
17. L. Bianchi, Lezioni di Geometr ia  Differenziale,  4th Edition, Bologna (1922-1923). 
18. A. R. Forsyth,  Theory of Differential Equations, Vols. 5-6, Dover Publications, New York (1959). 
19. F. Lurid, Ann. Phys. (N.Y.), 115, 251 (1978). 
20. V. K. Abalakin, E. P. Aksenov, E. A. Grebennikov, V. G. Detain, and Yu. A. Ryabov, Handbook of 

Celestial Mechanics and Ast rodynamies  [in Russian],  Nauka, Moscow (1976). 
21. A. N. Leznov and M. V. Savel 'ev,  Fiz.  Elem. Chastits At. Yadra, 11, 40 (1980). 
22. A. N. Leznov and M. V. Savel 'ev, Fiz.  Elem. Chastits At. Yadra, 12, 125 (1981). 

F O R M U L A T I O N  O F  G A U G E  T H E O R I E S  O F  G E N E R A L  F O R M .  

II. GAUGE-INVARIANT RENORMALIZABILITY AND RENORMALIZATION STRUCTURE 

B . L .  V o r o n o v  and I . V .  T y u t i n  

Gauge-invariant  renormal izabi l i ty  is established for a gauge theory of general  form in 
l inear gauges,  namely, both the renormal ized  and the unrenormal ized action satisfy the 
Zinn-Just in equation; the Ward identities (in the Zinn-Justin form) remain  the same on 
renormal iza t ion .  For theories  with closed algebra it is shown under the assumption 
that the locality hypothesis is valid that the renormal iza t ion  of the action, which is 
complicated off the mass  shell, reduces  on the mass  shell to the addition of gauge-  
invariant s t ruc tures  and a multiplicative renormal iza t ion  of the fields. At the same 
time, the gauge-invar iant  s t ruc tures  that vanish on the c lass ica l  equations of motion 
can be ignored. 

1. The present  paper is a direct  continuation of [1J (Part I). Under some natural assumptions,  we 
prove here  the gauge- invar iant  renormal izabi l i ty  of gauge theories  of general  form as formulated in Par t  I, 
and we establish the s t ruc ture  of the renormal iza t ion  of such theories  both off and on the mass  shell.  Staying 
within the f ramework of perturbation theory,  or ra ther  a loop expansion, we r e s t r i c t  ourse lves  to theories  
that are  index renormal izable .  

By gauge-invar iant  renormal izabi l i ty  we understand renormal izabi l i ty  with conservation of the Ward 
identities, which express  the s y m m e t r y  in a quantum theory.  Specifically, we have in mind the Ward identity 
for the generating functional F of the vertex functions in the Zinn-Justin form [2] (see ~2). 

This form, which completely expresses  the gauge content of the theory,  is remarkable  above all by 
virtue of its invariance with respec t  to the gauge algebra,  which makes it possible to pose the question of 
gauge-invar iant  renormal izabi l i ty  in general  form.  The answer to the question is aff irmative,  and the form 
of the Ward identity itself is invariant with respec t  to renormal iza t ions  (.~3). 

In speaking of the renormal iza t ion  s t ruc ture ,  we mean the s t ructure  of the modified renormal ized  
action. F rom the point of view of the modified action, gauge-invariant  renormal izabi l i ty  signifies continuous 
(with respec t  to the pa ramete r  ~? of the loop expansion) deformation of the original modified action S, S -~ S(V), 
with conservat ion of the Zinn-Just in equation for this deformation, (S(v),  S(V)) = 0 (see (1.6)*) (33). 
Accordingly,  gauge- invar iant  renormal izabi l i ty  does not in general  signify conservation of the original gauge 
algebra but r a the r  a deformation of it associated with the renormal iza t ion  of the fields. 

For  theories  with an originally closed algebra,  the s t ructure  of the renormal iza t ion  off the mass 
shell consis ts  of adding to the original action gauge-invar iant  eounter te rms  with a subsequent canonical t r a n s -  
formation of the variables ,  i . e . ,  the fields and sources  (in the terminology of [3], the fields and antifields). 
At the same time, it is possible (for theories  that are  not index renormal izable ,  with dimensional coupling 
constants) that the canonical t ransformat ion  mixes the original fields and the ghost fields, with the consequence 
that the renormal iza t ion  r ender s  the gauge a lgebra  open. This leads to a modification of the Faddeev-Popov  
ru les  even for theories  with an original ly closed algebra (w 

* In r e fe r r ing  to the equations of [1], we shall denote Eq. (6) of [1], for example, by (1.6). 
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Although the renormal ized  action is local (in each order  of the loop expansion), locality of the 
canonical t ransformat ion  mentioned above cannot be proved in the f ramework of the most general  t rea tment .  
If locali ty of the canonical t ransformat ion  is assumed,  and this is the gist  of the locality hypothesis discussed 
below, then on the mass  shell, i . e . ,  for the S matr ix,  the modified action admits an important  simpIification, 
namely, the canonical t ransformat ion  of the var iables  reduces  to a multiplieative renormal iza t ion  of the 
fields (w 

The following proposition, which holds i r respec t ive  of the locality hypothesis and apparently has 
long been suspected by many scient is ts  is especial ly important:  Suppose that in some order  of the loop 
expansion there appears  a gauge- invar iant  local eounte r te rm which vanishes on the c lass ical  equations of 
motion; then it can be omitted (ignored al togetherl)  on the mass  shell in not only the given but also in the 
higher approximations (w 

For  theories  with original ly open algebras ,  the renormal iza t ion  s t ruc ture  includes a pre l iminary  
canonical t ransformat ion  to a closed algebra.  The existence of this additional t ransformat ion prevented us 
finding significant simplifications of the on-shel l  renormat iza t ion  s t ruc ture .  True,  there is still the poss i -  
bility of ignoring for the S matr ix the coun te r te rms  that vanish on the classical  equations of motion (~5). 

We now discuss  in more  detail the assumptions under which the main resul ts  of the paper are  

obtained. 

Of course ,  we assume the absence of anomalies,  i . e . ,  we assume the existence of a regular iza t ion 
that p re se rves  the gauge algebra.  Moreover ,  the regular izat ion is assumed to be such (of dimensional type) 
that the singular (containing ~(0)) local measures  of integration and the Jaeobians of the local changes of 
var iables  are  equal to unity. The problem of allowance for the measure  in other regular iza t ions  can be 
solved on the basis of [3]. 

For  simplicity,  we r e s t r i c t  ourse lves  to l inear gauges.  

Finally, for the ease of closed a lgebras ,  we adopt the locali ty hypothesis,  which is formulated as 
the assumption of locali ty of the representa t ion  of general  form of the solution of the Ward identity for the 
counte r te rms  and ul t imately reduces  to the assumption of locali ty of the canonical t ransformat ion  that occurs  
in the renormal iza t ion .  It should be noted that in all the cases  when the Ward identity for the counte r te rms  
could be solved explicitly (Yang-Mills theories  [4], two-dimensional  ehiral  theories  [5], gravitat ion R=), 
this hypothesis has been confirmed.  

2. This section is preparatory in nature. It is devoted to the formulation of the Ward identity for 

the generating functional F of the vertex functions in the Zinn-Justin form [2] and the formulation of a lemma 

needed to establish the renormalization structure. 

We begin with the derivation of the Ward identity. According to [31, the generating functional Z of 

the Green's functions is constructed as follows (see also [I]): 

where S~, e = S~(~, e, K, L) - Q~(N) and the index ~ means that instead of K, L, N we must make the 
substitution Kc- '5~/80 ~, L~--"~/Sc ~', N=-~5~0/Sa~; Q,(N) is the gauge t e rm which lifts the degeneracy of the 
modified action S~, and ~ is a gauge fermion,  so that &~/~g~ is the subsidiary,  or gauge, condition. 
Compared with [3], we have omitted the local measure  of integration (see ~1). Note that our method of 
introducing the gauge condition is not the most  general ,*  though, first ,  it contains all the usual gauges and, 
second, it is quite sufficient for our purposes .  Compared with [1], we have introduced the loop expansion 
pa ramete r  r7 and the additional source N a with Grassmann pari ty ida and ghost number 0. 

tn what follows, it is convenient to retain the sources  K, L, N, for which it is sufficient to consider  
a gauge fermion ~ of the form 

~(0 ,  c, ~, K, L, N)=K~@%L~,c~'+N,~=+~(O, c, ~). 

We emphasize that since the S matr ix does not depend on the choice of ~, it is also independent of 

* It cor responds  to the case when the gauge fermion ~ in [3] has the form ,=~i~(~)+~(o, c, ~), i . e . ,  depends 
in a special manner on ~. 
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the s o u r c e s  K, 

As a consequence  of  the Z inn - Jus t i n  equation (1.6) for  S, the effect ive  ac t ion S~, e 
equation (which we shal l  a l so  cal l  the Z inn - Jus t in  equat ion;  cf .  [2]) 

S 5S,~.e 5S,, e ~}S,, e + 6S,, e 6S,.e = 0. (1) 
*'+'~-T~, + 6~ ~ '~L= :~o "~No 

We in t roduce  in the usua l  m a n n e r  the gene ra t ing  functional  of the ve r t ex  funct ions :  

F(O, c, ~, K, L, N)=W-]~O~-O~c~-O~ ~, O~=6W/6K, c~=6W/50~, ~=5W/50~. 

Averag ing  Eq. (1) funct ional ly ,  we obtain in the s t andard  manne r  the Ward  ident i ty  for  F in the 
f o r m  

F 6 F +  5F 6P 5F 6P 
" 6K~ 6c ~ 5L~-~ + 5~ ~ 6N~=0 '  (2) 

which exac t ly  r e p e a t s  the Z inn - Jus t i n  equat ion (1) for  Sr e. In the der iva t ion ,  we have ignored  the t e r m s  
6~S,/60~K~, 6~S,/6c~6L~, 6~Q/6a~6N=, which a r e  po rpo r t i ona l  to 5(0)  (see ~1). Al lowance  for  the addit ional  
m e a s u r e  of  in tegra t ion  [3] makes  it poss ib le  to de r ive  the Ward  identi ty (2) without  neglec t ing  these  t e r m s ;  
it does not lead to fundamenta l  changes  in any of  the a r g u m e n t s ,  and for  s imp l i c i t y  we shal l  s y s t e m a t i c a l l y  
omit  this m e a s u r e ,  appeal ing to an a p p r o p r i a t e  r e g u l a r i z a t i o n .  

We note in pass ing  that  the use  of Eq. (1) makes  it poss ib le  to prove  in a s imple  manne r  the gauge 
inva r i ance  of  the S mat r ix ,  i . e . ,  that  it is independent  of the choice  of ~. I n d e e d ,  cons ide r  the va r i a t ion  
AZ due to a change ~ of the gauge f e rmion :  

6 +6A~,6 +6A~ 6 ~ {_~ 
AZ= ~dOdcd~ (A,,~ 6K~ 6c ~ 6L~ 5~ ~ 5Nil exp (S,,e+JO+Oc+~) }. 

In tegra t ing  by pa r t s  and us ing (1) (and again omi t t ing  the local  con t r ibu t ions  p ropor t iona l  to 5 (0)),  we find 
that  the modi f ica t ion  of Z is due to the modi f ica t ion  of only the t e r m s  with the s o u r c e s  J ,  0, ~ :  

[ 5 5 (_)p~+~ 5 ] 
AZ = ~ J~A~ -8-g7, (-)'~ + O~A~ ~ + ~ A ,  ~ (--)~+' Z, 

where  in Ar c , - c )  it is n e c e s s a r y  to make  the subst i tu t ion @ ~ - i 5 / 5 I ~ ,  e tc .  The s t andard  p roof  of the 
equiva lence  t h e o r e m  [6] shows that  on the t r ans i t i on  to the S ma t r ix  the c o r r e s p o n d i n g  t e r m s  can (up to a 
poss ib le  mul t ip l ica t ive  r e n o r m a l i z a t i o n  of the f ields) be ignored .  But this  means  that the S ma t r ix  does not 
depend on the choice  of  r 

Below, for  s impl ic i ty ,  we r e s t r i c t  o u r s e l v e s  to the case  of l inear  gauges ,  when 

where  tai and • do not depend on the f ie lds .  

In this  ca se ,  t he re  a re  two s impl i fy ing  c i r c u m s t a n c e s .  F i r s t ,  Sr e depends on K and 5- only in 
the combina t ion  

_~,=K~+~t=,, (3) 

and it s a t i s f i e s  the equation 

L, N. Accord ing ly ,  in the ca lcu la t ion  of the S ma t r i x  t he re  is no need to se t  K = L = N = 0. 

s a t i s f i e s  the 

6S*'e +(--)P~t~i 5S*'e-- O. 
6~ ~ 6K~ 

But this means  that  F sa t i s f i e s  exac t ly  the s a m e  equat ion,  and, t h e r e f o r e ,  a dependence  on K and 5- o c c u r s  
in it only in the combina t ion  I~ (3). Second, the dependence  on N can be r e a d i l y  found expl ic i t ly ,  so that  F 
can be r e p r e s e n t e d  in the f o r m  

F=:7- ((I), c, K, L)-'/2(N~+t~O ~) • (N~+t~O~). 

We indicate  expl ic i t ly  in (4) that  F depends on K and 5- only th rough  I~ (3); thus,  we take into account  
comple t e ly  the gauge condi t ion.  Below, we shal l  omi t  the t i lde over  K in J -  ( formal ly ,  this c o r r e s p o n d s  
to -~ % 0), r e m e m b e r i n g  that in the c o r r e s p o n d i n g  final e x p r e s s i o n s  it is n e c e s s a r y  to make  the subst i tu t ion 
K --> K (3) ( thereby r e s t o r i n g  the dependence  on -c). 

As a consequence  of  Eq. (2), Y ( O ,  c, K, L) sa t i s f i e s  the s a m e  Z inn - Jus t i n  equation (1.6) as  S 
(cf. [2]): 

(4) 
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J - . 5 ~ - +  5J- 5J- 1 
"6K, 6c ~ 6N~=-2 (J-'~)=~ (5) 

In establishing the renormal iza t ion  s t ruc ture ,  a key part  is played by the equation 

s ~ ( S ) = S ,  5 + 5S 5 + ( _ ) , ,  6S 5~ +(_)p:+~ 6S 6r, 

(6L/5~i , 5L/6ca are the symbols of the left derivatives*), which arises as a result of a small variation of 

the Ward identity (5). The results obtained below are based to a considerable degree on a certain representa- 

tion which we now establish of the general solution of this equation for even functional A = A (m, e, K, L) 
with initial condition 

A ((I), c, 0, 0) =0. (7) 

The opera tor  .q (S) in (6) has the proper ty  
~ (S) =0, (8) 

which is a consequence of the Zinn-Just in equation (1.6) for S. Equations (6), (7), (8) are  a copy of 
Eqs. (1.13)-(1.15) with the general  solution (1.16). Do we need to prove once more  (which would be quite 
sufficient for our purposes) that any solution of Eqs. (6) and (7) can be represented  in the form 

A=~(S)X, (9) 

which copies (1.16), and also assume that X can be taken to be local (it is obvious that X is defined up to 
t e rms  of the form ~(S)Y) if A is a local functional? We note that ~(S)  can be represented  in the form of 
an expansion with respec t  to the e fields: 

(S) = W  (So, R) + .,~ O. (S), 
n ~ l  

where ~2 (S), n >- i, has homogeneity degree n with respect to the c fields. Then it follows from the lemma 

proved below that the necessary structure of the solution (9) follows from the already proven and assumed 

(locality hypothesis (!), [I]) properties of Eqs. (1.13) and (I. 14). 

We give this simple lemma, which generalizes in an obvious manner the well-known special cases 

[7, 8]. 

LEMMA. Suppose the operator k(ot) has the form 

A(~) = Z ~ " A .  
n--~-0 

2 and has the proper ty  A2(a) = 0 (hence, A 0 = 0 as well). Suppose any solution of the equation 

AoA=0 (101 

with some oz-independent l inear subsidiary condition on A can be represented  in the form 

A=AoX (11) 

and A(a)X sat isf ies the same subsidiary  condition. Then any solution A (a) of the equation 

A ((z)A (a) =0, (12) 

represen ted  by a formal  se r ies  in powers of a and satisfying the same subsidiary  condition, has the form 

A (~) =A (~) X(~). (13) 

In addition, if A(oz) and, hence, A 0 are  local opera tors  and any local solution of Eq. (10) can be represented  
in the form (11) with local X, then any local solution of Eq. (12) can be represented  in the form (13) with local 
x(~).  

For the proof, we substitute the expansion A(c~)=Zcz~A~ in Eq. (12). In the lowest order in we 

n~k 

* These derivatives appear here as an exception to the condition adopted in /i], according to which the 

derivatives with respect to the fields are right derivatives and with respect to the sources left derivatives; 

we also recall that P/, Pc~ + I are the Grassmann parities of the fields 0 ~i and ghosts c a, respectively. 
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have A0A ~ = 0. But Ak sat isf ies the subsidiary condition, and therefore  A k : A0X k. We represen t  A(~) 
in the form 

A (~) =A(a)  (a~X~) +A (') (m). 

It is obvious that A (l) (a) sat isf ies (12) and that its expansion with respec t  to c~ begins with the t e rm of 
order  o~ h+~. In addition, A((x)(ahX~ ) sat isf ies the subsidiary condition, and therefore  so does Am(00. Sub- 
stituting the expansion A(')(a) in (12), we obtain AoA(~ =0, whence A(~+)i=AoX~+~. Substituting A (a) in the 
form 

A ((z) =A(c~) ((xaX~+o~+iXa+,) +A (2) (a), 

we see that A (~ (c~) sat isf ies (12) and the subsidiary  condition, and its expansion begins with t e rms  of order  
u~+~, etc. ; the proof is then by induction. 

In our case A(r =fl(S), A0=W(S0, B), the c fields play the par t  of c~, and (7) is the subsidiary con-  
dition. 

3. In this section, we prove the gauge-invariant renormalizability in the general case. 

We consider the single-loop approximation for ~ :  

~ = J 0 + n J i +  o (n ~) ~s+ng- ,+o (n2). 

The single-loop contribution, J-i=t3r',, aiv:+~r-i,~o, contains the divergent (when the regular izat ion is lifted) 
t e rm J-,,aiv:, which is a local functional of the type S with divergent coefficients.  The complete Ward 
identity (5) genera tes  in the f i rs t  o rder  in 7/ the Ward identity for the single-loop divergences 

(S) Y-,, dtv =0. (14) 

To eliminate the single-loop divergences,  it is sufficient to subtract  f rom the original modified action S the 
counte r te rm ~ dW, i . e . ,  to go over to the renormal ized  (in the single-loop approximation) action S (" (~)= 
S--~Y',, ate- 13y virtue of (1. d) and (14), S (') 0l) sat isf ies a Zinn-Just in equation of the form (1.6) up to t e rms  
(which are  completely determined) of second order  in 7: 

(S ('), S "~) =,12 (~,, dry, ~ ,  d~) ---~I2Q (2). (15) 

The generating functional of the ver t ices  constructed f rom S (~) and renormal ized  in the single-loop, i . e . ,  
l inear in r/, approximation, ~r-(,)(q), is finite in the single-loop approximation: 

and it satisfies the Ward identity (5) up to terms of second order in ~: 

(j-('), ~ ( ' )  =r (n~), (16) 

the derivation of Eq. (16) being completely analogous to the derivation of Eq. (5) with the r ight-hand side 
written down in the necessa ry  7/2 approximation, which for i t  is identical with the t ree  approximation. 

The two-loop contribution to Y'(~)01), like the single-loop approximation, contains a local divergent 
te rm:  a-  ("~_a- (') -LOT -(~) By virtue of (16), (1) ff'2,:div sat isf ies the equation ~ z  - - ' t  2, div - - J  2, con .  

Elimination of the two-loop divergences is achieved by transit ion to the renormal ized  (already in the two-loop 
approximation) action 

8 (2) / ~  q ( i )  ~2~--  (i) - - 8  ~ "  _2r7/-- ( i)  
\ q , ' ~  - - q  z ~ d i v : ~  - - q ~ i ,  d i v - - l l , Y  z, div~ 

which by virtue of (15) and (17) sat isf ies a Zinn-Just in equation of the form (1.6) up to completely determined 
t e rms  of third o rder  in 7: 

(8c% S C2~) =r (~).  

The generating functional of the ver t ices  constructed f rom;S  t~) and renormal ized  in the two-loop, i . e . ,  
quadratic in ~ approximation, .g-(z)(q), is finite in the two-loop approximation, 

5 t-(z) S-}- q_ z (i,), -b ~ (2) (n)=  ~ , r  n~r  ...... ~Y-~ + o ( n ) ,  

and sat isf ies the Ward identity (5) up to t e rms  of third order  in n: 

(g-(~), gr'(2)) =~13Q(~) +O (rl') (18) 
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(z) ~r- (z) -[-07- (2) t o  (the c o m m e n t s  on (18) a r e  the s a m e  as  on Eq. (16)). The t h r e e - l o o p  cont r ibut ion  J ~  =~, , , ~  . . . .  oo, 
2V (~)(~t) conta ins  the d ive rgen t  t e r m  2r~.!~ivi, which by v i r tue  of (18) sa t i s f i e s  the equat ion (S ~-(~) ) =~/~Q(~), ~ 3 ,  div 
etc .  The fu r the r  a r g u m e n t s  a r e  obvious:  it r e m a i n s  to apply the method of  induction with r e s p e c t  to the 
n u m b e r  of  loops .  The final r e s u l t  is as  fol lows:  the c o m p l e t e l y  r e n o r m a l i z e d  modif ied act ion 

s .  (n) -=-s(~, (n) = s -  ~ ~"~-~,~,-Y, (1 ~) 

which is local  in each  finite o r d e r  in V, exac t ly  sa t i s f i e s  the Z inn-Jus t in  equation (S~(~)), S~(~I))=0. 
Accord ing ly ,  the comple t e ly  r e n o r m a l i z e d  gene ra t ing  funct ional  of the v e r t i c e s ,  ~r-(~,)___~(~)(q), exac t ly  
sa t i s f i e s  the Ward  ident i ty  (5): (~-.(~l),:T',(~l))----0: The p roo f  is comple ted .  

4. We see that the gauge-invariant renormalization reduces to a continuous deformation of the 

original modified action, S -~ SR(~), this preserving the Zinn-Justin equation (i. 6). In this section, we shall 
describe the general form of'a deformation that leaves the Zinn-Justin equation invariant, and we shall 
thereby establish the renormalization structure in the general case. 

We consider first the case of a closed algebra, when as the renormalized action S (the choice of 

which for given S o and even given !~ ia is, as we know from [I], not unique) we take the minimal construction 
of the Zinn-Justin equation (1.38). The consideration of this case is key. In what follows in this section, 
except for a special stipulation, we understand by S its minimal construction. 

First of all, we find the general solution of (14) (in the framework of formal series in the c fields). 
We can represent g-,,div in the form 

g",,div =Y,,d~ ,;o ( r  + K~W,,di~ ;,'~ ( r ) c ~ + O  ( c ' )  , 

Considering (14) in the first order in the c fields, we obtain 

:~- . . . . . .  R= (O) +S0 (O) ,,~r',, div ,,~ ((I)) =0.  (20) 
50 '  

This  equation shows that  ~ri, dtv;0 can be r e p r e s e n t e d  in the f o r m  

~'~. di~ ;0 (@) = - A S 0  ('~ ((I)) -So (O),,X I~)~ (O), (21) 

whe re  AS~') is a g a u g e - i n v a r i a n t  funct ional :  

hSo (~) (O) .,R= ~ (O) ----0. (2 la) 

To see  this ,  we note,  f i r s t ,  that  the f o r m  (20) and the r e p r e s e n t a t i o n  (21) a r e  invar iant  with r e s p e c t  to 
poss ib le  changes  of  the v a r i a b l e s  r and, second,  a c c o r d i n g  to [1] the re  exis t  among  all poss ib le  se t s  of 
va r i ab l e s  ( r  se t s  {q)r ~ �9 ~} such that in t e r m s  of  them the g e n e r a t o r s  R i have the f o r m  R~ = 0. Now 
Rsa is a ma t r i x  with an i nve r se  and, acco rd ing ly ,  S0(r = S(o_') does not depend on &e. Rewr i t ing  (20) in 
these  va r i ab l e s ,  we obtain 

~ t ,  div;o , - [ -  ~o~(O) a t ,div;i~k J= - -  , 
,6(I)" 

f r o m  which the r e p r e s e n t a t i o n  (21) r e a d i l y  fo l lows.  

We now r e p r e s e n t  g-~, di~ in the f o r m  

W,,dL~:=--5S:" (O) --~ (S)K~X"" (0) +AW,, ~ .  

By v i r tue  of  (14), (21a), and (8), A:F-,, div by i t se l f  s a t i s f i e s  (14) and, in addit ion,  its expansion with r e s p e c t  
to the c f ields does not contain  a z e ro th  t e r m ,  so that  by v i r tue  of conse rva t i on  of  the ghos t  n u m b e r  it 
van i shes  for  K = L = 0. T h e r e f o r e ,  in a c c o r d a n c e  with See .2  (see the d i scuss ion  of  Eqs .  (6) and (7))h~r'~, d~v 
admi t s  a r e p r e s e n t a t i o n  of  the type (9): 

hgr'~, dL~ =- -g~  (S)  AX. 

Final ly ,  we find that  the ge ne ra l  solut ion of  (14) can be r e p r e s e n t e d  in the f o r m  

2r'~,~iv =.ASo;~(qg)-f2(S)X~, ASo;~=ASo (~, X,=K~X(~)~q-A~Xi. (22) 

We now r e p r e s e n t  the r e n o r m a l i z e d  modif ied  ac t ion  S~ (19) in the f o r m  S~=S,~+Az, where  
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S,R ((I), c, K, L) =So (O') +~lAS0;t (@') +K/R~(O  ') c' ~+ ~/2L~']~c ' ~c' ~, 

' ' K ' ,  L'  and the va r i ab l e s  � 9  c , a r e  obtained f r o m  r c, K, L by a canonica l  t r a n s f o r m a t i o n  with gene ra t ing  
funct ional  X~(O,  c, K', L ' ) = K / O %  LJc~'+~IX~(O, c, K', L') .  

It is obvious  that  the expansion of A 2 in a s e r i e s  in ~? begins  with the t e r m s  of o r d e r  ,12: A2=q2T2+ 
O(~1'). F r o m  the Z inn - Jus t i n  equat ion for  S~ the re  now follows the equat ion ~ ( S ) T  2 = 0 of the f o r m  (14), 
whose  solut ion can be r e p r e s e n t e d  in the f o r m  (22), 

"r2=A&, ~ (r +~ (S) X2, 

where  X 2 is a funct ional ,  and AS0; 2 sa t i s f i e s  (21a). We r e p r e s e n t  S R in the f o r m  SR=S~q-A3, where  

S~(O,  c, K, L)=So(O')+~IAS,; ~((I)')+~12aS0; 2(O')+ K/R~(@')c  ' ~+'/2Lc~'/~T~'c ' %' ~, 

' ' ' L' and the variables 4~, c , K , are obtained from ~, c, K, L by a canonical transformation with generating 

functional X~R=X~R+~I2X2(@, c, K',L'). It is obvious that the expansion of A 3 in a series in ~ begins with the 

terms of order ~73 It remains to apply the method of induction with respect to the number of loops in order 

to obtain the final result: S/~(~) can be represented in the form 

,SR(~I, O, c, K, L)=So R(O ' )§  ' ~ 4 - , / r  ,~ ~ ,~ ,~ (23) , - -  12~.t~ ]~T C C , 

w h e r e  

So; R=S0+~IAS0; i+~12hS0; 2+ �9 �9 �9 (23a) 

' ' ' L' is a gauge-invariant functional of the original fields ~ and the variables ~I , c , K , are obtained from 

�9 , c, K, L by a canonical transformation whose generating functional is 

X~(@, c, K', L') = K '  O~-L' c+~]X~ ( @ , c, K, L ) + . . . .  (23b) 

The comple te  r e n o r m a l i z e d  act ion in such a c a s e  has  the f o r m  

SR.,,e(O, c, K, L) =SR(O, c, K, L) --i/2 (N~+t~,O ~) • (N~+&~O~), 

where  I~ is given by (3). 

We note that this r e s u l t  was  ac tua l ly  a l r e a d y  contained in [9]. However  it was  based  e s sen t i a l ly  on 
the hypothes i s  of  loca l i ty  of the r e p r e s e n t a t i o n  (22) of the gene ra l  solut ion of (14) for  the c o u n t e r t e r m s ,  i . e . ,  
on loca l i ty  of AS 0 and X s e p a r a t e l y .  M o r e o v e r ,  the v e r y  r e p r e s e n t a t i o n  (22), which is p roven  h e r e ,  was  a 
pa r t  of  the hypo thes i s  in [9]. It should a l so  be noted e spec i a l l y  that at the t ime when the paper  [9] was  
wr i t t en  the given r e n o r m a l i z a t i o n  s c h e m e  could ac tua l ly  be applied only to t heo r i e s  of Y a n g - M i l l s  type,  in 
which the canonica l  t r a n s f o r m a t i o n  does not mix the f ields �9 and the ghos ts  c,  being l inear  in the c f ie lds .  
Othe rwise ,  the gauge a l g e b r a  is open (see below),  the act ion conta ins  the c f ields in an e s sen t i a l ly  nonl inear  
manne r ,  and a c o r r e c t  fo rmula t ion  of  t heo r i e s  of such type does not then exis t .  

Of c o u r s e ,  loca l i ty  of the r e p r e s e n t a t i o n  (22), i . e . ,  loca l i ty  of S0. ,((I)) and XR(~ , c,  g ' ,  L')  
s e p a r a t e l y  for  local  Sn(~? ), is e x t r e m e l y  d e s i r a b l e .  If loca l i ty  of the r e p r e s e n t a t i o n  cannot  be ensu red ,  then 
in local  quantum field t heo ry  it b e c o m e s  m e a n ing l e s s  to a l a rge  degree ,  s ince  many of its impor tan t  c o n -  
sequences  a r e  lost ,  in pa r t i c u l a r ,  those  r e l a t i ng  to the de fo rma t ion  of the gauge a lgeb ra .  T h e r e f o r e ,  we 
defe r  the d i scus s ion  of  the r e n o r m a l i z a t i o n  s t r u c t u r e  to Sec.  5, in which we d i scus s  the loca l i ty  hypothes i s  in 
a f o r m  suff ic ient  for  our  p u r p o s e s .  However ,  it mus t  be emphas i zed  once m o r e  that  g a u g e - i n v a r i a n t  
r e n o r m a l i z a b i l i t y  is st i l l  t rue  without  the loca l i ty  hypo thes i s .  

It r e m a i n s  to say  a few w o r d s  about the case  (admittedly,  pu re ly  academic)  when the o r ig ina l  modif ied 
act ion of  a t heo ry  with a c losed  a l ge b ra  is not a min ima l  Z inn - Jus t i n  ac t ion .  In this ca se ,  as  we know [1] ,  
it d i f fe rs  f r o m  such an ac t ion by only a canonica l  change  of va r i ab l e s ,  which,  obviously ,  is s imply  imposed  on 
the r e n o r m a l i z e d  canonica l  t r a n s f o r m a t i o n  d e s c r i b e d  above,  namely ,  one mus t  f i r s t  go ove r  to va r i ab le s  in 
which the ac t ion is min imal ,  c a r r y  out the r e n o r m a l i z a t i o n  p r o c e d u r e  de sc r ibed  above,  and then make the 
i nve r se  change of v a r i a b l e s .  

The p r o b l e m  of the r e n o r m a l i z a t i o n  s t r u c t u r e  of gauge t heo r i e s  with open a lgebra  can be solved in 
exac t ly  the s a m e  way.  In this ca se  (see [1]) t he re  ex i s t s  a canonica l  t r a n s f o r m a t i o n  to va r i ab le s  in which the 
gauge a lgeb ra  is c losed  and the modif ied act ion has  the f o r m  of the min ima l  Z inn - Jus t in  cons t ruc t i on .  

A d i f fe rence  f r o m  the case  just  ana lyzed  is that  h e r e  the p r e l i m i n a r y  canonica l  t r a n s f o r m a t i o n  
af fec ts  the g e n e r a t o r s  of the gauge t r a n s f o r m a t i o n s ,  mixing the f ields $ and the ghos ts  c .  Accord ing ly ,  
though in va r i ab l e s  in which the a lgeb ra  is c losed ,  the r e n o r m a l i z e d  act ion has  the f o r m  (23), and So; ~ is 
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invariant With respec t  to the genera tors  of the closed algebra but, in general ,  not with respec t  to the 
genera tors  of the original open algebra.  In addition, the genera tors  of the closed algebra and, hence, the 
representa t ion  (23) itself may be nonlocal. If the genera tors  of the closed algebra are  local, one can begin 
direet ly  with the etosed algebra,  though somet imes  there are  reasons  which still make it more  convenient 
to work with the original genera to r s .  

5. In this section, we discuss the sufficient conditions and consequences of locality of the representa- 
tion (23) of the renormalized action SR(~ 7) for the case of closed algebras. Sufficient conditions are ensured 
by the locality hypothesis (see [1] and Sec.2), which is augmented here by a new assumption. This new 
assumption is that in the representation (21) of the general local solution of Eq. (20) the functionals AS 0 and 
X can be taken to be I o c a I .  Together with the assumption of locality of the representation (1.16) of the 
general solution of Eqs. (I. 13) and (I. 14), from which there follows locality of the representation (9) of the 
general solution of Eqs. (6) and (7) (see Sec.2), this is sufficient to ensure locality of the representation (22) 
of the general solution of the Ward identities (14) for the counterterms. 

A direct consequence of the locality hypothesis is locality of the representation (23) of the renorma- 
lized action S~(~) in the case of closed algebras. This means that the gauge-invariant term So. R(*]), like 
the canonical t ransformat ion  q), c, K, L~O ' ,  c', K', L', can be assumed local. We assume that all this is true 
in the f ramework of the loop expansion, i . e . ,  in each finite order  in 7. 

We discuss  in more  detail the s t ruc ture  of the renormal iza t ion  (23) under the condition of its locality, 
concentrat ing on the deformation of the gauge algebra on renormal iza t ion;  this deformation is determined by 
the f i rs t  two coefficients of the expansion of S R with respec t  to the c fields. It can be shown that in the 
general  case the s t ruc ture  of the gauge algebra changes radical ly,  and the algebra becomes open, although 
a closed algebra cor responds  to the original action. 

The renormal iza t ion  includes two elements:  the (usual) addition of gauge-invariant  counte r te rms  
and the (less usual) canonical t ransformat ion  of alI the var iables ,  f rom ~, c, K, L to ~', e ' ,  K' ,  L'o In 
t e rms  of the new variables ,  the renormal ized  action looks like the usual Zinn-Just in action with the same 
gauge algebra;  however,  the new variables  are,  in general ,  complicated nonlinear (divergent!) functionals 
of the finite original fields ~, c, K, L. Accordingly,  in t e rms  of the lat ter ,  the renormal ized  aetion has a 
complicated form in the general  ease.  The specific features of the theory are  in fact contained in the form 
of the canonical t ransformat ion,  i . e . ,  the generat ing functional X~. It is here evident that dimensional 
considerat ions and renormal izabi l i ty  or nonrenormal izabi l i ty  of the theory with respec t  to the index are  
decisive.  These considerat ions determine two fundamentaIly different cases .  In the f i rs t  ease,  which 
cor responds  to theories  that are  index renormal izable ,  the canonical t ransformat ion does not mix the fields r 
and the ghosts e: ~' = 4~'(4,) does not depend on c. A further  detail here is that, depending on the dimensions 
of the fields r their renormal iza t ion  may be either multiplicative (for dimensional fields of the Yang-Mil ls  
type) or a nonlinear reparamet r iza t ion  of general  form (for dimensionless fields such as two-dimensional  
ehiral  fields [5]). tn the seeond case,  the canonieaI t ransformat ion  mixes the fields �9 and the ghosts e: 
�9 ' = 3 '(3,  c . . . .  ) depends essent ial ly  on the c fields. From the point of view of the gauge algebra,  the 
difference between these two cases  is that in the f i rs t  the deformation of the algebra is tr ivial ,  and leaves it 
closed, whereas in the second ease the algebra becomes open as a resul t  of the deformation.  We shall 
discuss this fact below, i l lustrating it by taking the examples of Yang-Mil ls  theories  and Einsteinian 
gravitation,  which were anlayzed in detail in [4] and [10]. 

If in the case of four-dimensional  Yang-Mil ls  theories  with dimensionless coupling constants 
(which are index renormal izab le  and essent ial ly  exhaust this c lass  of theories) the fields, sources ,  and 
derivat ives (momenta) are  ascr ibed the natural canonical dimensions,  then the renormal ized  modified action 
S R (like S) is a local functional of dimension less than or equal to 4. Then, with allowance for the eonse rva -  
tion of the ghost number the generat ing functional X R of the canonical t ransformat ion can have only the 
following form: 

X~=K/ (A%t/O j) +LJ)~c ~, 

where A ~, t/, ~.~ do not depend on the fields. Making corresponding calculations,  we can calculate all the SR, 
but we are  interested in ~ S ~ Su ;1~ (the coefficients in the t e rm K~ R;,c~ c ), which are  the renormal ized  genera tors  
of the renormal ized  action SR~ 0(O) in accordance  with the Zinn-Just in equation for S R. It is readi ly  seen 
that the deformation of the algebra consis ts  of a transit ion to an equivalent representat ion,  a shift of the 
fields, O'~t/OJ+A ~, and replacement  of the original genera tors  by l inear combinations of them with matr ix 
X~. Following the mathematic ians ,  we shall say that such a deformation is t r ivial .  Putting it briefly,  
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t r i v i a l i t y  of the  d e f o r m a t i o n  in r e n o r m a l i z a b l e  t h e o r i e s  t a k e s  the f o r m  that  the  gauge  a l g e b r a  (group) r e m a i n s  
the s a m e  a f t e r  the  r e n o r m a l i z a t i o n .  

In the  c a s e  of a Y a n g - M i l l s  t h e o r y  of g e n e r a l  f o r m ,  th i s  r e s u l t  was  ob ta ined  by d i r e c t  so lu t ion  of  
the  W a r d  i d e n t i t i e s  (14) for  the  c o u n t e r t e r m s  [4] and,  thus ,  the  l o c a l i t y  h y p o t h e s i s  was  in fac t  p roved  in th i s  
c a s e .  It should  be e m p h a s i z e d  tha t  in the c a s e  of a s i m p l e  gauge  g roup  with  s e v e r a l  A be l i a n  c o m p o n e n t s  
(of the  type  U (1))  the  W a r d  i d e n t i t i e s  a lone  do not e n s u r e  t r i v i a l i t y  of the  d e f o r m a t i o n  of the gauge  a l g e b r a ,  
and i t  was  n e c e s s a r y  to invoke e s s e n t i a l  add i t i ona l  a r g u m e n t s  va l id  in index r e n o r m a l i z a b l e  quan tum f ie ld  
t h e o r i e s .  

In the  c a s e  of  i n d e x - n o n r e n o r m a l i z a b l e  t h e o r i e s  wi th  d i m e n s i o n a l  coupl ing  c o n s t a n t s  the  s i t ua t ion  
is  d i f f e r e n t .  The  i m p o r t a n t  th ing  i s  tha t  h e r e ,  f i r s t ,  t h e r e  a r e  no r e s t r i c t i o n s  on the d i m e n s i o n  of  the  
c o u n t e r t e r m s ;  t h e i r  d i m e n s i o n  in a c o n c r e t e  a p p r o x i m a t i o n  is  bounded but  it  i n c r e a s e s  wi th  i n c r e a s i n g  
a p p r o x i m a t i o n ;  s econd ,  to c a l c u l a t e  the d i m e n s i o n  of the  c o u n t e r t e r m s  the f i e lds  m u s t  now be a s c r i b e d  non -  
c a n o n i c a l  d i m e n s i o n s .  F o r  e x a m p l e ,  in g r a v i t a t i o n ,  in which  the g r a v i t a t i o n a l  f ie ld  and the f i e ld s  c,  ~ a r e  
a s c r i b e d  d i m e n s i o n  0, and the s o u r c e s  K, L (and the d e r i v a t i v e )  the d i m e n s i o n  1, the index (degree)  of 
d i v e r g e n c e  of  the  d i a g r a m s  of the  n - l o o p  a p p r o x i m a t i o n  is  2 n + 2 - N ~ - N L - N e ,  w h e r e  N~, NL, N~ a r e  the 
n u m b e r s  of  e x t e r n a l  K, L, and c- l i n e s ,  and the d i m e n s i o n  of  the  c o u n t e r t e r m s  in the  n - l o o p  a p p r o x i m a t i o n  
is  l e s s  than o r  equa l  to 2n + 2. As  a c o n s e q u e n c e ,  the c f i e l d s  can a p p e a r  in the  r e n o r m a l i z e d  mod i f i ed  
ac t ion  in a p o w e r  h i g h e r  than the  s econd ,  and the s o u r c e s  K and L in a power  h i g h e r  than the f i r s t .  Th i s  
fac t  a lone ,  which  i s  c o m m o n  to i n d e x - n o n r e n o r m a l i z a b l e  t h e o r i e s ,  i n d i c a t e s  tha t  the r e n o r m a l i z e d  t h e o r y  
m u s t  be a s s o c i a t e d  wi th  an open a l g e b r a  of gauge  t r a n s f o r m a t i o n s .  We find an e x p r e s s i o n  for  the  r e n o r m a l i z e d  
S~; 0 and the g e n e r a t o r s  S~; ~, for  which  we w r i t e  down an e x p a n s i o n  of  :~R with  r e s p e c t  to the  c f i e l d s  to 
the  n e c e s s a r y  a c c u r a c y :  

XR=K~" (~ ( (9 ) -- ' /2KI'  KJ  X,~J ( @ ) ( - - )  P,c~+ L~'X~ ~ ((9) c~-t-: . . 

In the  a p p r o x i m a t i o n  in c and K tha t  we need ,  

(9"=r  ( - ) P , c ~ + . . . ,  K / = K ~ h O ~ / ~ O ~ + . . . ,  c' ~=X~%~+ . . . .  

and the r e n o r m a l i z e d  m o d i f i e d  ac t i on  S R h a s  the  f o r m  

6 ( 9  ~' ~ - _ ] 
z~=s0,~ (~ ((9)) +K, [?~-;  R~ (r X~ (r +S~;~ (~ ((9)).~X~'~((9) C~--[ - "  

50 ~ a(9 ~ 
x~i~(o) = ( - )  ~,(~,+~,) - - , ~  X~ :~ ((9) = ( - )  ~ , ~ , + ' x ~ j '  (o).  

It can  be s een  f r o m  th i s  that  the  d e f o r m a t i o n  of  the  a l g e b r a  r e d u c e s  not on ly  to a change  of the  
v a r i a b l e s ,  6; ~ ~ ( ~ ) ,  and a t r a n s i t i o n  to l i n e a r  c o m b i n a t i o n s  of the o r i g i n a l  g e n e r a t o r s  by m e a n s  of the  
m a t r i x  X~ (which s t i l l  k e e p s  the  a l g e b r a  c l o s e d ) ,  but a l so  i n c l u d e s  the  add i t i on  of t r i v i a l  g e n e r a t o r s ,  
So; ~(q)((9)),~Xj~(O), which  open the a l g e b r a .  H o w e v e r  t r i v i a l  and even n e c e s s a r y  (the gauge  s y m m e t r y  of S~;0 
is  p r e s e r v e d ! )  t h i s  add i t i on  m a y  a p p e a r ,  i t  is  n e c e s s a r y  to e l i m i n a t e  the d i v e r g e n c e s .  Thus ,  we m u s t  
n e c e s s a r i l y  r e g a r d  the  r e s u l t i n g  r e n o r m a l i z e d  t h e o r y  as  a t h e o r y  wi th  open a l g e b r a .  Of c o u r s e ,  for  g a u g e -  
i n v a r i a n t  r e n o r m a l i z a b i l i t y  i t  is  su f f i c i en t  if  the  r e n o r m a l i z e d  mod i f i ed  ac t ion  s a t i s f i e s  the  Z i n n - J u s t i n  
equa t ion .  The  w o r d s  "open a l g e b r a "  m e a n  in th i s  con tex t  tha t  the  r e n o r m a l i z e d  ac t ion  has  a m o r e  c o m p l i -  
c a t e d  f o r m  than tha t  p r e s c r i b e d  by the F a d d e e v - P o p o v  r u l e s .  

We should  l i ke  to e m p h a s i z e  e s p e c i a l l y  two c o m m e n t s  tha t  a p p e a r  to us  v e r y  r e l e v a n t  and c o n c e r n  
the  o n - s h e l l  r e n o r m a l i z a t i o n  s t r u c t u r e .  We have  s e e n  above  tha t  the  r e n o r m a I i z a t i o n  of  the  t h e o r y  a s  a 
whole ,  i . e . ,  the r e n o r m a l i z a t i o n  of  the  G r e e n ' s  funct ion off the m a s s  s h e l l s ,  can  be a r a t h e r  r e f i n e d  b u s i n e s s  
even  in the  c a s e  of  c l o s e d  a l g e b r a s .  H o w e v e r ,  if  we r e s t r i e t  o u r s e l v e s  to c a l c u l a t i o n  of the  S m a t r i x  
( ca l cu la t ion  of  the  o n - s h e l l  G r e e n ' s  func t ions ) ,  the  e x p r e s s i o n  for  the  r e n o r m a l i z e d  ac t ion  can be a p p r e c i a b l y  
s i m p l i f i e d .  Indeed ,  the  r e n o r m a l [ z e d  m o d i f i e d  ac t i on  S R (21) i s  an ac t ion  of Z i n n - J u s t i n  type  of c a n o n i c a l l y  
t r a n s f o r m e d  v a r i a b l e s .  But in [1] i t  was  shown tha t  the  c a n o n i c a l  t r a n s f o r m a t i o n  in the  mod i f i ed  ac t ion  
r e d u c e s  on the m a s s  s h e l l  to m u l t i p l i c a t i v e  r e n o r m a l i z a t i o n  of the  f i e ld .  T h e r e f o r e ,  to c a l c u l a t e  the  S 
m a t r i x ,  we need  not c o n s i d e r  (23) but  can  r e s t r i c t  o u r s e l v e s  to the  e f f ec t ive  ac t ion  

S:~, ~, e=S0; R ( Z (9 ) + ~t~Zj-~R~J ( Zq) ) c ~ -  ' / z t ~ ( 9 ~ t ~ ( 9  ~, 

w h e r e  Z - Z j  is  a c o n s t a n t  m a t r i x ;  we have  se t  K = L = N = 0. In o t h e r  w o r d s ,  to e l i m i n a t e  the  
d i v e r g e n c e s  f r o m  the S m a t r i x  it is  s u f f i c i e n t  to t ake  into accoun t  the  g a u g e - i n v a r i a n t  c o u n t e r t e r m s  in a d d i -  
t ion to the  m u l t i p l i c a t i v e  r e n o r m a I i z a t i o n  of  the  f i e l d s  4~. 
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When some of the t e r m s  in S0; R(@) a r e  propor t ional  to S0(gg),~ or ,  as  one says ,  d i sappear  on the 
equations of motion, a fu r ther  s impl i f ica t ion of the r e n o r m a l i z e d  action in the S ma t r ix  is poss ib le .  Suppose, 
for example ,  (to be speeifie)  that AS(0 i} (q)) in (21) has the f o r m  

~S0~(r =AS. C'''~ (r +S0 (r ~'~ (r (24) 

with some local A (i~, and each t e r m  in (24) is gauge invar iant .  Then, redefining X m~ by including in it A (~, 
we ean a s sume  that in (22) A(~)'=0. In other  words ,  in the eonst ruet ion of So; ~ for  the S ma t r ix  we need 
include in it only the gauge- invar i an t  s t r u c t u r e s  that do not vanish on the equations of motion.  

This  las t  r e su l t  appea r s  ve ry  impor tant  and helpful.  Only by means of it can we just ify the fact ,  
p r ev ious ly . a s sumed  without proof,  that the c o u n t e r t e r m s  which vanish on the equations of motion make no 
contr ibution to the S ma t r ix  in not only the approximat ion  in which they appear  (which is more  obvious) but 
also not in the higher approximat ions  (which was not obvious).  

In pa r t i cu la r ,  if all the gauge- invar i an t  e o u n t e r t e r m s  except,  perhaps ,  those propor t ional  to S O 
vanish on the equations of motion, then to e l iminate  the d ive rgences  f rom the S ma t r ix  we requ i re  only 
o rd ina ry  mul t ip l ieat ive  r eno rma l i za t i ons  of the f ields and cha rges  of the or iginal  action.  Such a si tuation 
obtains in the s ingle- loop approximat ion  in pure  gravi ta t ion  and in the s ing le -  and two-loop approximat ions  
in supe rg rav i ty .  

For  open a lgeb ras ,  for the r e a s o n s  given above,  we have not succeeded in finding a significant  
s impl i f ica t ion of the on-she l l  r e n o r m a l i z e d  action, though he re  too it is possible  to omit  the gauge- invar ian t  
c o u n t e r t e r m s  which vanish on the equations of motion.  

We thank I. A. Batalin,  lq. ~. Kallosh,  and E. S. Fradkin for helpful d iscuss ion of the quest ions 
cons idered  he re .  
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