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A simple explicitly solvable model of electron propagation in a thin conductor in a three-dimensional space is considered. 
Resonance scattering by a point inhomogeneity possessing internal structure is analyzed by the methods of the theory of 
extensions. 

The motion of  an electron in a one-dimensional conductor in a free space is modeled on the basis of  the methods of  the 

theory of  extensions of  symmetric operators [1,2,3]. It is shown how the interaction of  the "interior" and "exterior" par~s of  

the energy operator leads to the appearance of  a waveguide channel. The behavior o f  the electrons in this channel is described 

by a certain pseudodifferential operator with an "energy-dependent" potential. In the framework of  the proposed model 

allowance is also made for irdaomogeneities, the occurrence o f  which leads to nontrivial scattering into the exterior space and 

reflection in the waveguide channel. It is also shown that there exist values of  the inhomogeneity parameters for which total 
reflection or total transmission of  the electrons occurs. 

Electron propagation in a thin conductor can be modeled as follows. Let Hex = - A  be the energy operator of  a free 
electron in three-dimensional space; Hin = -d2/dl  2 + A is an operator defined on L2(R , E), the space o f  square-summable 

vector functions with values in a certain auxiliary Hilbert space E; A is an abstract operator that acts on E. The operator Hi, 

can be regarded as a model operator for the description of  electron states in the semiconductor L. We model the interaction 

in the momentum representation. ~ 0 ~ o 

We consider the operator H=H~$Hz,  where H~ is the Fourier transform o f  the operator Eex restricted to the set of  

functions that vanish on the line L (the methods for such restriction are described in [3]), 

0 0 ( l  S H i - - p 2 1  o ; D ( H 1 ) - -  u0: ~odp_L=O . 
D (H 0 

Here, p = (PL, P•  where PL is the momentum conjugate to the coordinate l E L, and p ,  is the part of  the momentum p 
orthogonal to PL" Further, let A 0 be the restriction of  A with deficiency element 0 in E, i.e., the operator A considered on the 
set 

D (Ao) = {voEE : ( ( A - i )  Vo, 0)~=0}.  

o 0 

Then Hz=p~ZA-Ao is the restriction o f  H2, the Fourier transform of Hin. We describe the conjugate operator H*. The element 

u 1 of  D (Hi*) admits the representation [3,4] 

ui=zzo q ~ (1) p~+l  p~+l  ' 
0 

where u 0 belongs to D (H~); 7/+(p/..) are functions defined on L and satisfying the conditions 

[rl+(P=)l~dP~<+r162 ~ [r l-(PL)[Zarcctg(pLZ)dPL<~. 

0 
For the second operator Hz* the domain of  definition has the form 

D(H2*)= ~ = ~ o + g  7 _ - 7 0 + g -  _ 0 , (2) 

where the coefficients ( + ,  like the deficiency element O, can in the general case depend on the variable PL" Finally, the domai~ o 
of  definition o f  H* can be expressed as follows: o / (-) 

D ( H * ) =  ~ =  ; u a , 2 ~ D  ,2 �9 
/Z 2 
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The boundary form o o 
J (u, v)=<H*u, v>-<u, H'v> 

0 
on elements u, v belonging to D (H*) can be calculated directly with allowance for the fact that the deficiency elements are 
labeled by the continuous symbol PL: 

1(< v) = 5 (-n~,+r~-+r~,,-no+)dp~ + ~ ( - ~  + ~-+ ~, - ~o+)dp~, (3) 

where ~-fPL) = r/-(PL) c~ (pL2) �9 0 
The self-adjoint extensions of the operator H distinguished by the La0grangian planes on which the boundary form (3) 

vanishes can be defined in various ways, since the deficiency indices of H are infinite. We consider the simplest form of 
homogeneous interaction, for which the self-adjoint operator H-r is distinguished by the condition 

( ~ : )  = ( 0  ~) (~ : )0  ' (4) 

0 
i.e., H-r is the operator determined by the differential expressions H 1 and H 2 on the set of functions in D (H*)whose coefficients 
~+, 7/-+ satisfy the condition (4). 

1. The eigenfunctions ~-r of H.r, determined by the equation H-r@-r = hff'.r, can be calculated explicitly in terms of the 
known eigenfunctions of the operators Hi, H 2. Namely, let 'I'1,20,, p) be the eigenfunctions of ilL2; if it is borne in mind that 
the interior and exterior parts of ~ , (h ,  p) have the representations (1) and (2), respectively, and that the coefficients ~• rl • 
satisfy the conditions (4), we obtain a simple system for determining ~+, q+: 

~/ -Dz (~.) /~ . (5) 

In the system (5), we have used the notation 

] , ( p ~ ) ~  Wt('&p)dp_u; ]z(pL)=<(A--i)Wz(p~),O>~, 

D,(~,pL)=j~ I+~'P~ PL~'--)~ < I+kA-pLzA > 
(p~--~) (p '+ l )  d p •  l n ~ ,  Dz(~.., pL)= O, 0 ~/p~+l A--~+PL z 

The solution of Eqs. (5) is readily found: 

- '~[,-D j2 --u 
~1 + = t- ~q0+, ~+  = + ~0+, 

where 7/0+ satisfy the equation 

'~ + 
{[~I2--D,(pL)D~(pL)}*Io+(pL)=O, ~o + =-~Xlo . 

Substituting the obtained solution ~ +, 7/+ in the representation for the eigenfunctions, we finally obtain 

A+i  
(W~(~.,p)),=W,(~,,p)-t- ~l+(PL)pZ__~. ' (W,(~.,p))~=Wz(~.,pL)+~+(pL) A--s z {3. 

(6) 

Of course, the spectrum of the operator H. r contains several components. Naturally, it contains parts of the spectrum generated 
solely by the exterior or the interior part of H-r. The greatest interest is in the existence of "waveguide" eigenfunctions 
generated by the described perturbation of the operator H i ~ H 2. They have the form 

(q.%(~, p) ),=no+ (pL) A +~ - -  (ttr~(~.,pL))z=~o+(pz). A ~.+pLO O. (7) 

We recall that the densities r/o+ , GO + satisfy the relation (6). If the operator A: E ~ E has a single eigenvalue c~, Eq. (6) is an 
equation of SchrSdinger type with energy-dependent potential: 

Iv 12+~ Vp~'+~t 
The solutions of Eq. (8) are conveniently described in terms of the corresponding momentum x, which solves the algebraic 
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equation 

t + a  ~ r215 
x = + a - ~  = - -  a In ~ (9) 

1 ~ I ~+~z • 

It is the values of X for which there exist real solutions of (9) that form the "waveguide" spectrum cr w of the operator H3,, 
which contains two continuous branches. Note that the asymptotic behavior • = x/), + O(In X) differs from that of the 
standard momentum only in the rate of growth of the second term. Besides the dependence x = x(X), we shall also use the 
inverse function X(x), which is specified implicitly by the same equation (9). 

2. The S matrix for the pair of operators H, Hy can be calculated by the standard methods [1,5], but for homogeneous 
boundary condition (4) the transmission coefficient in the waveguide channel is equal to unity. We also model the 

inhomogeneity on which nontrivial scattering occurs by means of extension theory. 
We consider first the operator H.~ only in the subspace of eigenfunctions of the "waveguide" spectrum. Let 

s {~,.(z, z)} 
be the closed linear hull of the eigenfunctions 'IIw(X,/), which are related by Fourier transformation to the functions ff'w(X, PL) 
(7); H~-=H~I~ ~ is the operator H.~ restricted to E w. Its action can be calculated explicitly: 

(H~u) ( / ) =  f 2~ (•215 Z) <u, W,~(• alp(• (10) 

where the measure dp(x) is determined from the representation of the spectral projector by means of the RJesz integral 

t ~ H + i I  p(D~(X) "~ )-~ H- - i I  dX= 
~ ~ = - -  T ~  ~ H - -  ~-----T ~. v D., ( ~ ) P H - -  Z~ 

i H- - i I  (D~'(X(• 0 ',-~ H ~ i i  d• (11) 
- -  H - -  Z-----~ P , 0 Do' (X (•  P H kI 

O'd~ 0 

Here, P is the projector onto the deficiency subspace of H. Applying the projector 5~ (11) to the eigenfunction and making 
a comparison with the result obtained from the representation (10), we finally obtain 

( )' do ( •  D,' (~ (x))  0 d• 
0 Do' (& (• 

Further, we separate the eigenfunctions r x) which derive from the eigenfunctions ff'l(X, x) of the exterior operator H 1. 
Their Fourier transforms are 

p ~ - X  I , ~ t ~ - D , D ~  

( ~ s  (~, p ) ) :  1~ [~-D, D~ ' A-X§ 

Let H S be the operator H. r restricted to E S, the closed linear hull of the functions ~S(X, x). The kernel of the resolvent of the 
operator a ~ = H s e H ~  consists of two blocks Gs(x, x'), Gw(1, l'), representations for which are, respectively, 

G~(z,x')= q%(k,x)q:~ (k,z)c/k, a : ( l , l ' ) =  

We consider the restriction of the operator a~ to the set of vector functions 

- i _ _  Do={ffo : < (~--O(Po, 0 >Ese~, --0}, 

where 

0' = ( 
0s i 

' t  0~ ~ I ' 

~ ( •  z)E:* (• z') an (• 

s t W,~(•215 Os'= ! ~----~Ws(k,x)e~<~'~~ 

W,, ~ (~, l ) =  [p' (x)]-'/'tI:,~ (• l) are normalized eigenfunctions of the waveguide spectrum. Then the conjugate operator 
/~0* will have domain of definition 
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D(gd0*)={tp=q~0q- 2 ( ~ +  H~ t \ /  f. 
~ S , w  

Let B be some self-adjoint operator describing the internal structure of an inhomogeneity at the point l 0. We denote by g the 
deficiency element of the restriction B 0 and write down in the standard manner the domain of definition of the conjugate 
operator: 

B + t glj. 
D(Bo*)=tV=Vo+~,~+-B-~_ig L~- B - i  " 

Then for the orthogonal operator sum ~0~B0 the self-adjoint extensions gdr are parametrized by an Hermitian matrix F, 
which relates the coefficients ~ -  and ~ +: 

v ' v~D(Bo*) : ~'+=F~- " 

Here ~-~= ( ~ s  , ~ , ~ ) , the off-diagonal elements of F characterize the interaction of the internal structure of the 
inhomogeneity with the exterior and waveguide channels. To determine the scattering data, we shall seek an eigenfunction of 
the operator ~ r  satisfying the radiation conditions ~rXl2"r=~,tI'rr, 

1 W~N(• e~~215 W~'(z,I)+/~(~)W ffut (• (%)~=~J( •  ~)+1~(~) z(• 

(12) 

From the condition that ~ r  belong to the domain of definition of a~r, we obtain a system of equations for the coefficients ~+: 

(F -~ - -  D (~,)} ~+ = 0 , (13) 
0 

where D(k) is a diagonal 3 • 3 matrix function with diagonal elements Dw, DS, Din: 

D~ (~x)= < t+lxH~ 0~, 0~>~ =o! ( t+k  (x) ~t)dz //~-~ -~-(x)-~) (;~ ( •  ' 

Ds (Ix) = < l+lXHSHs_~ 0s, 0s >e,----4rt]/~+C, D~. (Ix) = <  t+B~B___.._~ g' g ~/~,"  

Let Q(X), a matrix with elements qik(k), be the inverse of the matrix of the system (13). Then the scattering amplitudefs(k ) 
of the outgoing spherical wave @~ x - lo) will have the form 

fs (~) =qz, (~) e ~(x>'~ (14) 

We recall that x can be found from the dependence x = x(k) determined by Eq. (9). To determine the transmission coefficient 
t and the reflection coefficient r in the waveguide channel, we represent the solution (12) as a combination of eigenfunetions 
'I'~(x,/): 

{ W~'~ ( z , / ) + r  (k)W~" (--z, l), l<lo, 
( ~ r ) ~  = t (~ , )~  ~.(~,z),  l>10. 

With allowance for the representation for the Green's function G w of the waveguide channel, 

G,~(l, lo)=[ 2z~i WJ(•215 , l>lo, 

G~* (lo, t), l<lo, 

and using the solution of the system (13), we obtain explicit expressions for the reflection and transmission coefficients: 

r ( ~ ) = 2 r t g ~ e  z~~ t (~)=t+2~t i  ~g)i(• )) (z~) (15) 
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where x x is found from X using the dependence (9). 
We consider in more detail the reflection coefficient (15) and the scattering coefficient (14) in the special case of X values 

near the eigenvalue X S of the operator B of the internal structure. Then the quadratic form Din(X) increases unboundedly and 
admits the representation 

bs 
D ~ ( ~ ) =  + 0 ( 1 ) .  

~-~s 

We denote by r/~ 1 the elements of the matrix F -  1 and by A(X) the determinant 

det I r ~ - O s ( ~ ' ) -  -IF~'tD i 
r ~  ~ r =  - ~ ( ~ )  " 

In the neighborhood of the point XS, the elements of Q(X) have finite limits: 

q12 (~') ~ A (~'S) ql, (~') ' ' ~-'~s A (~s)  

Uning the arbitrariness in the choice of  the matrix F, we can give it a structure such that the element (F-i)21 of its inverse is 
�9 :o while the relation F ~  1 = Ds(Xs) also holds. Then in the limit X --- X S the reflection and scattering coefficients are equal 
to zero and, thus, the transmission coefficient t(Xs) will be equal to unity. 

In conclusion, we note that our model of electron motion through a thin conductor is both exactly solvable and quite 
nontrivial. First, the model takes into account the position of the conductor in the three-dimensional space (the parameter 

is a coupling constant) and, second, the model includes a possible inhomogeneity of the type of a zero-range potential possessing 
internal structure. In the framework of the model the scattering data can be calculated almost explicitly (apart ~om solution 
of an algebraic equation). It is also found that there exist values of the parameters for which reflectionless transmission of 
electrons can occur in the waveguide channel at a definite energy X S. 
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