~ a r e  de te rmined  by the expansion 

G-l dG=e-~z, '  iP~dx~e~,z~'-i-e-~,Z~' de ~z~" =io~Z~' + ioaf P~,+ iOc'V~,. (3.2) 

Consider  the c o m m u t a t o r  of Pp with ZPi: 

[Z,', P,] = ~ C ' Z / +  . . . .  (3.3) 

The poss ib le  t e r m s  ~V~ and Pp on the r ight -hand side of (3.3) a r e  inessent ia l  for  our  ana lys i s .  In the 
Appendix we p rove  a t heo rem  that  enables  one, given the s t ruc tu re  of the c o m m u t a t o r  (3.3), to de te rmine  
whether  a p a r t i c u l a r  H mult ip le t  of Goldstone f ie lds  can be e l iminated.  

THEOREM 3. A field ~,, can be e x p r e s s e d  in t e r m s  of the remaining  Goldstone f ie lds  and the i r  
de r iva t ives  if and only if: 

a) the d i rec t  product  TP(h)| of r e p r e s e n t a t i o n s  contains  the i r r educ ib le  r ep re sen ta t i on  RN(h ); 
b) for  some index t r i N the s t ruc tu re  cons tants  C '*'c')~ in the c o m m u t a t o r  (3.3) a r e  nonzero  [the 

combinat ion of indices  {pt }N r e f e r s  to the r ep re sen t a t i on  Rlv(h) ]. 

This  t h e o r e m  d e t e r m i n e s  the conditions under  which the covar ian t  der iva t ive  V#}t contains a t e r m  
that  is  l i nea r  and addit ive in the field ~.. Bear ing  in mind that C~'~*=~6 ~ '~"  by v i r tue  of Schur ' s  l e m m a  
and that fi r 0 in accordance  with condition b), and using the invar ian t  equation 

V~,~,~=0 (3.4) 

we can e x p r e s s  the field ~,  in t e r m s  of the t rue  Goldstone fields: 

1 
~,,.= - - ~ -  O~"~ '~,~ + . . . .  (3.5) 

The neces s i t y  of conditions a) and b) is  p roved  in the Appendix. 

Note that  if the combinat ion {Pt}N can be fo rmed  in severn1 inequivalent  ways,  then the m o s t  
genera l  covar i an t  equation has the f o r m  
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whence 

t Za~v,O(,~t)~.,_t_O(~,x), 

where  a~v a re  numer i ca l  coeff ic ients ,  and the summat ion  is  ove r  the r ep re sen ta t i ons  R N cons t ruc ted  in 
the inequivalent  ways .  I f  the invar ian t  subspaces  ~k include some that  t r a n s f o r m  in aecordance~with B N 
(i. e . ,  ~ , ,  ~ - ,  e tc .  ) and at  the s ame  t ime  the cons tants  C~,,'~r C',,"c"%... a re  nonzero,  the e l iminated 
field ~,~ contains l i nea r ly  the f ie lds  ~,~, ~ .. : 

~'~v ~ ~ T ~"  Ck~ {~'}~" + . . . .  

After  the imposi t ion  of the conditions (3.4), not all  the invar ian t  kinetic t e r m s  of the f ields 
~, (~V~,V~,)  a r e  independent.  The "miss ing"  t e r m s  can be cons t ruc ted  by using the different ial  covar ian t  
f o r m s  of second o rde r .  The cont rac t ions  of these  f o r m s  with r e s p e c t  to different  p a i r s  of indices  contain 
t e r m s  ~0~0,~,  and ~ r l ~  (see,  for  example ,  [10]). 

F o r  two s imple  examples ,  le t  us cons ide r  the consequences  of the i nve r se  Higgs effect  in sp ace -  
t ime  s y m m e t r i e s .  

1. N o n l i n e a r  r e a l i z a t i o n  o f  c o n f o r m a l  s y m m e t r y .  Nonl inear  rea l iza t ion  of con-  
f o rma l  s y m m e t r y  with l inear iza t ion  on the homogeneous  Lorentz  group was d i scussed  in [5-7, 10]. In this 
case ,  one in t roduces  Goldstone f ie lds  ~#(x )  and ~(x)  assoc ia ted ,  r e spec t ive ly ,  with the g e n e r a t o r s  of 
specia l  conformal  and sca le  t r a n s f o r m a t i o n s  K k and D. 

The c o m m u t a t o r  of Ku with 1)p. contains  on the r ight -hand side the dilatation gene ra to r  [K~, P~] = 
-2~(8~D-L,~), and t he re fo re  in accordance  with T h e o r e m  3 the field C#(x) can be e x p r e s s e d  in t e r m s  of 
the t rue  Goldstone f ield which is  the dilaton ~ (x ) .  Equating to ze ro  the covar ian t  der iva t ive  of the dilaton, 
e -~(~) (O~a(x') - 2 0 , ( x )  ) =0, we obtain [10] 

CAx) ='/~0,~ (~). (3.6) 

The fact  that  the field ~p (x )  does not in r ea l i ty  have a Goldstone nature  was noted in [7, 10]. 

Note that  a f t e r  the condition (3.6) has  been used  the pa r t  of the invar ian t  action that  depends only 
on the field a (x )  can be cons t ruc ted  in such a way that  it is  identical  to the cor responding  pa r t  of the action 
in the ca se  of nonl inear  rea l iza t ion  of only sca le  s y m m e t r y .  

With r e g a r d  to the in te rac t ion  of the dilaton with the f ields ~ ( x  ), i t  is  de te rmined  by the f o r m  of 
the covar ian t  de r iva t ive  ~X~(x) [10]: 

VxW (x) =e-~(~)0~W (x)+ie-~(~O~(~ ( x ) L ~ W  (x), (3.7) 

where  L J  a r e  the g e n e r a t o r s  of the Lorcntz  group for  the r ep resen ta t ion  ~.  In Eq. (3.7), the f i r s t  min i -  
real (with r e s p e c t  to the nonl inear  reaI iza t ion  of the scale  symmet ry )  t e r m  and the second nonminimal  
t e r m  a r e  s t r i c t ly  re la ted ,  which is  the only " t r ace"  of dynamical  conformal  s y m m e t r y  that r e m a i n s  a f t e r  
e l iminat ion of the field ~t~ (x ) .  

2 .  N o n l i n e a r  r e a l i z a t i o n  o f  t h e  p r o j e c t i v e  g r o u p .  The p ro jec t ive  group in four  
d imens ions  is  i somorph ic  to the group SL( 5, R ), whose action on the coord ina tes  x p  is  de te rmined  by 
the identif icat ion 

x.=g~/g~ (~t=t, 2, 3, 4, g~=igo, x~=ixo), 

where y~ and Y5 a re  the coord ina tes  of the f ive-d imens iona l  space  on which SL( 5, R ) ac ts  l inear ly :  
6y~=a~g~ (i, k=~, 2, 3, 4, 5), a~=0. Thus,  6x.=a.~x~--a~.,x~x~-a~x.-Fa,~, a.~=--a~. The p a r a m e t e r s  atx v 
c o r r e s p o n d t o  t r a n s f o r m a t i o n s  of the subgroup GL(4,  R);  aps,  to fou r - t r ans l a t ions ;  and a w ,  to new 
pro jec t ive  t r a n s f o r m a t i o n s .  

The a lgebra  of the p ro jec t ive  group contains  24 g e n e r a t o r s ,  which sa t i s fy  the re la t ions  

. [  R,,., R~ ] = 6~L~+ 6,,~L~+ (~ -~ v), (3.8a) 

+ [ R , . ,  P0] =6,~P~+ ( ~ t ~ ) ,  (3. Sb) 

t 
-:-[R,~, F~I =-5,~F~+ (~-~v), (3.8c) 
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[F., Fx] =0, (3.8d) 

l 
-w-[ Fo, P,.] =- ' /2  ( 6o~R~.-k-R.~ + Lp,,) , (3.8e) 

where we have omitted the t r ivial  commuta to r s  that contain the gene ra to r s  Lt~ u of the Lorentz  group on 
the left-hand side. The gene ra to r s  P~, L,v, R~ fo rm the a lgebra  of the affine subgroup P4 <9 GL(4, R ) 
(20 genera tors ) .  The F k ' s  genera te  projec t ive  t rans format ions .  

Let us cons ider  a nonlinear real izat ion of the project ive group with the homogeneous Lorentz 
group as stabil i ty subgroup, tn this ease ,  (2.2) can be represented  in the fo rm G(~)=e~X;*V~exp {il/2h.,R~,} 
e~qpF~, where h,~(x), q~(x) are  Goldstone fields. 

The Caftan fo rms  ~ ,  ~,J, ~J,  ~o.k a re  associa ted  with the Caftan fo rms  found in [10] of the non- 
O R l inear  real izat ion of the affine group, c0~$, ~ ,  ~0,, ~ , by 

~ - -  ~ (3.9a) 

~ 7 =  (o.~ R- (q~o~,~+q~c0 ~ P ) - 25~q, (o~ ~, (3.9b) 

ff)~F=dq,+ (q,o~'--qpo),~ ~) --q~. ( q.o~) . (3.9c) 

~,~,~=(% L_ (q,,~0v~_q, co~$), (3.9d) 

Since the commuta to r  of Fp with PT~ in (3. Be) contains Rpu on the r ight-hand side, the field 
qp(x) can, in accordance  with Theorem 3, be expressed  in t e r m s  of the t rue Goldstone field ht~v(x). 

The covar iant  derivat ive of the field hgu(x) has the fo rm 

9~h~=V~h,~-q,6~-q,&~-2q~6,,,. (3.10) 

Solving the invariant  equation 

V,,h~+b@~h~,=O (3. ii) 

for  qA(x), we find the one -pa rame te r  family of solutions 

t iO 
q~(x) = ~,(V~h,,~,+bVohp,~) b~ -- --7 (3.12) 

With allowance for the condition (3.11), the covar iant  derivat ive of the field '~(x) can be represen ted  in 

the fo rm i 
V~ ~ co~=dW + ~f-(ff)~+V~.~) L ~ W ,  (3.13) 

whe re 
F~,,= [a~ (V~,h,~-V~h~) +a~(5,~V~h~-&~ ~n~) ] co~ ~ (3.14) 

and at and a 2 a re  a r b i t r a r y  p a r a m e t e r s .  At the same time, in the nonlinear real izat ion of only affine 
s y m m e t r y  the express ion for the covar iant  derivat ive VX~ contains three a rb i t r a ry  p a r a m e t e r s  [10]: 

V~Wo~P=dW + +(~+V~)L~,'W (3.15) 

and 
V~,~= [ c~ ( V,h~- V~h,~) +c2 (6,~V~h0~-6,,~V~ho0) +c~ (6,~V~h~-6,~ VJ~,~) ] c0~ ~. (3.16) 

Comparing (3.13) and (3.15) and taking into account (3.9d), (3.10), and (3.12), we can show that if Vk~ is 
to be covar iant  under the project ive group it is  n e c e s s a r y  and sufficient for the p a r a m e t e r s  c l, cz, c~ to 
satisfy the relation* 

i +c~-7 c~+ ~Oc~=O. (3.17) 

Thus, af ter  the inverse  Higgs effect has been used the res t r ic t ions  of the dynamical  project ive 
symmet ry  reduce to the relat ion (3.17) between the constants  of the minimal and nonminimal interact ions  
of the essential  Goldstone field hp u(x) with the fields ~ (x) in the nonlinear real izat ion of the affine 
group. 

* In [10] it was shown that if c 2 = C 3 = 0 and cl = -1  then XYkq becomes eovariant  under t rans format ions  
of the conformal  group and s imultaneously under  general ly  covar iant  t ransformat ions .  This choice of the 
p a r a m e t e r s  cl, c2, e3 is compatible with the condition (3.17), which is natural since the project ive group 
is a subgroup of the genera l ly  covar iant  group.  
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4.  C o n c l u s i o n s  

It follows f r o m  our  t r e a t m e n t  that  the d i rec t  and the i nve r se  Higgs ef fec ts  have a common fea ture ,  
as well as  the th ree  opposite f ea tu re s .  Namely ,  they both effect ively  reduce  the or iginal  s y m m e t r y  to a 
lower  one. In the case  of the i nve r se  Higgs effect,  the theory  of the m a s s i v e  Yang-Mi l l s  f ie lds  ~:~,', F ~  
is  reduced to the theory  of the f ields F2 ,  the conformal  s y m m e t r y  is  reduced to sca le  s y m m e t r y ,  and the 
s y m m e t r y  under  the p ro jec t ive  group to dynamical  affine s y m m e t r y .  A " t r ace"  of the higher  s y m m e t r y  
r e m a i n s  in the f o r m  of re la t ions  between the cons tants  of the minimal  and nonminimal  in te rac t ions  of the 
essent ia l  f ie lds  in the f o r m  of sum ru le s  of the type (2.16) and (3.17). Similar ly ,  in the case  of the o rd i -  
n a r y  Higgs effect  a f t e r  the Goldstone f ields have been e l iminated  the Lagrangian  is  mani fes t ly  invar ian t  
only under  the vacuum s tabi l i ty  subgroup,  and the r e s t r i c t i ons  of the total  group a re  mani fes ted  in the f o r m  
of re la t ions  between the  d i f ferent  p a r a m e t e r s  of the Lagrangian .  

We should emphas i ze  that  the main a im  of this p a p e r  was to study genera l  a spec t s  of the i nve r se  
Higgs effect .  The examples  were  i l lus t ra t ive .  Application of the i nve r se  Higgs effect  to m o r e  rea l i s t i c  
models  will be cons idered  sepa ra t e ly .  

We thank D. V. Volkov and B. M. Zupnik for  helpful d i scuss ions  and R. Lednitski for  a valuable  
comment .  

A p p e n d i x  

We solve Eq. (2.9).  We define a nons ingular  ma t r ix  Amt(~):  

6 
e-%% 6~, e%ZP = iZmA~,(~) + . . . .  (A, 1) 

In (A. 1) and the following equations,  we shall  be in t e re s t ed  in the coeff ic ients  of only the g e n e r a t o r s  Z m o 

Using the bas ic  law of the nonl inear  rea l i za t ions  (2.2), we readi ly  find 

e- i~z~Zte i~:z~=ZmAran(~) '~n t (~)  + . . . .  (A. 2) 

e-*~z~V=e*~z~=z,,~A,,~,~(~)Cv='~v + . . . .  (A. 3) 

With al lowance for  the re la t ions  (A. 1)-(A. 3), the Caf tan  f o r m  ~i de te rmined  by the expansion of (2.4) 
has  the f o r m  

0)i(~, d~, ~, ~)=A,,(~)(d~,+f~'-,~,(~),.~p+lCVr (A. 4) 

Since the m a t r i c e s  A,~, ~-tv a r e  nonsingular ,  Eq. (2.9) can be solved for  ~p. Then the express ion  (2.10) is  
obtained. 

P r o o f  o f  t h e  n e c e s s i t y  o f  c o n d i t i o n s  a)  a n d  b) o f  T h e o r e m  3.  Suppose there  
ex i s t s  an analyt ic  function k , ( z , ~ , ,  a,, ~)  which t r a n s f o r m s  under  the group G like the field ~.,.: 

where  ~ a r e  the p a r a m e t e r s  of the t r an s fo rma t ion  with gene ra to r  z%. It follows f r o m  the law (A. 5) that 
the expansion of /,.~ in a s e r i e s  in ~,, z,, ~ mus t  begin with t e r m s  of f i r s t  o rde r .  F r o m  such a t e r m ,  
propor t iona l  to ~ t o r  x ~ ,  an addit ive co r r ec t i on  ~,~ in (A. 5) cannot  a p p e a r  since the t r an s fo rma t ion s  of 
these  f ie lds  contain the p a r a m e t e r s  ~,~. to higher  o r d e r s  in the Goldstone fields.  The re fo re ,  the additive 
c o r r e c t i o n  can appea r  only f r o m  the t e r m  of f i r s t  o r d e r  in the de r iva t ives .  The function /,~ t r a n s f o r m s  
in the subgroup H in accordance  with the r ep re sen ta t i on  RN(h) ,  and t he re fo re  the t e r m  l inea r  in the d e r i -  
va t ives  mus t  a lso  t r a n s f o r m  in accordance  with RN(h) .  This  is poss ib le  only if the r ep resen ta t ion  p r o -  
duct T P ( h ) |  contains the r ep re sen ta t i on  RN(h) .  The neces s i t y  of condition a) i s  proved.  

Thus,  1~,,=~0r . . . .  Using the bas ic  law of the nonl inear  r ea l i za t ions  (2.2) and the commuta t ion  
re la t ions  (2.1), we can read i ly  find the t r an s fo rma t ion  of the field ~t in the lowest  o rde r  in ~,. and in the 
f i r s t  nonvanishing o r d e r  in the Goldstone f ields,  ~ = - ~ , z v c ~ , ~ , ~ - V @ , ~ c ~ , ~ % . . .  (tr Thus,  

~/~ , ,=-~@, ,C~, ,~ .  + . . . .  (A. 6) 

It  follows f r o m  Schur ' s  l e m m a  that c~(-~-=~ ~ .  Compar i son  of (A. 6) and (A. 5) shows that  k = - 1 / f i  and 
fi r 0, i . e . ,  we have proved  the neces s i t y  of condition b) as  well.  
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