
MEAN-FIELD MODELS IN THE THEORY OF RANDOM MEDIA. II 

L. V. Bogachev and S. A. Molchanov 

A study is made of a stationary random medium described by the evolution 
equation 09/0t=~vg+1(x)r where Au is the operator of mean-field diffusion 
in the volume V~z ~, i(x), x~V, are independent random variables with normal 
distribution N(0, o~) A study is made of the asymptotic behavior of the 
solution ~(x, t) and its statistical moments m~(x, t)=<~(x, t)) ,p~L2,. . . ,  as 
t § ~, IVI + ~. The paper continues the earlier [I]. 

We continue the study begun in [i]* of random media with mean-field (nonlocal) diffu- 
sion specified in a volume V~Z d by means of the operator 

i -~-~ ( f (x') - f (x)) .  (1) a,,l(x) = ~ , ,~ , ,  

In this paper, we consider a stationary random medium described by the evolution equation 

o* = ~5~r (x) r r o) =r (x) ~>o. (2) 
Ot 

The p o t e n t i a l  ~ (x)=~(x ,  o)  i s  a c o l l e c t i o n  o f  i n d e p e n d e n t  e q u a l l y  d i s t r i b u t e d  random 
v a r i a b l e s  w i t h  c o n t i n u o u s  d i s t r i b u t i o n ,  and •  i s  t h e  d i f f u s i o n  c o e f f i c i e n t .  

The aim o f  t h e  p a p e r  i s  a s t u d y  in  t h e  s p i r i t  o f  Sec .  2 o f  [1] o f  t h e  a s y m p t o t i c  
b e h a v i o r  o f  t h e  s o l u t i o n  ~----~(x, t, ~) o f  t h e  probem (2)  and o f  i t s  s t a t i s t i c a l  moments 
m~=m,(x,  t)=<~V(x, t)>, p=:l, 2 , . . . ,  as  t § 0% IV I  -.-. oo. 

We recall that Ivl and t tend to infinity in accordance with the prescription 

I V l - t %  t-~oo (3)  

(this condition is motivated in [i]). Although it is clear from the form (i) of the opera- 
tor AV that the topology of the lattice Z d plays no role, by means of (3) we have 
succeeded to some degree in taking into account the dimension of space. 

Note also that the condition: (3) leads essentially to a series scheme in the solution 
of the problem (2), namely, for given number N = IVI of sites, the solution ~(x, t) is 
considered on a time interval t6[0, t~], tN~N ~Id. 

. Asymptotics of the Growth of the Solution ~(x,t,m) 

We consider the operator Hv=• on the right-hand side of (i), which acts on the 
space of functions L2(V). We recall (see [i]) that the eigenvalues of the operator HV, 
expressed in the form ~--• satisfy the equation 

I=~ i V l -' ~ (~--~ (x)) % (4) 
x6V 

which has (almost certainly) precisely N = IVI roots %1 < ... < XN, and 

where ~(1)<... <$~-) is the variation series of the random variables {~(x)}. The eigenfunction 
corresponding to El, ~(x), normalized by the condition ll~II=l, has the form 

*The sections are numbered continuously through the complete study. 
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x'6V 

Note that by virtue of Parseval's equation 
N 

~,~ (x) = llsxY= I. 

Further, we shall assume that the initial function ~0(x) in (2) is nonzero, i.e., 
II~011 > 0. 

We expand ~(x, t) with respect to the eigenbasis {q0,(x)}: 
N 

(x, t) ---- L c~,  (x) exp{ (L~--• t}, 

where c i a r e  t he  F o u r i e r  c o e f f i c i e n t s  in t he  expansion of  %b0(x). 

LF_~  2.1.  We s e t  pN(x)=~(x, t)--c~(x)exp{(L~--• Then IpN(x)]<ll~011exp{ (~N-~--• 

Proof .  By the  Cauchy-Schwarz i n e q u a l i t y  
/ r  hr 

i = i  i = !  

by virtue of (7). [] 

This lemma shows that to study the asymptotic behavior of ~(x, t) it is necessary to 
estimate cN, ~N(x), and also to analyze the behavior of the highest eigenvalues ~, )~r as 
N + ~. We make such an analysis for the case of a Gaussian potential $. 

PROPOSITION 2.1. Let ~(x, o) have the normal distribution N(0, ~2). Then 

t -~ In ~(x, t)=~(dlnt)'-• t), 

where with probability i (uniformly with respect to x) ?-+0 as t + ~. 

We shall frequently require the following 

LEMMA 2.2 (see [2], w With probability 1 in the limit N § 

~v') =~ (2 In N)'/~+o (t).  

By virtue of the symmetry, theasymptotic behavior (8) is also valid for --~0)" It 
follows from this that with probability 1 for sufficiently large N 

~(A,)-~o)~<4~ (In N)". 

LEMMA 2.3. With probability I for sufficiently large N 

• (x) < t, 

xN-~llr cN< l]r 

Proof. First 9N(x)<[lg~l]=i. Further, by virtue of (6) 

~ (x) >~N -V' ~-b~ 
~-~m " 

It follows from Eq. (4) for X = X N that 

• ( ;k~-L~)) -~<t<  •  -~ , 

whence 

•215 

Using (9) and (13), we have almost certainly for sufficiently large N 

~,~--~< ~)< x+4o (In N)". 

Substituting the estimates (13) and (14) in (12), we finally prove (i0). Further, by 
the Cauchy-Schwarz inequality 

(6) 

7) 

8) 

(9) 

(io) 

(ii) 

12) 

13) 

14) 
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On t h e  o t h e r  hand ,  by v i r t u e  o f  ( 1 0 ) ,  

c~•  -~ s *o (x) ~•162 
x~V 

s i n c e  ,o(x)~O,  x6V. [] 

COROLLARY. With probability 1 for sufficiently large N 

2IIr ~ r (x, t) exp{ -- (s t} > IIr N-'[  • ~ exp{-- (~--s ]t) 1. 

The ~ r o o f  f o l l o w s  r e a d i l y  f rom Lemmas 2 .1  and 2 . 3 .  ~ 

We now t u r n  t o  t h e  s t u d y  o f  t h e  a s y m p t o t i c  b e h a v i o r  o f  ~ , ~ _ ~  as  N ~ ~. 

LEMMA 2.4. 

(~5) 

~ - ~ , ) < •  1 - - ~  [ i - •  ] , (16)  

~,~-i-~(N-,)<~ t - - - - ~  [ -  (~(N-t)-~(~)) ] (17) 

f o r  a l l  m, 1 ~ m N N -- 2, such  t h a t  t h e  e x p r e s s i o n s  in  t h e  s q u a r e  b r a c k e t s  in  (16)  and 
(17)  a r e  p o s i t i v e .  

P r o o f .  By v i r t u e  o f  Eq. (4 )  we o b t a i n  f o r  X = )~N 

i < •  (~-"-~(~))-l+• i N ) 

f rom which  (16)  f o l l o w s .  We can p r o v e  (17)  s i m i l a r l y .  [] 

Note  t h a t  f rom t h e  e s t i m a t e s  (16)  and (17)  we s h a l l  be a b l e  t o  deduce  ~ < N )  and 
~,-~(~--~> i f  we can choose  t h e  number m in  such  a way t h a t  f o r  i t  (16)  and (17)  h o l d  and 
mlN-+i, ~(~)--~(,.)--~, ~(~_~)--~m)~o~. This is our immediate aim. 

We require some facts about the almost certain behavior of uniform order statistics 
0<uo)<...<u(N)<i as N § ~. 

LEMMA 2.5 [3]. Let k be fixed. Let aN~0 and ~,TV-'a~h<~. Then with probability 1 for 

sufficiently large N u(~)>~N-~a~v. 

LEMMA 2.6 [4]. Let k be fixed. If ant, N-'aN$ and ~, N-'a~exp(-a~)<~, then with 

probability 1 for sufficiently large N u(a)~<N-~a~. 

LEMMA 2.7 [3]. Let k=k~oo and N-V~p~40. If k/In~N-+oo and Np~/in~N~, then with 
probability 1 

Jim inf N~z(~)--k 1 
~ (2kln~N) V' 

(here and in what follows in 2 = In ln). 

By means of Lemmas 2.5-2.7 we obtain a number of facts about the almost certain 
behavior of the original (normal) order statistics ~i,)<...<~(~), going over from them in 
accordance with the formula 

u(,) =@ (~<~iIo) ( 18 ) 

t o  u n i f o r m  o r d e r  s t a t i s t i c s  ( h e r e ,  r  i s  t h e  f u n c t i o n  o f  t h e  normal  d i s t r i b u t i o n  N(0, t ) ) .  
H e r e ,  we s h a l l  u s e  t h e  w e l l - k n o w n  r e l a t i o n  ( [ 2 ] ,  w  

t - @  (x )~  (2~)-'~x7" exp(-x~/2),  x-~+oo. (19)  

LEMMA 2.8. With probability 1 for sufficiently large N 

~(~-~) > o ( l n  N)'~:. 

Proof. By means of (18), we go over to the equivalent inequality 

t-u(~_t)<t-(D (l/In N), 

101 



or (by virtue of the symmetry of I-u(~_i) and a(~)) 

u(2)<l--@(?ln N). (20)  

In  a c c o r d a n c e  w i t h  (19)  

I-@(VlnN)~C(NhlN) -'l=, 

and t o  p r o v e  (20)  i t  r ema ins  t o  a p p l y  Lemma 2 . 5 .  [] 

Remark. S i m i l a r l y ,  u s i n g  Lemmas 2 .5  and 2 . 6 ,  we can p r o v e  Lemma 2 . 2 .  

L ~  2 . 9 .  We s e t  k = [v~ ] ,  m = N -- k + 1. Then w i t h  p r o b a b i l i t y  1 f o r  s u f f i c i e n t l y  
l a r g e  N 

~(=)<~ (ln N)'~. 

The p r o o f  i s  made as  in  Lemma 2 . 8 ,  u s i n g  Lemma 2 . 7 .  [] 

LDiI~ 2 . 10 .  With p r o b a b i l i t y  1 as  N + 

~=~(~)  + 0  (N-'~), ( 21 ) 

XN-,=~(~-I)+O(N-~). (223 

Proof. It follows from Lemmas 2.2 and 2.9 that ~(N)-~(~)-+~ (almost certainly) for 
m = N -- k + i, k = [~]. Then from (16) we obtain (21). Similarly, from (17) we obtain 
(22) by virtue of Lemmas 2.8 and 2.9. [] 

We now obtain a lower bound of the distance between the two highest order statistics 
~(~-i) and ~(N). 

LEMMA 2.11. With probability i for sufficiently large N 

~(~)--~(~_l)>o(ln N) -z. 

P r o o f .  App ly ing  Lemma 2 .5  f o r  k = 1 t o  t h e  s p a c i n g  u(r)-u(~-l) and u s i n g  ( 1 9 ) ,  we have  
(almost certainly) for sufficiently large N 

u(~>--~(~_~) = ~  (~(~)/o) - -~ (~(~-1)/o) > (N In z N) -1. ( 23 ) 

Note that for all xl < x2 

Then from (23) we obtain 

r ( x 0 - r  (xl) < r (x0 (x~-xt). 

~tN)--~(N--,)>~ (2n) '~ exp (~_, ) /2oz)  �9 (N In z N) -t, ( 24 ) 

and it remains to show that for sufficiently large N the right-hand side of (24) is larger 
than o(In N) -3, i.e., 

~(~-~) > o  (2 in N - 2  lnz N)'~, 

which i s  p r ove d  in  e x a c t l y  t h e  same way as  Lemma 2 . 8 .  [] 

Thus ,  Lemmas 2 .10  and 2 .11  show t h a t  t h e  e x p r e s s i o n  in  t h e  s q u a r e  b r a c k e t s  in  (15)  i s  
equivalent to a constant, since with allowance for (3) 

(~N--%N-I) t>Ct(ln N) -2~CN2/~ (ln N) -z_+ ~.  

It then follows from (15) that 

f -t In ~(x, t )=E~--•  ( l ) .  

F i n a l l y ,  u s i n g  (21)  and ( 8 ) ,  we o b t a i n  

t -1 In r t) =o (2  In N)'~--• = o ( d  In t ) '~-•  (1). 

The p r o o f  o f  P r o p o s i t i o n  2 .1  i s  c o m p l e t e d .  [] 

Remark. The solution , ( x , t )  can be represented by means of the Kac-Feynman formula 
(see (26) below) in the form of a functional of an appropriate random walk nt. in [5], 
in which the asymptotic behavior of ~(x,t) in the problem (2) with local Laplacian A is 
studied, it is emphasized that the main contribution to the growth of ~(x,t) is made, not 
by the typical trajectory qt that moves to a distance R ~ t~ from its initial position, 
but by a so-called optimal trajectory, corresponding to large walks R ~ t. However, in the 

102 



mean-field model we study we have actually eliminated such walks from consideration by 
using the condition (3). In fact, this influences only the numerical coefficient of the 
term (in t)�89 in Proposition 2.1. 

3. Asymptotic Growth of the Statistical Moments 

For simplicity, we shall now assume that ~0(x)------I (note that Propositions 3.1 and 3.2 
given below can readily be extended to the case when ~0(x) is a random homogeneous field 
independent of the potential $, i.e., when the random variables ~0(x), xeV, are symmetrically 
dependent). We are interested in the logarithmic asymptotic behavior of the statistical 
moments m~(x, t)=<~P(x, t)>, p = l ,  2 , . . . ,  as t + oo. We study initially the first moment m~(x,t). 

PROPOSITION 3.1. We assume that the potential ~(x, o) has normal distribution N(0, 02). 
Then in the limit t § 

in m, (x, t) =o2t2 /2--• +a ( t ) , (25) 

where  a( t )=o( t ) .  More p r e c i s e l y ,  in  t h e  o n e - d i m e n s i o n a l  c a s e  (d = l )  a(t)=• and f o r  
d~>2 r162 t). 

Proof. We consider in the volume V a random walk ~t that remains at a given point xeV 
for the indicative time with parameter u and then jumps to one of the points y6V with equal 
probability I/N (a transition x-~x is also allowed). We can readily find for Dt the 
generating operator 

A](x) ~ lira t -~ (M./(~l , ) - / (x)  ) = z S v / ( x )  
f4o 

(here, M~ is the average over all the trajectories q. that at the time t = 0 leave the 
point x). Using the Kac-Feynman formula,* we can represent the solution of the problem (2) 
in the form 

t 

o 

Let ~(y,t) be the total time the random walk qs, s =< t, remains at the point y6V; then 
t 

e : (~g 

By means of the formula <exp~>=exp(<~2>/2) (for the normal random variable ~ with zero mean), 
we obtain from (26) 

<r t)>=M~O,(T1.)<r (27) 

where 

~ 2  

y~V 

By virtue of the homogeneity of the field ~0 the factor <~0(Dt)> does not depend on the 
realization Dt, and it can be taken in front of the symbol M~ Note also that by virtue of 
the symmetry of the points xeV the mean value <~(x, t)> does not depend on x. Therefore, the 
symbol of the mathematical expectation in (27) can be given without the index x, it being 
assumed that the initial position of the random walk Dt is chosen randomly with 
uniform distribution: P{~o=x}=i/N, xeV. Thus, 

<~ (x, t) >=<~o>M@, (~.), (29) 

where ~t (q . )  is determined by formula (28). 

We denote by y the number of different sites yew visited by the random walk Ds, s ~ t, 
and by ~ the number of jumps made in the process (including jumps of the type y~y). 
Obviously, ~ + 1 ~ y. Further, we denote 

~ma~= max ~ (y, t) 
yEv 

and s e t  MOt(N.)=J,+J2+7~, where  

*See [6] (w One can also readily verify directly that (26) gives the solution of the 
problem (2). 
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and we choose 

7,=Mr 72=M@,(q.)I{'f~>2, , , , ,~<t ( [ -~) } ,  

7~=M@,(rl.)l{~f>2, "~,,,a~>t ( i --e)},  

It is easy to find J1. 

m~O 

e= (2x/o =) t-'-~0. 

In accordance with the total probability formula 
0o 

P{F=m}P{'f=l[F=m] = E ' - " '  (• ( i )'~ ml -N =exp (-•215 

whence 

] ,=exp (o~t2/2-xt+• . 
Note that in accordance with (31) the term Jl already makes the main contribution to the 
asymptotic behavior (25). 

Further, since 

we have by virtue of (30) 

which also agrees with (25). 

E T (y, t) ~ Tmax E X (y, t) = rmaxt, 
Y y 

72~<exp (d2t 2 ( t-- 8 )/2) =exp (~2tz/2--• 

It now remains to estimate Js. 

LEMI~ 3 . 1 .  There  i s  a r e p r e s e n t a t i o n  o f  J3 in  t h e  form 
N ~ 

]~ = E C~v"e-"'(• y dg e-~ ([~y)"/ ( k - i  ) ! MF (a, . . . . .  ,,h)/(bl.max~l--$ }, 
h ~ 2  0 

where ~=• ama~=max(ai,...,aa), 

F(u,,.. . ,  u~) =H exp(c~t~a,V2)/(~ga~), / ( z ) =  n!(n+l)~ ' 

and the random variables u I ..... u k are uniform spacings on [0, i], i.e., the lengths of 
the intervals formed when k -- 1 random independent points are cast on the interval [0, i] 
with uniform distribution. 

Proof. We label the sites xEV'x, .... , x~, and write xi in place of r(xl, t), Let v i be the 
number o f  a r r i v a l s  o f  t h e  random walk Ds, s _-< t ,  a t  t h e  s i t e  xl, and "cij be t h e  t ime  i t  
remains at the site xl after the j-th arrival at x~ until the subsequent jump (or until 
t h e  t ime  t i f  t h e r e  a r e  no more j umps ) .  Then "~='~,+ ...-t-'~i, i. 

We transform Ja by means of the formula for the total mathematical expectation: 

J~=- E E P{~t=m}MO'(~l')I{'f=k, ~:ma~>~t(l-8) [[l=rn} = 
h=2 m=h--I 

N 

Z C,~k E e-~' (• M e x p { ~ o ~ ( x ' 2 + ' " + * ~ 2 ) }  X 
m! 

I{v,>0,.. . ,  v~>0, Tmax~t(t--8) IWI+... +Vh=m+t}. 

We use  t h e  f a c t  ( s e e  [ 7 ] ,  Chap. 3, w t h a t  unde r  t h e  c o n d i t i o n  v 1 + . . .  + v k = m + 1 
( i . e . ,  f o r  a f i x e d  number o f  jumps)  t h e  j o i n t  c o n d i t i o n a l  d i s t r i b u t i o n  o f  t he  random 
v a r i a b l e s  { x i i } ,  i = 1, . . . .  k,  j = 1 . . . . .  v i ,  i s  i d e n t i c a l  t o  t h e  j o i n t  ( u n c o n d i t i o n a l )  
d i s t r i b u t i o n  o f  m + 1 u n i f o r m  s p a c i n g s  on t h e  i n t e r v a l  [0,  t ] .  S i n c e  t h e  s p a c i n g s  a r e  
s y m m e t r i c a l l y  d e p e n d e n t ,  t h e  m a t h e m a t i c a l  e x p e c t a t i o n  in  (35)  depends  o n l y  on t h e  l e n g t h s  
o f  t h e  s p a c i n g s  and n o t  on t h e i r  mu tua l  d i s p o s i t i o n .  T h e r e f o r e ,  we can l i m i t  o u r s e l v e s  t o  

~30) \ . 

(31) 

(32) 

(33) 

(34) 

(35) 
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the trajectories qs, s 5 t, that do not leave each site x~ until they have spent there all 
the time T i, and we can take them into account in (35) with an appropriate polynomial 
weight. Then the mathematical expectation in (35) takes the form 

where b i is the sum of the lengths ~i = ni of the successive spacings (on the interval 
[0, i]). Knowing the density of the A k distribution ([7], Chap. i, w 

m! 

and using the fact that for fixed b k = t k the random variables A, .... ,A~_~ have the same 
distribution as would be obtained if m - n k random points were cast on the interval 
[0, 1 -- t k] (see [7], Chaps. i, 3), it is easy to show that the distribution PA of the 
vector (b~ .... , bk) is absolutely continuous with respect to the joint distribution Pu of 
the spacings (u I ..... Uk), and 

dP~ x m! 
- -  ( , . . . . .  x ~ )  = x ~ , - '  . .  x ~ - V ( k - l ) ! ,  
dP~ ( n ~ - l ) ! . . .  (n~- t ) !  ~ " 

x~+...  +xh=t , O~xi~t ,  i = l , . . . , k .  

Then 

m] l M e x p ~ t  (u, + +uk 2) u~,-~. . .u k l{u=ax>~ ~}. (37) 
(n~--l)!... (n~-l)! (k-l)! ' 

We s u b s t i t u t e  (37) in (36) and (35) and express  t h e  f a c t o r  (m + 1)! in terms of  the  gamma 
function: 

(re+l) !=~ e-~y "~+~ dg. 
o 

Finally, interchanging the positions of the operations of summation and integration, we 
a r r i v e  a t  t he  formula  

h ~ 2  0 

oc h 

ni!  ( n i - l )  1 ' 
m=k--1 n l > O , . ,  , n ~ > o  , i = 1  

n1+,..+'n ~-=m+i 

(38) 

where ~=• Since the terms in the double sum in (38) factorize, the summation can be 
carried out over each of the indices nl, .... n k independently. As a result, this double 

sum takes the form H/(~ye~), where the function f is determined by Eq. (34), and (33) is 
i 

proved. [] 

LEMMA 3.2. For the function f(z) defined in (34), the inequality f(z) 5 exp(2v~) 
holds for z => O. 

Proof. The function f(z) can be expressed in terms of the Bessel function ([8], 
Eq. 8.447(i)) 

l~(z)= n!(n+l)!  

namely, 

]/z 
z>O. (39) 
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We use the integral representation ([8], Eq. 3.534(i)) 
i 

I~ (z) = (2z/n) ~ (t--x ~) '~ ch (xz) dx. 
0 

Then for z ~ 0 
i 

I~ (z) ~< (2z./~) .[ ( t - x  2) ,I~ ch z dx= (z/2) ch z, 
o 

from which, by virtue of (39), the inequality of the lemma follows. [] 

LEMMA 3.3. For the mathematical expectation in (33) we have the estimate 

ME (u~ . . . .  , ~k) I{ u~_,>~ l--e} ~ exp( o2t2/2+ 2 (~y)'~(1+ (N~)v~) }. k!(o~.tz/2) -(k-~) (40) 

Proof. Since the random variables ul, ..., u k are symmetrically dependent and occur 
symmetrically in the mathematical expectation (40), 

MF (a~, . . . uk) I {u=,,~ l - s  }=kMF (u~ . . . . .  a~) X 

I( t t ~ >  t--~, u~.~=u~ }=kMf (a~ , . . . ,  a~)I(u~>~ l - e  } (4 i  

( s i n c e  1 - z > 1/2;  s ee  (30 ) )  1. We e s t i m a t e  F (u l  . . . . .  Uk), u s i n g  Lemma 3.2 and J e n s e n ' s  
i n e q u a l i t y  f o r  t h e  f u n c t i o n  x~: 

F (u~ , . . . ,  uk) ~<exp{'/~o~t~(a,~+...+af)+2 (~y) '~' (us  

+uk'~')} <exp{o2t~uJ2+2(~ga~)v~+2(~g(k-l ) ( l -u~) )'l'}~exp{o~t~uJ2+2(~g)'~,+ 2(~yNe)'~j. 

S u b s t i t u t i n g  in (41)  and c a l c u l a t i n g  
r 

i exp {02t2u~/2} I{ ~ >  1-e} = (k-1)  exp{ ozt~/2} ] x ~-~ exp {-o~t2x/2} dx <~ 
0 

( k - t )  ! exp(o~t=/2} (o~t=/2)-(~-o, 

we o b t a i n  (40 ) .  [] 

We complete the proof of Proposition 3.1. We apply the estimate of Lemma 3.3 to (33). 
Surmming over k, we obtain 

Z kCN ~ (2~y~-~t -~ ) ~ N  ( l+2Dyo-~t -~ ) ~ <~ N exp {2~Nyo-~t -~} =-N exp {~y} 
h = 2  

(recall that ~=• e=(2• -~, see (30)), whence 

J~<~CtN exp {o~tU2-• ~ exp{-ay+Zby'~Jdy, 
o 

where 

a=t- -~-~  t, b=~'/2+ (~Ns)'~'= (•215 
1 

Calculating the integral by means of the substitution z = y~ -- b/a, we obtain the estimate 
oo 

S exp{-ag+2bg'}dg<~a -' {t+2b (n/a)'l' exp (bVa) }. 
o 

Then, by virtue of (42) 

J3~C,N exp {o2t2/2-• (t) }. 

Thus,  combining t h e  e s t i m a t e s  (31 ) ,  ( 32 ) ,  and (43 ) ,  we can o b t a i n  (25) .  I f  we t a k e  
into account in these estimates the connection (3), we can determine the form of ~(t) in 
(25) more accurately. [] 

We turn to the higher (mixed) moments m~(X, t)=<~(xl, t) ..~ t)>, where X=(x~ .... ~xp), 
x~6V (some of the sites xi may be coincident). 

(42) 

(43) 
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PROPOSITION 3.2. Suppose the potential $(x, ~) has normal distribution N(0, o2). Then 
in the limit t + ~ 

In mp (X, t) =~2p2t2/2-• (t), (44) 

where  ap(t)=o(t) .  More p r e c i s e l y ,  f o r  d = l  av(t)=O(t~),  w h i l e  f o r  d~2  a~(t)=o(hl t) .  

P r o o f .  I n t r o d u c i n g  p i n d e p e n d e n t  c o p i e s  ~l( ' ) , . . . ,~Iv) o f  t h e  random walk q t ,  we can ,  as  
in  t h e  c a s e  o f  ( 2 8 ) - ( 2 9 ) ,  w r i t e  mp(X,t) in  t h e  form 

y@V i : t  

where  ~i(y, t) i s  t h e  t o t a l  t i m e  t h a t  t h e  random walk ~ ) ,  s~t ,  r e m a i n s  a t  t h e  p o i n t  y. Con- 
s i d e r i n g  in  (45)  o n l y  t h e  p a t h s  ~.(t) , . . . ,~.(P) t h a t  d u r i n g  t im e  t do n o t  l e a v e  t h e i r  i n i t i a l  
position, and taking into account their statistical weight exp(-p• we obtain for m~(X,t) 
the lower bound 

mp (X, t) ~exp {G2p~t2/2-pzt}. (46) 

On the other hand, applying the elementary inequality 

(a,+ . . .  +ap)~p(a~2+ . . .  +ap 2) 

to the argument of the exponential in (45), we have 

~ V  i = l  y@V 

(because of the independence of the processes ~.(~),.. . ,~.(P)). In accordance with ( 2 8 ) - ( 2 9 ) ,  
Nz(t) is none other than the first moment <~> in the model (1)-(2) with ~ replaced by q~. 
Using for ml Proposition 3.1, and taking into account the estimate (46), we obtain (44). [] 

Remark. The argument that we used in the proof of Proposition 3.2, which reduces the 
study of the asymptotic behavior of the higher moments mp to consideration of the first 
moment, has a general nature and can be used in the realistic model with local Laplacian 
A. 
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