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FORMULATION OF GAUGE THEORIES OF GENERAL FORM.
II. GAUGE-INVARIANT RENORMALIZABILITY AND RENORMALIZATION STRUCTURE

B.1L. Voronov and I.V. Tyutin

Gauge-invariant renormalizability is established for a gauge theory of general form in
linear gauges, namely, both the renormalized and the unrenormalized action satisfy the
Zinn-Justin equation; the Ward identities (in the Zinn-Justin form) remain the same on
renormalization, For theories with closed algebra it is shown under the assumption
that the locality hypothesis is valid that the renormalization of the action, which is
complicated off the mass shell, reduces on the mass shell to the addition of gauge-
invariant structures and a multiplicative renormalization of the fields, At the same
time, the gauge-invariant structures that vanish on the classical equations of motion
can be ignored,

1. The present paper is a direct continuation of [1] (Part I). Under some natural assumptions, we
prove here the gauge-invariant renormalizability of gauge theories of general form as formulated in Part I,
and we establish the structure of the renormalization of such theories both off and on the mass shell. Staying
within the framework of perturbation theory, or rather a loop expansion, we restrict ourselves to theories
that are index renormalizable.

By gauge-invariant renormalizability we understand renormalizability with conservation of the Ward
identities, which express the symmetry in a quantum theory. Specifically, we have in mind the Ward identity
for the generating functional T' of the vertex functions in the Zinn-Justin form [2] (see §2),

This form, which completely expresses the gauge content of the theory, is remarkable above all by
virtue of its invariance with respect to the gauge algebra, which makes it possible to pose the question of
gauge~invariant renormalizability in general form. The answer to the question is affirmative, and the form
of the Ward identity itself is invariant with respect to renormalizations (§3).

In speaking of the renormalization structure, we mean the structure of the modified renormalized
action. From the point of view of the modified action, gauge-invariant renormalizability signifies continuous
{with respect to the parameter n of the loop expansion) deformation of the original modified action S, S - S(n),
with conservation of the Zinn-Justin equation for this deformation, (S(n), S(n)) = 0 (see (1.6)*) (83).
Accordingly, gauge-invariant renormalizability does not in general signify conservation of the original gauge
algebra but rather a deformation of it associated with the renormalization of the fields,

For theories with an originally closed algebra, the structure of the renormalization off the mass
shell consists of adding to the original action gauge-invariant counterterms with a subsequent canonical trans-
formation of the variables, i.e., the fields and sources (in the terminology of [3], the fields and antifields).
At the same time, it is possible (for theories that are not index renormalizable, with dimensional coupling
constants) that the canonical transformation mixes the original fields and the ghost fields, with the consequence
that the renormalization renders the gauge algebra open. This leads to a modification of the Faddeev—Popov
rules even for theories with an originally closed algebra (§4).

* In referring to the equations of [1], we shall denote Eq. (6) of [1], for example, by (1.6).
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Although the renormalized action is local (in each order of the loop expansion), locality of the
canonical transformation mentioned above cannot be proved in the framework of the most general treatment.
If locality of the canonical transformation is assumed, and this is the gist of the locality hypothesis discussed
below, then on the mass shell, i,e., for the S matrix, the modified action admits an important simplification,

namely, the canonical transformation of the variables reduces to a multiplicative renormalization of the
fields (54).

The following proposition, which holds irrespective of the locality hypothesis and apparently has
long been suspected by many scientists is especially important: Suppose that in some order of the loop
expansion there appears a gauge-invariant local counterterm which vanishes on the classical equations of
motion; then it can be omitted (ignored altogether!) on the mass shell in not only the given but also in the
higher approximations (§4),

For theories with originally open algebras, the renormalization structure includes a preliminary
canonical transformation to a closed algebra. The existence of this additional transformation prevented us
finding significant simplifications of the on-shell renormalization structure. True, there is still the possi-
bility of ignoring for the S matrix the counterterms that vanish on the classical equations of motion (§5).

We now discuss in more detail the assumptions under which the main results of the paper are
obtained.

Of course, we assume the absence of anomalies, i.e., we assume the existence of a regularization
that preserves the gauge algebra. Moreover, the regularization is assumed to be such (of dimensional type)
that the singular (containing 6(0)) local measures of integration and the Jacobians of the local changes of
variables are equal to unity. The problem of allowance for the measure in other regularizations can be
solved on the basis of (3],

For simplicity, we restrict ourselves to linear gauges.

Finally, for the case of closed algebras, we adopt the locality hypothesis, which is formulated as
the assumption of locality of the representation of general form of the golution of the Ward identity for the
counterterms and ultimately reduces to the assumption of locality of the canonical transformation that occurs
in the renormalization. It should be noted that in all the cases when the Ward identity for the counterterms
could be solved explicitly (Yang—Mills theories [4], two-dimensional chiral theories [5], gravitation R2),
this hypothesis has been confirmed,

2. This section is preparatory in nature. It is devoted to the formulation of the Ward identity for
the generating functional T of the vertex functions in the Zinn-Justin form [2] and the formulation of a lemma
needed to establish the renormalization structure.

We begin with the derivation of the Ward identity. According to [3], the generating functional Z of
the Green’s functions is constructed as follows (see also {1]):

2(,0,8)= [dddeds exp {-—;—(Sw,e-l-];(])"-i“eac“‘{‘gaé") }= e —w,

i.
U
where S, = S¢‘( d c, K L) — Qw(N) and the index ¥ means that instead of X, L, N we must make the
substitution Ki—8¢/8@°, Lo—8y/8c% No—0¢/82%; Qu(N) is the gauge term which lifts the degeneracy of the
modified action S;, and ¢ is a gauge fermion, so that Sy/d6t@ is the subsidiary, or gauge, condition.
Compared with (3], we have omitted the local measure of integration (see §1). Note that our method of
introducing the gauge condition is not the most general,* though, first, it contains all the usual gauges and,
second, it is quite sufficient for our purposes. Compared with [1], we have introduced the loop expansion
parameter 7 and the additional source N with Grassmann parity B, and ghost number 0.

In what follows, it is convenient {o retain the sources K, 1, N, for which it is sufficient to consider
a gauge fermion ¢ of the form

$(@, ¢, §, K, L, N) =K@+ Loc*+Not*+9 (@, c, 7).

We emphasize that since the S matrix does not depend on the choice of ¥ it is also independent of

* Tt corresponds to the case when the gauge fermion ¥ in [3] has the form ¢=%u () +$(D, ¢, &), i.e., depends
in a special manner on T,
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the sources K, L, N. Accordingly, in the calculation of the S matrix there is no need to set K = L. = N = 0,

As a consequence of the Zinn-Justin equation (1.6) for S, the effective action Sw o satisfies the
equation (which we shall also call the Zinn-Justin equation; cf. [2])

6S¢ e+ GS\p,eaS\p,e_‘. GS\HG 6S¢,e
8K, 6¢® 8L, - 6% 6N,

We introduce in the usual manner the generating functional of the vertex functions:

=0. )

(@, ¢, ¢, K, L, Ny=W—J 0" —8.c*—Bac™, O'=8W/8K;, c*=06W/80,, *=8W/808,.

Averaging Eq. (1) functionally, we obtain in the standard manner the Ward identity for T in the

form
ﬂ‘+££ or or
" 8K, 8c* 8L. 82 8N,

which exactly repeats the Zinn-Justin equation (1) for §, yer IN the derivation, we have ignored the terms
82S,/6®8K,, 6°S4/6¢*SLy, 6°Q/0c*6N,, which are porportional to 5(0) (see §1). Allowance for the additional
measure of integration [3] makes it possible to derive the Ward identity (2) without neglecting these terms;
it does not lead to fundamental changes in any of the arguments, and for simplicity we shall systematically
omit this measure, appealing to an appropriate regularization,

=0, 2)

We note in passing that the use of Eq. (1) makes it possible to prove in a simple manner the gauge
invariance of the S matrix, i.e., that it is independent of the choice of ¥. Indeed,.consider the variation
AZ due to a change A4 of the gauge fermion:

L0498 8AY b
80" 8L, = o2 6N,

AZ= [ d0deds (mp,, ) exp {—% (4, O-+0c+7) }

Integrating by parts and using (1) (and again omitting the local contributions proportional to §(0)), we find
that the modification of Z is due to the modification of only the terms with the sources J, 0, ¥

AZ:i[JiAxp 6?{ (=Pt 4 0 AQP_S__E__( )P“H—!—%NPW-( )Pa+1]

where in A$(&, c,¢) it is necessary to make the substitution ®*->—i8/6/x, etc. The standard proof of the
equivalence theorem [6] shows that on the transition to the S matrix the corresponding terms can p to a
possible multiplicative renormalization of the fields) be ignored. But this means that the S matrix does not
depend on the choice of .

Below, for simplicity, we restrict ourselves to the case of linear gauges, when
P(D, ¢, 0) =t"tai®,  Qu(N)="/N.x** N,
where t_; and w*8 do not depend on the fields.

In this case, there are two simplifying circumstances. First, Sw,e depends on K and ¢ only in
the combination

K1=Ki+6atm‘7 (3)
and it satisfies the equation
§S¢ e SSW,
=+ (—) Pty —— = 0.
o =) 8K,

But this means that I' satisfies exactly the same equation, and, therefore, a dependence on K and ¢ occurs
in it only in the combination K (3). Second, the dependence on N can be readily found explicitly, so that T’
can be represented in the form

F=g-(®, C, K, L) ““1/2(Na+tm'®{) %mfi (Ng‘l"tﬂjq)j) . (4:)

We indicate explicitly in (4) that T’ depends on K and ¢ only through K (3); thus, we take into account
completely the gauge condition. Below, we shall omit the tilde over K in 7 (formally, this corresponds
to ¢ = 0), remembering that in the corresponding final expressions it is necessary to make the substitution
K — K (3) (thereby restoring the dependence on ).

As a consequence of Eq. 2), 7(®, ¢, K, L) satisfies the same Zinn-Justin equation (1,6) as S
ef. [2D:
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87 6787 1
,‘--——--I"‘ —_— e B e =i}, (5)
T8K, 68¢*6N. 2 7.7)=0

In establishing the renormalization structure, a key part is played by the equation

5 68 8 85 8 65 &
Q($)A=(S, A)=0, QS8 =8, — + = L ()2 b yen 5 OL ®
(8)4=(S, 4) T TRy A T IR Y v

(6L/6<15i , 5L/($c°‘ are the symbols of the left derivatives*), which arises as a result of a small variation of
the Ward identity (6). The results obtained below are based to a considerable degree on a certain representa-
tion which we now establish of the general solution of this equation for even functional A = A(&, ¢, K, L)

with initial condition

A(D, ¢, 0,0)=0. (7)
The operator Q(S) in (6) has the property
Q4(8) =0, (8)

which is a consequence of the Zinn-Justin equation (1.6) for S. Equations (6), (7), {8} are a copy of
Egs. (1.13)-(1.15) with the general solution (1.16). Do we need to prove once more which would be quite
sufficient for our purposes) that any solution of Egs. (6) and (7) can be represented in the form

A=Q(S) X, (9)

which copies (1.16), and also assume that X can be taken to be local (it is obvious that X is defined up to
terms of the form Q(8)Y) if A is a local functional? We note that 2(S) can be represented in the form of
an expansion with respect to the ¢ fields:

Q(S) =W (Sy, )+ ¥ 0.(5),

where QW(S), n = 1, has homogeneity degree n with respect to the ¢ fields., Then it follows from the lemma
proved below that the necessary structure of the solution (9) follows from the already proven and assumed
{locality hypothesis (1), [1]) properties of Eqs. (1.13) and (1.14),

We give this simple lemma, which generalizes in an obvious manner the well-known special cases
[7,8].

LEMMA. Suppose the operator A(a) has the form
A(OL)= anAn
L
and has the property Aa) =0 (hence, A20 = 0 as well). Suppose any solution of the equation
ApAd=0 {10}

with some «-independent linear subsidiary condition on A can be represented in the form

A=AX (11
and A(a)X satisfies the same subsidiary condition. Then any solution A (@) of the equation
Aa) A (a) =0, 12)
represented by a formal series in powers of o and satisfying the same subsidiary condition, has the form
A()=A(a)X(a). {13)

In addition, if Ala) and, hence, A are local operators and any local solution of Eq. (10) can be represented
in the form (11) with loeal X, then any local solution of Eq. (12) can be represented in the form (13) with local
X(a).

For the proof, we substitute the expansion A(oc)=2 a"4, in Eq. (12}, In the lowest order in «, we

ne=k

* These derivatives appear here as an exception to the condition adopted in [1], according to which the
derivatives with respect to the fields are right derivatives and with respect to the sources left derivatives;
we also recall that P,, P+ 1 are the Grassmann parities of the fields & and ghosts c¢®, respectively.



have AOAk = 0. But A, satisfies the subsidiary condition, and therefore A, = Ang- We represent A{a)
in the form

A () =A(a) (a"X,) +AY (a).

It is obvious that A® (a) satisfies (12) and that its expansion with respect to @ begins with the term of
order . TIn addition, A(a)(a*X,) satisfies the subsidiary condition, and therefore so does A (a). Sub-
stituting the expansion 4® (a) in (12), we obtain A.4{), =0, whence A{, =AXs;s. Substituting A («) in the
form

A(a) =A(a) (@’ X+ X, ) +AD (@),

we see that A®(a) satisfies (12) and the subsidiary condition, and its expansion begins with terms of order
a2 ete.; the proof is then by induction.

In our case A{ax)=Q(S), A;=W (S, R}, the c fields play the part of o, and (7) is the subsidiary con-
dition.
3. In this section, we prove the gauge-invariant renormalizability in the general case.
We consider the single-loop approximation for 7:
T =T 0T 0 (n")=S+nT +0(n?).

The single-loop contribution, I =7 4T 1, con contains the divergent (when the regularization is lifted)
term 74 4iv, which is a local functional of the type S with divergent coefficients. The complete Ward
identity (5) generates in the first order in 7 the Ward identity for the single-loop divergences

Q(S)gwi,dlv =0. (14:)

To eliminate the single~loop divergences, it is sufficient to subtract from the original modified action S the
counterterm ¢, q4iv, 1.©., to go over to the renormalized (in the single-loop approximation) action S® ()=
S—nT ", giv. By virtue of (1. 8) and (14), S (n) satisfies a Zinn-Justin equation of the form (1. 6) up to terms
(which are completely determined) of second order in 7n:

(80, Sy =n*(T"4, div, T div.) =1°Q®. 15)

The generating functional of the vertices constructed from S$* and renormalized in the single-loop, i.e.
linear in 7, approximation, 7 (yn), is finite in the single-loop approximation:

T () =5+0T 1 cont 0’72 +O(0),
and it satisfies the Ward identity (5) up to terms of second order in 7:
(T, T =@ +0 ("), (16)

the derivation of Eq. (16) being completely analogous to the derivation of Eq. (5) with the right-hand side
written down in the necessary n2 approximation, which for it is identical with the tree approximation.

’

The two-loop contribution to 77 (n), like the single-loop approximation, contains a local divergent
term: 7,0 =700, +T 1 ton. By virtue of (16), I, satisfies the equation

(S, T4 ) =110, an

Elimination of the two-loop divergences is achieved by transition to the renormalized (already in the two-loop
approximation) action

8@ (1) =8V -0’T ", fv =S~ 1. div =0T & Hiv

which by virtue of (15) and (17) satisfies a Zinn-Justin equation of the form (1. 6) up to completely determined
terms of third order in n:
(8™, §P)=n'Q®+0(n").

The generating functional of the vertices constructed from §® and renormalized in the two-loop, i.e.,
quadratic in n approximation, 7 ®(n), is finite in the two-loop approximation,

T D () =S+0T s con T s con TV +0 ('),
and satisfies the Ward identity (5) up to terms of third order in n:

(T®, T®Y=n*Q®+0(n*) (18)



(the comments on (18) are the same as on Eq. (16)). The three-loop contribution 7" =70, +7 len to

7-®(n) contains the divergent term 7§y, which by virtue of (18) satisfies the equation (S,77P, ) ="1.0?,
etc. The further arguments are obvious: it remains to apply the method of induction with respect to the
number of loops. The final result is as follows: the completely renormalized modified action

Sa(m) =8 () =5~ Y w75 19)
n=1
which is local in each finite order in 7, exactly satisfies the Zinn-Justin equation (Sz(n), Sz{n))=0.

Accordingly, the completely renormalized generating functional of the vertices, 7 r(n)=7"(n), exactly
satisfies the Ward identity (5): (7=(n), 7 z(n))=0. The proof is completed.

4. We see that the gauge-invariant renormalization reduces to a continuous deformation of the
original modified action, S — S,(n), this preserving the Zinn~Justin equation (1.6). In this section, we shall
describe the general form of a deformation that leaves the Zinn-Justin equation invariant, and we shall
thereby establish the renormalization structure in the general case,

We consider first the case of a closed algebra, when as the renormalized action § (the choice of
which for given S0 and even given R& is, as we know from [1], not unique) we take the minimal construction
of the Zinn-Justin equation (1.38). The consideration of this case is key. In what follows in this section,
except for a special stipulation, we understand by S its minimal construction.

First of all, we find the general solution of (14) (in the framework of formal series in the ¢ fields).
We can represent 9 4,qiv in the form

T saiv =T w0ty #(O) FET g1y e (@) *+0(c?).
Considering (14) in the first order in the ¢ fields, we obtain
‘69-1:-ng ';O(q))
80°
This equation shows that 77, 4,,, can be represented in the form

R, (D) +86(0) T 4, div 1o () =0. ©0)

T 1 aiy o(@)=—A8 (@) ~8, (D) XV (D), 1)
where AS§) is a gauge-invariant functional:
ASY (®),.R. (@) =0. (21a)

To see this, we note, first, that the form (20) and the representation (21) are invariant with respect to
possible changes of the variables # and, second, according to [1] there exist among all possible sets of
variables {#} sets {®%}={0% @} such that in terms of them the generators R} have the form RZ = 0. Now
R2 is a matrix with an inverse and, accordingly, S (%) = S(«) does not depend on #3, Rewriting 20) in
these variables, we obtain

6-7‘;1..div;o
Lol

from which the representation (21) readily follows.

+ 38 (@) ,agyi(.lc}iv';aﬁ (R*)*=0,

We now represent 7 qiv in the form

T av=~A8" (D) —~Q(S) KX (®)+AT", g1,

By virtue of (14), 21a), and ), AJ7, 4, by itself satisfies (14) and, in addition, its expansion with respect
to the ¢ fields does not contain a zeroth term, so that by virtue of conservation of the ghost number it
vanishes for K = L = 0. Therefore, in accordance with Sec.2 (see the discussion of Egs. (6) and (7)) A", gy
admits a representation of the type (9):

ATy gy =—R(S)AX,.
Finally, we find that the general solution of (14) can be represented in the form
T 1 gy =—ASu (@) —Q($) Xy, AS,=AS", X, =K XWHAX, 22)

We now represent the renormalized modified action Sj (19) in the form S=Sz+A4,, where
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Six(®, ¢, K, L) =8, (0’) +nASe;, (O') +K/ Ry (D7) ¢’ *+ 4oLy for?e’ b’ T,

and the variables fb’, c,, K', 7L' are obtained from &, ¢, K, L by a canonical transformation with generating
funetional Xx(®, ¢, K/, L'y=K/0 L,/c*+nX,(®@, ¢, K, L').

It is obvious that the expansion of A2 in a series in 7n begins with the terms of order n*: 4,=7n'T.+
O(n*). From the Zinn-Justin equation for 8, there now follows the equation Q(S)T, = 0 of the form (14),
whose solution can be represented in the form (22),

Tz'=ASo; 2((1)) +Q (S) Xz,
where X2 is a functional, and AS,,, satisfies (21a), We represent Sp in the form 8y=3S,x14;, where
Son(®, ¢, K, L)=58,(®")+nAS,, (@) +12ASo, . (O +K/R(D") ¢ *+oLa fir*e’ e’ T,

and the variables &', c', K, L’ are obtained from &, ¢, K, L by a canonical transformation with generating
functional Xer=X,zt1*X,(®, ¢, K’, L’). It is obvious that the expansion of A, in a series in 7 begins with the
terms of order n°. It remains to apply the method of induction with respect to the number of loops in order
to obtain the final result: Sy(n) can be represented in the form

Sa(n, ©, ¢, K, L)=So, n(®") +K/Ra () ¢’ *+*/,Lo/fyrc’ %’ 7, (23)
where
Sa; R=SO+7]AS0; 1+T]2AS0; z+ e (23&)

is a gauge-invariant functional of the original fields & and the variables &, ¢’, K', L’ are obtained from
®, ¢, K, L by a canonical transformation whose generating functional is

Xe(®, ¢, K/, ') =K'®+L'c+nX, (0, ¢, K, L)+ .. . . (23b)
The complete renormalized action in such a case has the form
Seeel®, ¢, K, Ly=Sr(0, ¢, K, L) "/, (Nott.:D?) x°® (Ny+i1;,07),
where K is given by ().

We note that this result was actually already contained in [9]. However it was based essentially on
the hypothesis of locality of the representation (22) of the general solution of (14) for the counterterms, i.e.,
on locality of ASO and X separately. Moreover, the very representation (22), which is proven here, was a
part of the hypothesis in [9]. It should also be noted especially that at the time when the paper [9] was
written the given renormalization scheme could actually be applied only to theories of Yang-Mills type, in
which the canonical transformation does not mix the fields & and the ghosts ¢, being linear in the ¢ fields.
Otherwise, the gauge algebra is open {(see below), the action contains the c fields in an essentially nonlinear
manner, and a correct formulation of theories of such type does not then exist.

Of course, locality of the representation 22), i.e., locality of S, =(®) and XR(&, c, K’, L)
separately for local S,(n), is extremely desirable. If locality of the representation cannot be ensured, then
in local quantum field theory it becomes meaningless to a large degree, since many of its important con-
sequences are lost, in particular, those relating to the deformation of the gauge algebra. Therefore, we
defer the discussion of the renormalization structure to Sec.5, in which we discuss the locality hypothesis in
a form sufficient for our purposes. However, it must be emphasized once more that gauge-invariant
renormalizability is still true without the locality hypothesis.

It remains to say a few words about the case (admittedly, purely academic) when the original modified
action of a theory with a closed algebra is not a minimal Zinn-Justin action. In this case, as we know [1],.
it differs from such an action by only a canonical change of variables, which, obviously, is simply imposed on
the renormalized canonical transformation described above, namely, one must first go over to variables in
which the action is minimal, carry out the renormalization procedure described above, and then make the
inverse change of variables.

The problem of the renormalization structure of gauge theories with open algebra can be solved in
exactly the same way. In this case (see [1]) there exists a canonical transformation to variables in which the
gauge algebra is closed and the modified action has the form of the minimal Zinn-Justin construction.

A difference from the case just analyzed is that here the preliminary canonical transformation
affects the generators of the gauge transformations, mixing the fields & and the ghosts c¢. Accordingly,
though in variables in which the algebra is closed, the renormalized action has the form 23), and S, » is
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invariant with respect to the generators of the closed algebra but, in general, not with respect to the
generators of the original open algebra, In addition, the generators of the closed algebra and, hence, the
representation (23) itself may be nonlocal. If the generators of the closed algebra are local, one can begin
directly with the closed algebra, though sometimes there are reasons which still make it more convenient
to work with the original generators.

5. In this section, we discuss the sufficient conditions and consequences of locality of the representa-
tion (23) of the renormalized action Sy(n) for the case of closed algebras. Sufficient conditions are ensured
by the locality hypothesis (see [1] and Sec.2), which is augmented here by a new assumption. This new
assumption is that in the representation (21) of the general local solution of Eq. (20) the functionals AS_ and
X can be taken to be local. Together with the assumption of locality of the representation (1.186) of the
general solution of Eqs. (1.13) and (1.14), from which there follows locality of the representation (9) of the
general solution of Eqgs. (6) and (7) (see Sec.2), this is sufficient to ensure locality of the representation (22)
of the general sclution of the Ward identities (14) for the counterterms.,

A direct consequence of the locality hypothesis is locality of the representation (23} of the renorma-
lized action Sy(7n) in the case of closed algebras. This means that the gauge-invariant term S, z(n), like
the canonical transformation @, ¢, K, L—-®', ¢/, K/, L', can be assumed local. We assume that all this is true
in the framework of the loop expansion, i.e., in each finite order in 7,

We discuss in more detail the structure of the renormalization (23) under the condition of its locality,
concentrating on the deformation of the gauge algebra on renormalization; this deformation is determined by
the first two coefficients of the expansion of S, with respect to the ¢ fields. It can be shown that in the
general case the structure of the gauge algebra changes radically, and the algebra becomes open, although
a closed algebra corresponds to the original action.

The renormalization includes two elements: the (usual) addition of gauge-invariant counterterms
and the {less usual) canonical transformation of all the variables, from &, ¢, K, L to &, ¢, K, L. In
terms of the new variables, the renormalized action looks like the usual Zinn-Justin action with the same
gauge algebra; however, the new variables are, in general, complicated nonlinear (divergent!) functionals
of the finite original fields &, ¢, K, L. Accordingly, in terms of the latter, the renormalized action has a
complicated form in the general case. The specific features of the theory are in fact contained in the form
of the canonical transformation, i.e., the generating functional X,. It is here evident that dimensional
considerations and renormalizability or nonrenormalizability of the theory with respect to the index are
decisive, These considerations determine two fundamentally different cases. In the first case, which
corresponds to theories that are index renormalizable, the canonical transformation does not mix the fields &
and the ghosts c: & = & (&) does not depend on c. A further detail here is that, depending on the dimensions
of the fields &, their renormalization may be either multiplicative (for dimensional fields of the Yang-Mills
type) or a nonlinear reparametrization of general form (for dimensionless fields such as two-dimensional
chiral fields [5]). In the second case, the canonical transformation mixes the fields & and the ghosts c:
3 = ¢'(#, c, ...) depends essentially on the ¢ fields. From the point of view of the gauge algebra, the
difference between these two cases is that in the first the deformation of the algebra is trivial, and leaves it
closed, whereas in the second case the algebra becomes open as a result of the deformation. We shall
discuss this fact below, illustrating it by taking the examples of Yang—Mills theories and Einsteinian
gravitation, which were anlayzed in detail in {4] and [10].

If in the case of four-dimensional Yang~—Mills theories with dimensionless coupling constants
(which are index renormalizable and essentially exhaust this class of theories) the fields, sources, and
derivatives (momenta) are ascribed the natural canonical dimensions, then the renormalized modified action
S; (like 8) is a local functional of dimension less than or equal to 4. Then, with allowance for the conserva-
tion of the ghost number the generating functional X, of the canonical transformation can have only the
following form:
Xn=K/ (N1 07) + Lo AP,

where A}, t/, As* do not depend on the fields, Making corresponding calculations, we can calculate all the S,
but we are interested in S}, (he coefficients in the term KiS%. ,c*), which are the renormalized generators
of the renormalized action Sz ,(®) in accordance with the Zinn-Justin equation for S,. It is readily seen

that the deformation of the algebra consists of a transition to an equivalent representation, a shift of the
fields, O'—¢0'+A’, and replacement of the original generators by linear combinations of them with matrix

A%. Following the mathematicians, we shall say that such a deformation is trivial. Putting it briefly,
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triviality of the deformation in renormalizable theories takes the form that the gauge algebra (group) remains
the same after the renormalization.

In the case of a Yang—Mills theory of general form, this result was obtained by direct solution of
the Ward identities (14) for the counterterms [4] and, thus, the locality hypothesis was in fact proved in this
case. It should be emphasized that in the case of a simple gauge group with several Abelian components
(of the type U(1)) the Ward identities alone do not ensure triviality of the deformation of the gauge algebra,
and it was necessary to invoke essential additional arguments valid in index renormalizable quantum field
theories,

In the case of index-nonrenormalizable theories with dimensional coupling constants the situation
is different. The important thing is that here, first, there are no restrictions on the dimension of the
counterterms; their dimension in a concrete approximation is bounded but it increases with increasing
approximation; second, to calculate the dimension of the counterterms the fields must now be ascribed non-
canonical dimensions. For example, in gravitation, in which the gravitational field and the fields c, ¢ are
ascribed dimension 0, and the sources K, L (and the derivative) the dimension 1, the index degree) of
divergence of the diagrams of the n-loop approximation is 2n+2—~Nx—N;~Ns, where Ng, Ni, Nz are the
numbers of external K, L, and ¢ lines, and the dimension of the counterterms in the n-loop approximation
is less than or equal to 2n + 2. As a consequence, the ¢ fields can appear in the renormalized modified
action in a power higher than the second, and the sources K and L in a power higher than the first. This
fact alone, which is common to index-nonrenormalizable theories, indicates that the renormalized theory
must be associated with an open algebra of gauge transformationg. We find an expression for the renormalized
Sz, ,. and the generators Sk s, for which we write down an expansion of Xy with respect to the ¢ fields to
the necessary accuracy:

Xe=K/9"(0) —',K/K/ X.5(0) (—) e+ L/ X (D) . . .
In the approximation in ¢ and K that we need,
07 i=0"(0) —K/ X (D) (—) e+ ..., K/ =KdW[sD+ ..., ' *=Xgc*+...,

and the renormalized modified action S, has the form

Sa=82(®(®)) +K, [%W(@XJ((D)-F&;R(6((1))),,-XJ"((D) ]c“+ e

i — ()P (Pr+Py) E?_Ia_@i im — (__\PPHLY
X (@)= ()" 6&3“6@“‘?“ (D) = ()X, (D).

It can be seen from this that the deformation of the algebra reduces not only to a change of the
variables, & -+ (&), and a transition to linear combinations of the original generators by means of the
matrix Xg (which still keeps the algebra closed), but also includes the addition of trivial generators,

Ss; 2 (D (®)) ;X,%(®), which open the algebra. However trivial and even necessary (the gauge symmetry of Sz,
is preserved!) this addition may appear, it is necessary to eliminate the divergences. Thus, we must
necessarily regard the resulting renormalized theory as a theory with open algebra. Of course, for gauge-
invariant renormalizability it is sufficient if the renormalized modified action satisfies the Zinn-Justin
equation. The words "open algebra” mean in this context that the renormalized action has a more compli-
cated form than that prescribed by the Faddeev—Popov rules,

We should like to emphasize especially two comments that appear to us very relevant and concern
the on-shell renormalization structure. We have seen above that the renormalization of the theory as a
whole, i.e., the renormalization of the Green’s function off the mass shells, can be a rather refined business
even in the case of closed algebras. However, if we restrict ourselves to calculation of the S matrix
(calculation of the on-shell Green’s functions), the expression for the renormalized action can be appreciably
simplified. Indeed, the renormalized modified action S, (21) is an action of Zinn-Justin type of canonically
transformed variables. But in [1] it was shown that the canonical transformation in the modified action
reduces on the mass shell to multiplicative renormalization of the field. Therefore, to calculate the 8
matrix, we need not consider (23) but can restrict ourselves to the effective action

SZR, w,e-=rSo; R (Z(D) +Eataizj_”RBj'(Zq)) CB"“/ztai(Di%aﬁtﬂj(Djv

where Z = Z! is a constant matrix; we have set K = 1. = N = 0, In other words, to eliminate the
divergences from the S matrix it is sufficient to take into account the gauge-invariant counterterms in addi-
tion to the multiplicative renormalization of the fields &,
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When some of the terms in 8, z(®) are proportional to S,(®); or, as one says, disappear on the
equations of motion, a further simplification of the renormalized action in the S matrix is possible. Suppose,
for example, (to be specific) that ASY® (@) in (1) has the form

ASSP(0) =ASS™ (0)+8,(D) AV (0) 24

with some local A", and each term in (24) is gauge invariant. Then, redefining X®* by including in it A®",
we can assume that in (22) A®'=0. In other words, in the construction of Sy » for the S matrix we need
include in it only the gauge-invariant structures that do not vanish on the equations of motion.

This last result appears very important and helpful. Only by means of it can we justify the fact,
previously -assumed without proof, that the counterterms which vanish on the equations of motion make no
contribution to the S matrix in not only the approximation in which they appear &which is more obvious) but
also not in the higher approximations (which was not obvious).

In particular, if all the gauge-invariant counterterms except, perhaps, those proportional to S 0
vanish on the equations of motion, then to eliminate the divergences from the S matrix we require only
ordinary multiplicative renormalizations of the fields and charges of the original action. Such a situation
obtains in the single-loop approximation in pure gravitation and in the single- and two-loop approximations
in supergravity.

For open algebras, for the reasons given above, we have not succeeded in finding a significant
simplification of the on-shell renormalized action, though here too it is possible to omit the gauge-invariant
counterterms which vanish on the equations of motion.

We thank I. A. Batalin, R. E. Kallosh, and E. S. Fradkin for helpful discussion of the questions
considered here.
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