INVERSE HIGGS EFFECT IN NONLINEAR REALIZATIONS
E., A, Ivanov and V. I, Ogievetgkii

In theories with nonlinear symmetry realization one can in a number of cases eliminate
some of the original Goldstone and gauge fields by equating to zero the corresponding
covariant Cartan forms; this is the inverse Higgs effect. We discuss the general condi-
tions of applicability of the inverse Higgs effect in gauge and space-time symmetries,

and we also consider some examples: the elimination of inessential gauge fields in

chiral dynamics and a nonlinear realization of supersymmetry, the elimination of inessen~
tial Goldstone fields in spontaneously broken eonformal and projective symmetries.

1. Introduction

In models with dynamical symmetry, Goldstone and gauge fields play a particular role. Because
of the special interactions with these fields, invariance under some group of dynamical symmetry is
achieved.

In a number of cases, some of the Goldstone and gauge fields introduced in accordance with the
formal preseriptions are in fact inessential and "redundant” in the sense that they can either be eliminated
by a redefinition of the remaining fields, or they can be expressed in terms of them, For example, in
theories with spontaneously broken gauge symmetry the Goldstone fields are inessential variables since
they can be eliminated from the invariant Lagrangian by a gauge transformation (Higgs effect [1-3]).

We wish to draw attention to the fact that in models with nonlinear realization of symmetry [4-8]
one can eliminate the redundant Goldstone and gauge fields by imposing invariant conditions on the Cartan
forms. Any Cartan form with homogeneous law of group transformation can be put equal to zero without
affecting any of the invariant properties of the theory. Solving the resulting equations, one can express
some of the original Goldstone and gauge fields in terms of the remainder. Those of the variables that
cannot be eliminated in this way are the "true Goldstone™ and "true gauge" fields.

We shall call this elimination of inessential fields by equating Cartan forms to zero the inverse
Higgs effect since for gauge symmetries this effect is the opposite of the ordinary Higgs effect in three
regpects.

First, the two effects are essentially opposite in nature. The direct Higgs effect consists of the
spontaneous occurrence of mass of the gauge fields £,'(z) associated with the generators of the trans-
formations under which the vacuum is noninvariant [1-3]. Another aspect of the effect is the existence of
a gauge in which the Goldstone fields & (x) disappear from the invariant Lagrangian (gauge & (x) = 0),
and the field &, satisfies the condition

Z.(@) == —;- V&= —;—— 08 (2)+Z,5(2) lio T~ O(E), (1.1)

where Vugi is the covariant derivative of the field £ (x) and f is a constant. Thus, in the case of the
direct Higgs effect the Goldstone field & (x) is eliminated because of its "absorption™ by the field Z./(z).
At the same time, in the case of the inverse Higgs effect, i.e., when one imposes the invariant condition

V,t'=0, (1.2)

one eliminates the field Z,/(z), and this by solving the equation (1.2) can be expressed in terms of £(x)
and the true gauge field 7°,%(z), which corresponds to the algebraic subgroup (which leaves the vacuum
invariant), ’
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Second, the two effects have different regions of application. The direct effect holds for invariant
Lagrangians, i.e.,, when the gauge symmetry is broken only spontaneously. If to the invariant Lagrangian
one adds a term of the type Z,/Z.+7.*¥,“+..., which directly breaks the gauge symmetry, the Goldstone
fields become physical and cannot be eliminated. Conversely, the inverse Higgs effect is constructive
precisely when there is direct breaking of symmetry. In this case, the condition (1.2) leads to a model
that reproduces all the consequences of broken gauge symmetry and, at the same time, does not require
introduction of the field £, .* Essential variables are the fields £ and 73~

Finally, the two effects are opposite in the sense that in the case of the direct Higgs effect the
kinetic term of the Goldstone fields ~V,E'V,E’ after their elimination can be transformed into the mass
term of the fields Z.'|:=, whereas after the inverse Higgs effect has been used the mass term of the
fields Z,° leads to the kinetic term of the Goldstone particles.

The inverse Higgs effect can also be used to eliminate inessential Goldstone fields. This possibi-
lity can be observed, for example, in nonlinear realizations of a number of space-time symmetries [10].

We recall that nonlinear models with spontaneous symmetry breaking are nonrenormalizable and
pretend only to a phenomenological description of the low-energy region.

The plan of the present paper is as follows, In the second section we give the general theory of
the inverse Higgs effect for gauge fields and we consider two examples. For the first example, we
briefly discuss the model of SU(2) X SU(2) algebra of fields with eliminated axial field [11], Unfortu-
nately, the predictions of this model do not agree with experiments. The second example is for a non-
linear realization of supersymmetry, which was considered by Volkov et al., [12,13]. The inverse Higgs
effect enables one to eliminate fields associated with generators of spinor translations [13].

In the third section we discuss the inverse Higgs effect for Goldstone fields in nonlinear realiza-
tions of space-time symmetries. We prove a necessary and sufficient criterion for a particular Goldstone
field to be inessential, We consider two examples: nonlinear realization of conformal symmetry [5-7, 10]
and nonlinear realization of the projective group isomorphic to the group SL(5, R). The first mode!
reduces after application of the inverse Higgs effect to a nonlinear realization of scale symmetry (the
essential field is a dilaton) [14]. The second model reduces to a nonlinear realization of the affine group
P, O GL(4, R), which was considered in [10] (the Goldstone tensor field hm,(x) corresponding to proper
affine transformations is essential).

2. Inverse Higgs Effect for Gauge Fields

Let G be a dynamical symmetry group with the algebra
[Ziy Zk] =iCikIZl+iCihan [Vm Zz] =icuith7 {Vm Vﬂ] =iCEWV?7 (2 . 1)

where C are structure constants. The generators V, correspond to the vacuum stability subgroup H.

In the case of space-time symmetries, the generators Z, must include the generator B, of four-
translations [7]. If G defines a supersymmetry [12,13], some of the generators Z,; satisfy anticommuta-
tion relations,

The group G is realized by left shifts on the factor space G/H whose points are parametrized by
the Goldstone fields & (x) (4-8]:

G(8) =™ £ gG (E) =eitr g’ GOVe, (2.2)
The shift (2,2) induces a transformation of the fields £ (x):
0% (z) =F *(8) p*+E"a?C ™, 2.3
where B* and aP are group parameters and Z*(g) is a nonsingular matrix that is nonlinear in £ (x).

The other fields ¥(x)}, and also the covariant differentials of the fields & (x) and ¥(x) are trans-
formed in the group G with respect to representations of the group H with the function parameters U%(Z,g),

* The standard scheme with canonical field £,i(z) corresponds to the different covariant condition & (z)=
(4/7)v.&, where the field £, transforms by definition like v;ﬁi (a condition of this type is used by
Kawarabayashi and Kitakado [9] in SU(2) X SU(2) chiral symmetry to eliminate Goldstone fields from the
gauge-invariant part of the Lagrangian). The formulations of the theory in terms of £,/ or &, are
equivalent,
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We shall be interested in the case of gauge symmetry, when the parameters #* and @” do not
depend on the coordinates x,. The covariant differentials of the fields £(x) and ¥(x), w'(d) and DV,
are determined by the standard expressions [4~8]

G (B dHif(Z* 2,7V 3) 16 (B) =io*(d) Z,+i0%(d) Ve (2.4)
DY =d¥+i0*(d)V, ¥, (2.5)

where V,, are the generators of the subgroup H in the ¥ representation. Then Z" and 7** are related
to the gauge fields 2./, 7°* by

Zr=Z !} (x)dz,, “=Y" (x)dx, (2.8)
and they have the transformation properties
. . . 1
6%1=zthCpk1_}_W@BPCU-P:_}_zkaOCkpZ _ 7 dﬁi, (2 . 7)
ST =1 O+ ZPRICHP — ——;— do?, {2.8)

where f is a constant. For what follows, it is important that the Cartan form o' (d) transforms in the
group G homogeneously. The differentials «?{d) and D¥ are related to the covariant derivatives VM g
and Vh W,

DY=V,¥Yo/(d), o'(d)=V e (d),
where wt'(d) is the covariant Cartan form corresponding to the generator PH of four-translations. [Here
and in what follows it is assumed that P, is transformed in H independently of the remaining generators

Z,. In the case of internal symmetries, w‘{(d) =dx, .]

We show that there exist nonlinear functions of the fields £ (x) and 7°.*(z) which have the trans-
formation properties (2.7) of the field &5, for whose introduction there is thus no dirvect need. To con-
struct invariant Lagrangians it is sufficient to have at ones disposal the fields &, 7.2

We impose the condition
o' (g, dg, Z, 7)=0 (2.9)
or
ViE=0 (o] (d)#0). (2.9

By the homogeneity of the group transformation of the form w?(d), Eq.(2.9) is invariant under the action
of the group G. The solution of this equation is found in the Appendix:

E(E,7)=— *;—(37"(%))*’”(d§"1+f§”7’“cm). 2.10)

Using the transformation laws (2.3) and (2.8}, and also the Jacobi identities for the matrix #(§), which
follow from the group properties of the transformation (2.3), one can show that the function Zi(g, 7)
transforms in accordance with the law (2.7). It is algo easy to prove the covariance of the expression
(2.10) under a canonical substitution of the fields &(x).

We emphasise that if some function Zi(g, 7) transforms in accordance with (2.7), then when it is
substituted int6 the Cartan form (%, d&, Z, 7°) the condition (2.9) is satisfied identically. This follows
from the obvious properties

Zr(t, ) 100, 0'(§, 48, L0y 7) L= Z 1200
~ go
and the existence of a gauge transformation gy such that o'(§, d§, Z, 7)—>e'(0,0,0, 7).
We have therefore proved

THEOREM 1. In nonlinear realizations of gauge symmetries one can always construct a function
Z,i(g, dt, 7)  with the transformation properties of the gauge field Z,/ (2.7) by equating to zero the
covariant Cartan form o'(g, d§, Z, 7). Conversely if such a function exists then its substitution instead
of the field Z, into the form o'(§, d§, Z, 7’) makes the latter vanish identically.

It must be emphasized that the gauge field 7,° cannot be eliminated since there do not exist
Cartan forms with homogeneous law of group transformation whose equating to zero would lead to equa-
tions. that are solvable for 7,» The field 7.* is essential and must be introduced as a canonical field.

1052



The inessential fields £,’ need not be referred to at all.

We recall that the components of the covariant derivative V,¢; that are irreducible with respect
to H transform in the group G independently of one another. Therefore, conditions of the type (2. 9') can
be imposed separately for each representation of the subgroup H contained in Vié;. In other words, if
desired one need not eliminate all the fields Z, but only those belonging to a chosen representation of the
subgroup H. Such a situation obtains, for example, in nonlinear realizations of space-time symmetries,
in which it is meaningless to equate to zero the Cartan form wﬁ’ (d) since it is used to construct the
invariant element of four-volume. The gauge field associated with the translation subgroup cannot be
eliminated and is therefore a true gauge field.

When not all the fields &,/ are eliminated, it is difficult to obtain general equations of the type
(2.10). In one simple case, however, one can still use the expression (2. 10),

Suppose the generators Z, correspond to an invariant subgroup, i.e., they form an ideal of the
algebra (2.1), [Z, Zy]~Z,, [V, Zo]~Z,. We denote the Goldstone and gauge fields corresponding to the
remaining generators Z,» by £,» and Z.*’. Then

THEOREM 2. The gauge field &,*" can be expressed in terms of the fields £,» and 7°° in
accordance with the equation

z; ="f_'(-‘7”’(§”))" BT HETTCT), (2.11)

where F*'"' is the matrix of the nonlinear transformation &&= =" (¢)p™".

The expression (2,11) can be obtained in the same way as (2.10) by bearing in mind that the field
&' transforms independently of E*'.

The elimination of gauge fields by imposing invariant conditions of the type (2.9) is essentially
opposite to the Higgs effect [1-3]. The point is that in this case the field £’ is eliminated in terms of the
Goldstone fields & (x), whereas in the Higgs effect the fields £ (x) are "absorbed" by the gauge field Z.'
[choice of the "unitary" gauge & (x) = 0 in the invariant Lagrangian]. With allowance for this remark, it
is natural to refer to the inverse Higgs effect.

In contrast to the ordinary Higgs effect, the inverse effect leads to nontrivial results if a term
which directly breaks the gauge symmetry is added to the invariant Lagrangian. In this case, the use of
conditions of the type (2, 9) and (2. 9) enables one to retain all the restrictions of the broken gauge sym-
metry under the subgroup H and achieve invariance under nonlinear transformations of the group G with
constant parameters without introducing the fields £’ This invariance is now manifested only in the
connections between the minimal and nonminimal (from the point of view of the subgroup H) interactions
of the fields & (x) and ¥.*(z). Note that the kinetic term of the Goldstone particles can now appear only
from the part of the breaking which is nonlinear in ZJ(E, 7°): Z,(§, 7)) Z, (& 7)) =f"0.80,8+....

The kinetic term of the gauge fields 7°.* can be introduced by means of the covariant differential
form of second order {10, 13] Ru%
VR (0,5 (d) 0 (de) —o," (d) 0.7 (dy)) =di0%(ds) —d0% (d,) —C**'8P(d,) 8% (da),
where 0+(d) is defined by the expansion (2.4)
Let us now congider two examples of the use of the inverse Higgs effect in gauge thecries.

1. Model of SU(2) X SU(2) algebra of fields without the A; meson. Inthe
review [11] a model of SU(2) X SU(2) algebra of fields is constructed in which a function A.(zm, p) with
appropriate transformation properties is used instead of the field of the A; meson. In the parametriza-
tion of the nonlinear sigma model the general equation (2,10) gives

Zp—’/z
g Vii—at

where g, and Z, are the universal coupling constant and the renormalization constant of the o meson and
fr = 94 MeV is the pion decay constant.

A(mp)=~

(0, —gopuX), (2.12)

The invariant Lagrangian has the form
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2 =—-—1~——£——[p e — e (wet) (@) | (2.13)
nv % T Lo e [R5 ], 1
where

Puv=0uv—0:0u—Zo0uXPv— BoZoAu (1, p) XAu(m, p). (2.14)

The structure of the mass term Zs, of the field p, is uniquely determined by the requirement of
chiral invariance and by the condition that the field Py be coupled to a conserved current:

Lue=—"lemg* (0s017 ZoAs(: 0) Au(s, ). (2.15)

The conserved axial current and vector current calculated by the Gell-Mann~Levi method satisfy the stan-
dard commutation relations of the SU(2) X SU(2) algebra of fields [15] despite the absence of the canon-
ical field of the A; meson in the axial current.

Thus, the requirement of chiral invariance can be reconeiled with the assumption of a coupling of
the field p, to the conserved current without introducing the field of the A; meson. A choice between this
model and the standard approach can be made only after their predictions have been compared with the
experiments,

For the correct normalization of the kinetic term of the pions in (2.16) it is necessary that the
following sum rule be satisfied [11]:
my=go*f, (2.16)

and this does not agree with the empirical Kawarabayashi—Suzuki—Riazuddin—-Fayyazuddin relation [16]:
my’=2g,"f". 2.1

This discrepancy means essentially that in the present model the values of the partial widths of the p meson
are much lower than the predictions of the ordinary approach [11].

A more serious shortcoming of the model, in our opinion, is the impossibility of constructing a
gauge—invariént 7N interaction, which, in the lowest order in 7, would give the pseudovector coupling
Ny.stNoq, which is needed to describe the p-wave part of 7N scattering [17]. This is due to the vani-
shing of the covariant derivative of the pion.

Let us make a further remark concerning the Kawarabayashi—-Suzuki—Riazuddin~Fayyazuddin
relation. It is well known that it cannot be derived in the framework of only the assumption of p domi-
nance and current algebra [18]. On the other hand, from the assumption of vanishing of the pion covariant
derivative and the choice of the breaking in the form (2. 15) the sum rule (2.16), which is incompatible with
(2.17), necessarily follows. Therefore, for the fulfillment of the Kawarabayashi-Suzuki-Riazuddin—
Fayyazuddin rule it is necessary that the covariant derivative of the pion be nonzere, i.e., that in the part
of the axial current with quantum numbers 1% the A; meson be predominant (this condition is of course
" insufficient).

It is interesting that the present model is the limiting case m, o of the standard model with _
Ay meson.

2. Elimination of gauge fields in supersymmetry model. In [13], Volkov and
Soroka discussed the elimination of gauge fields in a nonlinear realization of supersymmetry [12]. In this
case, the factor space is parametrized by Goldstone spinors ¥, and \IIZ {a is the subscript of a nonlinear
internal symmetry), which correspond to spinor translations, and by ordinary coordinates x , which
serve as "Goldstone fields" of the subgroup of four~translations. The generators of the spinor translations
are associated with the gauge fields @/ O+ [13].

The generators P, form an ideal of the complete algebra, and therefore, in accordance with
Theorem 2, the field ®+ can be expressed in terms of the Goldstone spinors and the gauge fields Q,° and
V., which correspond to the Lorentz subgroup and the internal symmetry group. Applying (2.11), we

obtain

1
Dor=— ;_( 0 i fQ,,,"L,,T“"Fﬁ—ibe“Ib“‘I’c_) , (2.18)

where L% I. are the generators of the stability subgroup in the ¥ representation. The fact that the
fields @ ®./* are inessential was noted in [13].
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3. Inverse Higgs Effect for Goldstone Fields

The solvability of Egs.(2.9) for £, is associated with the fact that these fields enter the corre-
sponding covariant derivatives linearly and additively.

If a covariant derivative contains a term that is additive with respect to a Goldstone field, it can
also be eliminated and it can be expressed in terms of the true Goldstone fields by equating the covariant
derivative to zero. This phenomenon occurs, for example, in nonlinear realizations of a number of space-
time symmetries. We shall call the elimination of inessential Goldstone fields by means of conditions of
the type (2.9) and (2, 9) the inverse Higgs effect by analogy with the corresponding effect for gauge fields.
In this section, we discuss the elimination of Goldstone fields in nonlinear realizations of space-time
symmetries.

Suppose such a symmetry is defined by the relations {(2.1). The subgroup H contains the homo-
geneous Lorentz group. The generators Z; must include the generator P, of four-translations [7, 8].
The remaining generators of nonlinear transformations and the related Goldstone fields will be denoted
by Z; and £,. Thus, the points of the factor space G/H are characterized by the coordinates x u and
£(x).

We shall restrict ourselves to the case of symmetries that satisfy two requirements: 1) the
product of the representations of the subgroup H is completely reducible with respect to H, 2) the gene-
rators P, and Z; transform in H independently of one another.

With allowance for the second condition, the fields ¢; transform in accordance with a linear rep-
resenfation D(h) of the group H, which can be decomposed into a direct sum of irreducible representa-
tions Ry(h). The fields &; are then decomposed onto subspaces &, that are irreducible with respect
to H. The derivative Bﬁ transforms in H in accordance with the representation TP(h} with respect to
which the generator PM transforms.

In this case, G(¢) (2.2) has the form [7, 8]
G(z. &) =e™ulue™2, (3.1)
The Cartan forms o} 0,7, ¢ are determined by the expansion
GdG=e~%2' P dx % Lo~ dt " —iiZ/+iw PP HiO V. (3.2)
Consider the commutator of P, with Z;:
[Z/, P,]=iC"Z/+ ... . {3.3)

The possible terms ~V, and P, on the right-hand side of (3. 3) are inessential for our analysis. In the
Appendix we prove a theorem that enables one, given the structure of the commutator (3.3), to determine
whether a particular H multiplet of Goldstone fields can be eliminated.

THEOREM 3. A field &, can be expressed in terms of the remaining Goldstone fields and their
derivatives if and only if:

a) the direct product 77(h)®D(h) of representations contains the irreducible representation Ry(h};

b) for some index t # iy the structure constants C*®*?¥ in the commutator (3.3) are nonzero [the
combination of indices {ut}, refers to the representation R, (h)].

This theorem determines the conditions under which the covariant derivative V,{, contains a term
that is linear and additive in the field &,. Bearing in mind that Cw®Ir=p§w®x Ly virtue of Schur’s lemma
and that 5 # 0 in accordance with condition b), and using the invariant equation

V(Hgt)zv=0 (3.4)

we can express the field &, in terms of the true Goldstone fields:
1
Ei_\.=——ﬁ—6“‘§’“+... . (3.5)

The necessity of conditions a) and b) is proved in the Appendix.

Note that if the combination {ut}, can be formed in several inequivalent ways, then the most
general covariant equation has the form
2 ay’Vugy, =0,
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whence

EiN= - Nla(ugt)N'+0(§7 23),

where aj, are numerical coefficients, and the summation is over the representations R, constructed in
the inequivalent ways. If the invariant subspaces &, include some that transform in accordance with R N
(i.e., Ew, & etc.) and at the same time the constants C'y' ®,, C%'"¥y. .. are nonzero, the eliminated
field g, contains linearly the fields Eiy, &y ..t

1 1
By = — — QWY — _EACheluthy L
N B B
After the imposition of the conditions (3.4), not all the invariant kinetic terms of the fields
E (~V,EV,E) are independent. The "missing" terms can be constructed by using the differential covariant
forms of second order. The contractions of these forms with respect to different pairs of indices contain
terms ~4,&8d,& and ~EDE, (see, for example, [10]).

For two simple examples, let us consider the consequences of the inverse Higgs effect in space-
time symmetries.

1. Nonlinear realization of conformal symmetry. Nonlinear realization of con-
formal symmetry with linearization on the homogeneous Lorentz group was discussed in [5~7, 10]. In this
case, one introduces Goldstone fields @u(x) and o(x) associated, respectively, with the generators of
special conformal and scale transformations K, and D.

The commutator of K, with P, contains on the right-hand side the dilatation generator [K,, P,]=
—2i(8,,D—Lw), and therefore in accordance with Theorem 3 the field ¢“( x) can be expressed in terms of
the true Goldstone field which is the dilaton o(x), Equating to zero the covariant derivative of the dilaton,
™" (9,0 (2) —20,(z) ) =0, we obtain [10]

O, (z) ='f0,0(x). (3.6)

The fact that the field @H(x) does not in reality have a Goldstone nature was noted in [7, 10].

Note that after the condition (3.6) has been used the part of the invariant action that depends only
on the field o(x) can be constructed in such a way that it is identical to the corresponding part of the action
in the case of nonlinear realization of only scale symmetry.

With regard to the interaction of the dilaton with the fields ¥(x), it is determined by the form of
the covariant derivative ¥, ¥(x) [10]:

VW (z) =e=*@8, ¥ (z) +ie=*8.0 (z) LT ¥ (z), (3.7

where L..” are the generators of the Lorentz group for the representation ¥, In Eq.(3.7), the first mini-
mal (with respect to the nonlinear realization of the scale symmetry) term and the second nonminimal
term are strictly related, which is the only "trace” of dynamical conformal symmetry that remains after
elimination of the field &,(x).

2. Nonlinear realization of the projective group. The projective group in four
dimensions is isomorphic to the group SL(5, R), whose action on the coordinates x, is determined by
the identification ,

ze=lys  (0=1, 2, 3,4, y.=iy, T.=iz,),

where y and y_ are the coordinates of the five~-dimensional space on which SL(5, R) acts linearly:
Syi=aay, (i, k= 1 2, 3, 4, 5), a,=0. Thus, &%.=w2, 05,2, —assZ, M, Gw=—as. The parameters q,,
correspond to transformatmns of the subgroup GL{4, R); ays» to four-translations; and a;,, to new
projective transformations.

The algebra of the projective group contains 24 generators, which satisfy the relations

1

T[Ruv, Rm] =6uerv+5mLm+ (}L“—> V) N (3 . 88—)

1
~—[ By, Po =0, Pyt (u—>v), (3.8b)

2

1
_._[Rp\h Fl]="6ui~Fv+(u"‘"V)v (3.8¢c)

'

1056



[F, F.]=0, (3.8d)
1
—i‘[pr PL]="‘/2 (6pARm‘t+Rpx+Lpi\)y {3. 86)

where we have omitted the trivial commutators that contain the generators L, of the Lorentz group on .
the left-hand side. The generators P, L., R, form the algebra of the affine subgroup P; O GL{(4, R)
(20 generators). The F,’s generate projective transformations.

Let us consider a nonlinear realization of the projective group with the homogeneous Lorentz
group as stability subgroup. In this case, (2.2) can be represented in the form G(g)=e"vPrexp {it/:hnRu}
¢i%Fs  where h,(z),q,(z) are Goldstone fields.

The Cartan forms &,F, ®.° 8.7, &,.° are associated with the Cartan forms found in [10] of the non-
linear realization of the affine group, %, @.% 0.*, by

0, =0,", (3. 9a)

D=0 " (30,7407 ) —28,.q1@:7, (3. 9b)
8, =dgut (gowp '~ go@0s™) — g (gv ), (3. %¢)
Bur=on"— {g,0,°—q.0,7). (3. 9d)

Since the commutator of Fp with Py in (3.8e) contains RMV on the right-hand side, the field
qp(x) can, in accordance with Theorem 3, be expressed in terms of the true Goldstone field huy(x).

The covariant derivative of the field hy,(x) has the form
Vsl =V Tty 4 Bs = 1uBon— 21Oy (3.10)
Solving the invariant equation
T+ b 9 oy =0 (3.11)
for qp(x), we find the one-parameter family of solutions

1 10
qk(‘r)=f1—0+“_w,(VAhst;l+bVthi~) b= _T (3. 12)
With allowance for the condition (3.11), the covariant derivative of the field ¥(x) can be represented in
the form

VW a=d¥ + %(@}WLW;W) L,.0W, (3.13)
where -
Vo= (Viha=V ) Fa2 (84 o8V fe) Yo (3.14)

and @; and g, are arbitrary parameters. At the same time, in the nonlinear realization of only affine
symmetry the expression for the covariant derivative V) ¥ contains three arbitrary parameters [10]:

VW o, =d¥ + %(mva-}-Vw,)L,““F (3.15)

and
Vuv= [C; ( vuhv}v—vvhux) +Cg ( 6uﬁvvhpp—6v)\vph‘)p) +C3(6yvvphov‘—§\'ﬁ'vphpp) ]‘DAP- (3 . 16)

Comparing (3.13) and (3. 15) aad taking into account (3.9d), (3.10), and (3.12), we can show that if WY is
to be covariant under the projective group it is necessary and sufficient for the parameters ¢y, ¢;, ¢3 to

satisfy the relation*
1+Ci—762+106320. (3, 17)

Thus, after the inverse Higgs effect has been used the restrictions of the dynamical projective
symmetry reduce to the relation (3.17) between the constants of the minimal and nonminimal interactions
of the essential Goldstone field hy,,(x) with the fields ¥(x) in the nonlinear realization of the affine

group,

* In {10] it was shown that if ¢; = ¢3 = 0 and ¢y = —1 then ¥, ¥ becomes covariant under transformations
of the conformal group and simultaneously under generally covariant transformations. This choice of the
parameters cy, ¢z, ¢y is compatible with the condition (3.17), which is natural since the projective group
is a subgroup of the generally covariant group.
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4., Conclusions

It follows from our treatment that the direct and the inverse Higgs effects have a common feature,
as well as the three opposite features. Namely, they both effectively reduce the original symmetry to a
lower one, In the case of the inverse Higgs effect, the theory of the massive Yang—~Mills fields £\, 7°.*
is reduced to the theory of the fields 7% the conformal symmetry is reduced to scale symmetry, and the
symmetry under the projective group to dynamical affine symmetry. A "trace" of the higher symmetry
remains in the form of relations between the constants of the minimal and nonminimal interactions of the
essential fields in the form of sum rules of the type (2.16) and (3.17). Similarly, in the case of the ordi~-
nary Higgs effect after the Goldstone fields have been eliminated the Lagrangian is manifestly invariant
only under the vacuum stability subgroup, and the restrictions of the total group are manifested in the form
of relations between the different parameters of the Lagrangian.

We should emphasize that the main aim of this paper was to study general aspects of the inverse
Higgs effect. The examples were illustrative. Application of the inverse Higgs effect to more realistic
models will be considered separately.

We thank D, V., Volkov and B, M. Zupnik for helpful discussions and R. Lednitski for a valuable
comment.
Appendix

We solve Eq.(2.9). We define a nonsingular matrix A_,(£):

6 etpZp = iZpAm () +. ... (A1)

+

e~ %,%p

In (A, 1) and the following equations, we shall be interested in the coefficients of only the generators Z .
Using the basic law of the nonlinear realizations (2.2), we readily find
eitnZnZ et tem= L Amn (E)F m(E) + ..., (A.2)
e~ BRIV golZk=Z A (B)CPERE L+ . .. . (A.3)

With allowance for the relations (A.1)-(A,3), the Cartan form w® determined by the expansion of (2.4)
has the form
o' (§, &, Z, 7°) =Ais(8) (dBs+fF op (E) Zp+fCPASEPY ), (A 4)

Since the matrices 4., #* are nonsingular, Eq.(2.9) can be solved for &,. Then the expression (2,10) is
obtained.

Proof of the necessity of conditions a) and b) of Theorem 3. Suppose there
exists an analytic function ji, (=, &, 8, &) which transforms under the group G like the field g:

Ofin=Pix+0 (&, zp, v, Ey  (t7ix), (A.5)

where B are the parameters of the transformation with generator z/,. It follows from the law (A,5) that
the expansion of ., in a series in &, ., 4.8 must begin with terms of first order. From such a term,
proportional to £, or x,, an additive correction 8 in (A.5) cannot appear since the transformations of
these fields contain the parameters B. to higher orders in the Goldstone fields., Therefore, the additive
correction can appear only from the term of first order in the derivatives. The function #, transforms

in the subgroup H in accordance with the representation R, (h), and therefore the term linear in the deri-
vatives must also transform in accordance with Ry (h). This is possible only if the representation pro-
duct 77(r)®D(h) contains the representation Ry(h). The necessity of condition a) is proved.

Thﬁs, fw=2agtyy . Using the basic law of the nonlinear realizations (2.2) and the commutation
relations (2,1}, we can readily find the transformation of the field £ in the lowest order in g, and in the
first nonvanishing order in the Goldstone fields, 8ti=—Biz, 00t —1pECi% + .. (t=iy). Thus,

f iy —ABiCIWOIN 4 (A.86)

1t follows from Schur’s lemma that civtn—psivisty, Comparison of (A, 6) and (A.5) shows that A = —=1/8 and
B # 0, i.e., we have proved the necessity of condition b) as well.
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