CONDITIONS FOR THE REPRESENTABILITY OF THE
DENSITY MATRIX

M. M. Mestechkin

The necessary and sufficient condition for the N-representability of reduced density matrices
is found for functions of limited rank.

1. The so-called N~representability problem is lately attracting considerable attention [1-5]. We re-

call that it consists of developing the necessary and sufficient conditions for which some function P (x;, Xy.

N %', %', ..., xg'), antisymmetric in all groups of arguments (the argument represents the set of all
the one-particle spatial and spin coordinates), Hermitian, and which is a kernel of a positive definite nu-
clear operator, can be considered an s-th-order reduced density matrix PS(N) (x|x") of a pure or mixed state
of a system of N particles. The lower index s (which for wavefunctions will be enclosed in parentheses in
the following) indicates the number of arguments, which for simplicity of notation are denoted by the letter
X.

The solufion of this problem for a second-order reduced density matrix of a system of particles in-
teracting in pairs in conjunction with the variational principle would allow essentially to remove the many-
particle wavefunction Y(n)(x) from the treatment of the majority of quantum-mechanical problems.

At the present time the N-representability problem is still far from a constructive solution. Its dis-
cussion is usually conducted in terms of constraints imposed by the requirement of N-representability re-
garding the spectral decomposition of PS(N)(X [x"):

™, o, ® “
P (z]a') = D} A i) g (). (1

f==1

The following terminology is widely used [1, 2]. The eigenfunctions (p(s)i(x) {corresponding to Aj(s) # 0)

of an s~th~order reduced density matrix are called natural s-particle states (in an N-particle system), and
the eigenvalues Ai(s) are called natural occupation numbers of the corresponding states. The number of
terms in the expansion (1) with nonzero Ai(s) is usually designated the s-th rank of the wavefunction ) (x),
and the first rank is simply rank. The function (%) itself, for which P¢(N)(x|x") is an s-th-order re-
duced density matrix

N ¥
PO (alay = () ) § Poolay) Tan(ew), @
Y

we shall call the representation function.

For a mixed-state representation the N-representability problem was solved in the case of PI(N)(X [x")
[1], and some progress has been made for P,(N)(x|x") {3].

For a pure-state representation the complete solution exists only for the ranks r= N +1 and r = N
+ 2 [1, 2] for a first-order reduced density matrix, and also for a second-order reduced density matrix in
the case of three particles [4]. A general condition of N-representability of a first-order reduced density
matrix for a system of many particles described by a Hamiltonian invariant under time reversal was found
in [5], and was generalized to the degenerate case in [6]. Several results pertaining to the representation
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by functions of a special type were obtained in {7] for a many-particle system, and they were sxtended also
to systems with a small number of particles in [8].

The necessary and sufficient condition for the N-representability of a reduced density matrix of ar-
bitrary s for functions of limited rank lIf(N)(x) is formulated in this paper.

According to the Carlson—Kellertheory (2, 9] a function of rank r can be represented in the form

Pn(z) = @i(1)0i(22, 23, ..., Zn), (3)

i==1

where ¢;(x,) are natural one-particle states, and 0; (%9, X3, ..., xN) are natural (N — 1)-particle states. It
can be shown that if an antisymmetric function ¥(\)(x) is represented in the form of Eq. (3) then it is a
superposition of (1{1) determinants constructed from one-particle functions ¢ o Pigre s s Giy taken from the
sequence @, @¥y,..., @p [10]:

Wn(2)="> Cind, dotnlgs, Gin..., 0 1(2). (4)
iy '

Consider a "large" determinant constructed from all the basis functions

[Py (@) @1 (22) . .. P1 () ]
o0 (xlv Za, .. i Pa (xl) Pa (xz) s Pa (xr) )

o &) = det, [@1, @, .., 9r] (2) = Vil I (5)
Pr (11:’ Pr (‘TZ> <9 (zr)
If by Qg ) we denote the N-th-order reduced density matrix for this determinant then
§ 09 (22 Wan(2) = Wy ), (6)
for, as is evident from Eq. (4), ¥y(r) is the natural N-state for O. In that case according to the Carlson—
Keller theory there exists a natural r — N = M-state &)(y), also belonging to 1:
r EY < » ¢ :
Dan(y) ZV(N) § W@ 0@y = 3 (—1)*ei.i  detar (s, 95 - -, 91, 1), (0

{ity

where a{it =1 +2+.. .+ N+i, +iy +... + iy. The multiplier \/Z?)normalizes dvi)ly) to unity. In evalu-
ating the right side of Eq. (7) we have used the rule for integrating an alternating product and expanded O(xy)
by the Laplace formula through the first N columns. ji, jy, ..., jj together with iy, iy,..., iy form a com~
plete set of indices 1, 2,..., r. We shall call the functions ‘I’(N)(X) and i)(M)(x) reciprocal. It it easyfo
show that

Yoo =V{ 1) {@aaw) o).

Y

s
2}
~a

If ¥y describes a system of N particles, ¢ describes a system of M holes. A comparison of Egs. {7)
and (4) reveals the reason why with a limited rank for every wavefunction ¥(N) it is possible to construct

a reciprocal function ®(pry. If the rank is limited, then the coefficients in the expression of the type (4) can
be counted both as being present in the determinant and as an additional set of indices, which together with
the indices of the one-electron functions of the determinant form the complete set of indices 1, 2,..., r.
Therefore, the same set of coefficients can serve as a basis for the construction of the function of N and

r — N particles.

We shall now find the relationship between the reduced density matrices PS{N)(XfX') and PS(M)(X [x1)
of the functions ¥(N)(x) and ®(y)(y). By definition of the reduced density matrix (2) and using Eq.{8)

4 ; M L] O [
P (]2 =< IZ) S‘If(m(:cu)‘F{m(x’u)= ( t$> S(Dum(y)Q§}+s(xy|$-z)®(zm(z)- (9)

222



We use for the determinant in the reduced density matrix the expression
QI(\?+S('Z!/|$JZ): Axy[p(xi Izil)y ey p(xsl‘rs’)ap(yilzi)’ vaey p(yMIZM)I

= 4,08 (z|2'), p(ys]21), - ., P(Yae)zar)), (10)

where Axy is an antisymmetrizing operator in all x- and y-variables, and

r . .
pla]ay) = Q (zila) = 3 @i(zn) i (21). (1om)
=1
Since according to Eq. (7) nIJ(M)(y) is separable in each variable only into the one-electron functions which
appear in p(xy !xl'), it is not changed by the action p(yy lzi), <o POM IZM), and

§ 0Rs(ay|e's) Dun (5) = 4:,100 (2]2') Do ()] (11)
Substituting this expression into Eq. (9), using the Sasaki formula [1] for Axy and the Hermitian property of
the operator Ay, and taking account of the antisymmetry of the corresponding functicns, we have (K = min (M,

s))

k
S\ M . .
PéN) (z|x’)=AxZ (—1)~7< ] )( ] ) S (D(M)(y) (D(M)(a:i,...,x]-,yjH,...,yM)Qg)(yi,...,yj, $j+1,...,.’135|1‘/). (12)
=1 ¥

Bearing in mind the definition of the reduced density matrix, Eq. (2), we obtain

k

(s : ,

PP )2y =4, > (—1)a( j ) § PPz 20, 2519) Q0 (0 241 ). (13)
=0 Y

The integration over y is accomplished by substituting for Qér) an expression of the form (10)

k .
» s 1y
P (a)="S) (—1i( D) 4a B . il ok, 1), (14
j=0

14
P(zipslTina), . .o p(2s]2s)]
We state this final result as a separate theorem (assuming s = M}.

THEOREM. Let PgM)(xlx') be a reduced density matrix representable by an antisymmetric wave-

(M) (M)

i
function of M = r — N particles of rank r, u, and let P, ' (x|x") = ['];;/—'-T}“S Pj + (xy Ix'y) be reduced density
Y

J

matrices of lower orders (j < s). The necessary and sufficient condition for the N-representability of the
function PS(N) (xlx')by apure state of rank r is that it be expressible in the form of Eq. (14) through Pg
{x|x') and PS(M) (x]x".

The necessary condition follows from the fact that if there exists a \I!(N)(x) representing PS(N) (xlx'),
then the dqp)(y) related to it through Eq. (7) leads to reduced density matrices Pj M (x|x") satisfying Eq.
(14). If there exists a ®r)(y) representing PS(M) (x|x') and, consequently P; M)(x|x') derived from it, then
\II(N)(X), calculated according to Eq. (8), represents the PS(N) (x]x") on the left side of Eq. (14).

2. The majority of known conditions for N-representability follow from Eq. (14).

For a fixed M and r — « the right side of Eq. (14) (as well as the left) is a kernel of a positive-defi-
nite operator. Inparticular, with s =1 and s = 2 the right side of Eq. (14) contains kernels of the operators
g(x, Ix;") and Q(xy, X, |x;", x,") of [11], whose positive definiteness, it is maintained, is a "necessary" prop-
erty on which several results of the above-mentioned paper are based. Thus, Eq. (14) contains a generaliza-
tion of the Percus and Garrod inequalities for a reduced density matrix of higher order.

If we calculate the mean value of both sides of Eq. (14) for s = 2 withthe determinant Ti_ Pi(21) i (22) ,
V2 ' gi(21) 95 (22)
the positiveness of the right side reduces to one of thenecessary conditions for the N-representability for-
mulated in {7].
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Case of N-Representability of Pi(N) by a Pure State. We rewrite Eq. (14) for s = 1 in the form
P 2|2y + PP (z]2') = p(z]a). (15)

If the rank r =N + 1, i.e., M = 1 and P1(M) (x]x") = ¢,(x)*(x"), the Eq. (15) gives the natural Pi,(N)(X;?X”) in
the form

N4 N+
PP (z|)= 3 ¢i(2) 0" ()~ qu (@) (&) = ) oe{z) " (). (16)

=1 i=2

But this expansion, consisting of N terms, ig the first-order reduced density matrix for the determinant of
N particles. Thus ‘I/(N)(X) is a determinant, and one of the basis functions (¢y) is not its natural one-par-
ticle state in contradiction to the original assumption, so that the rank of ¥y (%) is N, and for a system of
N-particles the rank N + 1 is not possible. This theorem was established by Coleman [11, and proved by
Ando [2] and Foldy [10].

As was shown in {1], natural occupation numbers of first order for a two-particle system are even
degenerate. Therefore, according to Eq. (15) and for an arbitrary even N and r = N + 2 the first-order na-
tural occupation numbers are even degenerate. For N (and consequently for r = N + 2) odd in Pi(N) (x]x"
there is one natural one-particle state which is not simultaneously the same for P1(2) (x]x". Consequently,
it belongs to unity. Such a structure of the spectrum of PI(N) (x|x" for r =N + 2 wag formulated by Cole~
man [1] as a necessary and sufficient condition for the N-representability of P1(N) (x1x" by a pure.state.
The proof of the necessity which we obtained as a simple consequence of Eq. (14} was given by Andc [2] by
a very tedious method, which required two preliminary lemmas.

On the other hand, let a first-order reduced density matrix be given with the above spectral struc-
ture

( nH [@e(z)@o" (z')  for N odd,

PV (z]ay = Asloi(z) i (= (x) " (2 ' N

1 (z]2) 2'1 il (@) " (27) + x: (%) 11" ( )1+10 for N even, . ——}, 47
1= L 2 5

It is easy on the basis of the stated theorem to construct the wavefunction representing Pj(N) (x|x". For

this we compute Pi(z) (x]x") from Eq. (15) and construct a two-particle function &, (y) with first~order reduced

density matrix P1(2) (x|x"), after which \II(N)(X) is determined from Eq. (8):

nH
Wiy () = D) V1 — Aidet[@n, Xy o - -, ity Kimts Pitty Nitds + -+ » Pty Xt (%) (18)
i=t
(N even). For N odd \II(N)(x) has the same form of Eq. (18), but each determinant must include aiso ¢, For
superposition of functions of the type ¥(n)(x) with different mutually orthogonal ¢,, using Eq. (17), it is easy
to obtain Theorem 3.6 from [8].

Equation (18) not only verifies the sufficiency, but also shows incidentally that for a rank N + 2 the
minimum number of determinants from which the wavefunction can be constructed is [N/2} + 1. Thus, Eq.
(18) supports the solution found by Ando [2] for the problem posed by Foldy [10].

From Egq. (15) follows one more well-known specific case of the N-representability of Pl(N) xlx".
Let Pi(N) (x|x') have k natural occupation numbers equal to 1:

Rk
P(z|2') =3 9i(@)es" (&) + Pulzl2). (19)

i=1

Then the "remainder" Py (x]x") represents a first-order reduced density matrix represented by a function
of N —k particles, strongly orthogonal to each of the one-electron functions ¢y, ¢,..., 9. To show that,
we substitute Eq. (19) into Eq. (15):

A

P (z]a') + Pi(z|a) = prlz] 7)) — 3} gutaor (&) = pia(z]2), (20)

te=q
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where py_j is a "unity" of the (r —k)-dimensional subspace orthogonal to ¢y, ¢,,..., ¢k. It is evident that
@1, P9, ... P cannot be eigenfunctions of P1(M)(XIX'), since further application of Eq. (15) to Pl(M)(xlx')
gives

P (z|2') 4+ P (2]0) = ps(zle), (21)

where Pl(r‘k'M)(x!x') —r—k~M=N is a k-representable reduced density matrix with natural states or-
thogonal to ¢y, @, ..., @k. Comparing Egs. (20) and (21), we have Pl(xlx') = Pi(N‘k)(xlx'), which proves
the statement. (The theorem presented in [1] without proof contains an improper normalization Pi(N‘k)

-(x[x").)

3. The main significance of Eq. (14) is in the fact that it allows to construct N-representable re-
duced density matrices for a system with a large number of particles when reduced density matrices of the
same order but representable by functions of a small number of particles are available. For s > 1 the sit-
uation is substantially more complicated in comparison with the case s = 1, since due to the presence of
lower reduced density matrices on the right side of Eq. (14) it is not diagonal in the basis of natural s-par-
ticle states of the function <I>(M)(x). However, for specific values of the rank it is possible even here to de~
termine a detailed construction of the reduced density matrix.

Let us, for example, find the natural expansion of the first-order reduced density matrix with rank
N + 2. In this case PI(N)(xlx') must have the form of Eq. (17) according to what has been proved. For
simplicity we assume that there is no additional degeneracy among the A;. Then for N even Pz(N)(xIx') has
n(n +1)/2 natural occupation numbers A; + Aj—1 (i #j), to each of which belong four linear combinations
of determinants constructed from one-electron functions taken from two pairs @i Xi and PjXjs and (n + 1)
natural occupation numbers £, which are sclutions of the equation

1—AM\ i—As 4 Anys

LI vy g Y vy gy BTy woppey pan- s

0. (22)

1 1@ ;
The natural two-particle states corresponding to £k are linear combinations of the functions — @i (=1) @i (22) ,
V2 wa () % (=2)
i=1,2,...,n+1. For N odd, there are in addition n + 1 doubly degenerate natural occupation numbers

1 —~ A to each of which belong

Po(Z1) Go{x2) ‘
Y1) 1i(x2)

1| golz0) 9o(22)
V2 ' i(z1) @i ()

All this is the result of calculating the first-order reduced density matrix for the function (18) and of
diagonalizing this expression.

1
d —
V2

It is interesting to note that the left side of Eq. (22) changes sign each time ¢ goes through 24; — 1,
and therefore the roots are located in the intervals

A — 1 <TG << 2A,— 1 <En <...<TE<C2A —1<EL (23)

Since 2A1 —1 =1, no natural occupation numbers of PZ(N) (x |x") with the possible exception of & exceed unity.
As was shown by us [12], this possibility of one of the occupation numbers increasing leads also for extre-
mal functions of higher rank to £ ~ N/2, which implies a "nondiagonal long-range order" and super-
conductivity [13].

In conclusion the author expresses his gratitude to M. G. Veselov and to the participants of a seminar
in the Theoretical Physics Department of Leningrad State University for many valuable observations.
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