
EQUATIONS FOR TWO-POINT CORRELATION FUNCTIONS 

ON COMPACT RIEMANN SURFACES 

S. M. Kuzenko and O. A. Solov'ev 

The general structure of the regularized scalar Green's function on 
compact Riemann surfaces is investigated. Equations that relate the 
second (and higher) derivatives of the scalar propagator to the first 
derivatives are obtained. 

i. Introduction 

Some recent papers, based on various approaches, have derived and investigated several 
differential equations for two-dimensional correlation functions on Riemann surfaces [1,2]. 
Such objects are of interest because they are among the basic elements of string perturba- 
tion theory [3]. Nominally, it is possible to identify two directions, which lead to 
numerous differential relations. One of the ways to obtain interesting mathematical 
information about the n-point correlation functions is to study the Ward identities in 
two-dimensional quantum field theory [2] (see also [4]). The other method is based on 
the principles of conformal theory [i]. 

In the present paper, combining the "physical" and "conformal" approaches, we derive 
new equations relating the first and second derivatives of a scalar Green's function on 
compact Riemann surfaces. The resulting relations are a generalization of the identities 

(O~G) 2=O~2G, O~GO~G=O~O~G, (1) 

which hold for the scalar two-point function on the plane: 

G(z, w)=-ln[z-w[t (2) 

Mathematical aspects of the scalar Green's function on compact Riemann surfaces of 
arbitrary genus have been analyzed by many authors [5-7]. However, the structure of the 
scalar propagator in the limit of coincident points (see, for example, [6]) has not been 
fully investigated. Therefore, the second section of this paper is devoted to considera- 
tion of the regularized Green's function (in the limit of coincident points). Sections 3 
and 4 contain a derivation of the basic equations. In the concluding section, the results 
and possibilities for using them are discussed. The notation and helpful identities are 
given in the Appendix. 

2. Rezularized Scalar Green's Functions 

Let M be a compact Riemann surface of genus h with local complex coordinates z, z and 
metric ds 2 = gz~dzdz. We define on this surface the scalar Green's function G(x, y),* 
which satisfies the equation 

i v=   zYg, (3) 

where A 0 is the scalar Laplacian (see the Appendix), and I/V is the square of the zero 
mode of the operator A 0. The solution of Eq. (3) can be found up to an arbitrary constant, 
which can be fixed by the additional condition [6] 

d~y?gG(z,y)=O. (4) 

From Eqs. (3) and (4) we obtain an integral representation for G(z, y): 

*We do not indicate among the arguments of the Green's function the explicit dependence 
on z and y, which is understood. 
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G(z, ! t )=4n~ dt{ql(z, y; t)-t /V}, 
0 

(5) 

where ql(z, y;t)=exp[--tAo]6(z, y) is the heat conduction kernel associated with the Laplacian 
h 0. Note also that since &0 is a self-adjoint operator G(z, y) = G(y, z). 

We now consider the kernel ~l~<-)(z,y;t) ~ associated with the Laplacian A~ ~-) (see (A.2)). 
By virtue of the identity V~A,(-)=AoV �9 

V*q/z(-)(z, y; t) '=-V~~ y; t). (6) 

Using t h e  r e l a t i o n  ( 6 ) ,  we can r e a d i l y  p rove  t h e  e q u a t i o n  [6] 
h 

O.O~G(z, y )=2~6(z -y ) - -2~ ,  ~ ~ - -  w . ' ( I m ~ ) ~ j - ~  ~. (7) 
[~J=l 

Here w I 8z-W ~,~ z, I = i, ..., h, form a canonical basis of holomorphic Abelian differentials, 
= 0, which are zero modes of the operator A~ <-), ~,~ is the projector onto the space 

of Abelian differentials, and ~IJ = ~JI is the matrix of periods of the compact Riemann 
surface (see, for example, [8]). 

In what follows, we shall need the law of transformation of the scalar Green's function 
with respect to an arbitrary transformation of the metric: 

ds'~=2g~e2~[dz+A~d~l 2, 

where o and A~ ~ are infinitesimally small. The variation with respect to the Weyl dilatation 
has the form [6] 

~oG(~, ~) = - ~ - ~  d ~ o ( ~ ) [ ~ ( ~ ,  ~)+~(~, ~)l. (8) 

To f i n d  6AG(z, y ) ,  i t  i s  n e c e s s a r y  t o  use  t h e  t r a n s f o r m a t i o n  p r o p e r t i e s  o f  t h e  c o v a r i a n t  
derivatives V~:), V~ (~) [3]: 

W * - -  A z z ~ ( " )  N zz - ( V , A )  6~V~")=-A~V ~ , ( .)+n(V A~). (9)  ~ v  ( n ) - - - - ~  x u 

As a consequence, we obtain 

t ~d~wA,O~G(z ' w)O~G(y, w)+h. e. ~ 6  (z, y) = (io) 

From Eqs. (9) and (i0), we also obtain the law of transformation of the projector ~,~: 

6A~,~=~ d2wA~(V~V~G(z, w) ) ~ +  ~ d~wA~(V~V~G(y, w) ) ~ .  (11) 

We now study the regularized propagator. Following Polyakov [9], we regularize 
G(z, y) in accordance with the rule 

G(z, y; e)=4n~ dt[~(z, y; t)--t/V], 
s 

(12) 

where ~ is a small cutoff parameter. We investigate the regularized Green's function in 
the limit of coincident points. In fact, the law of transformation of the (regularized) 
scalar Green's function with respect to the Weyl dilatation was found in [6]. However, 
its structure in the limit z § y was not fully analyzed. 

We have 

G(z; e ) ~  lira G(z, g; e)=A + i--- i d'w~g G(z, w)N(w; 8), 

where 

Further, using the integral representation for the propagator (12), and also Eq. 
readily obtain 

(13) 

A-~ Sd*wfgG(w; e ) / V = - l n  g+ . . . . . .  iN(z; e)------AoG(z; e)=2(A0--V~V~--VzV=)G(z, w; e)l . . . .  (14)  

(14), we 
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N(z; ~)=8a[~(z,  z; ~)MIV]-4a [~(-)(z,  z; e)=+~(+)(z, z; e)~) +4a, g*~.q'=7, (15) 

where o~(:~i are the heat kernels associated with the Laplacians A(+~). Since ~ is small, we 
can use the expansion (A.4) for the kernels. As a result 

h 

N(z; e-+O)=2R~(z)=--2He(z)+4ag=~s w/( ImQ)  -*- ~ , . ,  w~, (16) 
l , J ~ t  - 

where Rg(z) is the scalar curvature. 

We see that the nontrivial structure of the function G(z; s) is determined by the 

scalar Rg. It is interesting to note that by virtue of the Gauss-Bonet theorem, ] d=z?g~, = 

4~(l-h), the quantity r is completely an invariant which does not depend on the topology g 
of the compact Riemann surface. Indeed, 

(17) 
for any h. One can show that on a surface of arbitrary genus there exists a metric g~v 
e-2~ for which 

R ~ = I ,  g = 4 ~ ,  

It remains to determine the constant A, which can depend on the Weyl factor of the 
metric and the complex structure of the surface. For this, we note that the variation 
5oG(z; 

(18) 

s) as a result of the Weyl transformation 5g~v = 2og~v satisfies the equation [i0] 

J" j" (19) 
which can be readily obtained by means of the proper-time technique. On the other hand, 
the variation of the function G(z; E) can be found by using the expressions (13) and (16): 

4 + i j" e2w  y) aw)} 

The system of equations (19)-(20) is sufficient to find the functional A: 

t C - l A = - -  In e q- ~-~ j d~y --:- 

(20) 

(21) 

Here, g~v = e-2~ is a metric of constant curvature, 

1, h = 0 ,  
H a =  0,. h = l ,  

--1,. h ~ 2 ,  
(22) 

and ~(m i) is a function on the Teichmfiller space. It follows from the positivity of 
G(z; E) that P(m i) ~ 0. Further, since the complex structure is uniquely determined up 
to diffeomorphisms by the matrix of periods (Torelli's theorem) [ii], 

vF (m,) = ~  (~u)~W (Q). (23) 

Thus, t he  r e g u l a r i z e d  s c a l a r  Gree n ' s  f u n c t i o n  in the  l i m i t  c o i n c i d e n t  p o i n t s  has the  
structure 

1 

I 

Using (24) ,  we r e a d i l y  f i n d  the  v a r i a t i o n  of  G(z; e) under  the  Weyl t r a n s f o r m a t i o n  

(24) 

6oG(z; e)=2o(z)  -~---~ d~yl/-go(y)G(z, y)+O(e), 
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which agrees with [6]. Equation (24) is one of the main results of this paper. 

3. First Equation for the Green's Function 

In this section, we obtain a generalization of the first equation in (i) for the 
Green's function on compact Riemann surfaces. 

We consider the theory of a scalar field on the Riemann surface M with action 

I=4-~t ~ d2 z [ OzX O~X-Ar (0zX) 2-A, ~ (O~X)*+4ag,~@X ~ ] , ( 25 ) 

where  A~z(z), @(z) a r e  background  t w o - d i m e n s i o n a l  f i e l d s ,  t h e  f i r s t  i n f i n i t e s i m a l l y  s m a l l .  

We c a l c u l a t e  t h e  h - r  c o n t r i b u t i o n  to  t h e  e f f e c t i v e  a c t i o n  W(h, ~) ,  d e f i n e d  as  

exp (--W) =~  ~0X exp ( - I ) .  

In  t h e  f ramework of  p e r t u r b a t i o n  t h e o r y ,  t h i s  can be done in  two ways.  

1. We choose  as  f r e e  a c t i o n  I o 

Io = i----I d~zO~XO~X. 
4~ 

Then the A--~ contribution is given by diagram (a) in Fig. I. 

2. We define another free action I0: 

Io' = ~i ~ diz[Oz X O~X_A~(O,X)~ A ~(a~X)2] 

In this case, all the A--# terms are contained in diagrams (b), where the Green's function 
G' is constructed from the new metric 

ds! 2----2gz~[ dz+A~dZIt ( 26 ) 

In  b o t h  methods ,  t h e  same r u l e  i s  used  to  r e g u l a r i z e  t h e  p r o p a g a t o r s  (12) .  

I t  can be seen  from t h e  e x p r e s s i o n  (26) t h a t  t h e  dependence  of  G ' ( z ;  ~) on h i s  
d e t e r m i n e d  by t h e  t r a n s f o r m a t i o n  p r o p e r t i e s  of  t h e  f u n c t i o n  G(z;  e) w i t h  r e s p e c t  t o  
i n f i n i t e s i m a l l y  s m a l l  B e l t r a m i  t r a n s f o r m a t i o n s .  The v a r i a t i o n  of  t h e  l a s t  t e rm in  (13) 
and (24) can be r e a d i l y  found  by means o f  Eqs.  ( 1 0 ) ,  ( 11 ) ,  and (A .8 ) .  In  t u r n ,  t h e  
v a r i a t i o n  6hA can be d e t e r m i n e d  by u s i n g  t h e  c o n d i t i o n  o f  c o v a r i a n c e  

V~ 6A + V ~ . 6 A  6g---- f 6ga'= O, 

and also the law of Weyl transformation 

+ S 1. 
The above is sufficient to find the terms in the effective action in which we are 

interested. From requirement of equality of the A-# contributions calculated by methods 1 
and 2 there arises an equation for the scalar Green's function: 

(0~G(z, w))2=V~iG(z, w) + l---O,G(z, w) ~ d~y~g V,O(z, y)Rg(y) -  
2~ 

i z -- <+) 

8~V 

Here, ~zz is the quadratic differential, 3~zz = 0, related to the function ~7(~) by 

_ _  . �9 zz 

Using the property [ii] 

i ~ i j / S g  ~ = -- wJw/ ,  
2 

we obtain an expression for ~zz in terms of the Abelian differentials: 
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el, ~ A  ~ ~ 6'(z;e) 

a b 

Fig. 1 

~F~ = ~ w/W Izw/. (28)  
2 

The Green's function G~(+)(z,v) ~ in (27) satisfies the equation 

A,(+)G,~+~(z, v ) '=4aS(z ,  v). (29)  

E q u a t i o n  (29)  i s  c o r r e c t  when h g 2, s i n c e  in  t h i s  c a s e  t h e  L a p l a c i a n  Ai (+) does  n o t  have  
z e r o  modes -- c o n f o r m a l  K i l l i n g  v e c t o r s .  For  h = 0, 1 i t  i s  n e c e s s a r y  t o  t a k e  i n t o  
a c c o u n t  in  t h e  f i n a l  t e rm o f  Eq. (27)  t h e  z e r o  modes o f  t h e  L a p l a c i a n  ( 2 9 ) .  However,  f o r  
s t a n d a r d  m e t r i c s  on t h e  s p h e r e  and t o r u s  t h e  g i v e n  t e rm i s  z e r o  ( s e e  be low) .  

Our relation (27) is interesting in that it relates the second derivatives of the 
Green's function to the first. At the same time, by successive differentiation of Eq. (27) 
it is possible to obtain identities for derivatives of any order. A second remarkable 
fact is that Eq. (27) is covariant with respect to the Weyl transformation. This is 
proved by direct variation of diagrams (a) and (b) in Fig. I. This transformation property 
makes it possible to go over in formula (27) from the metric g~v to any other conformally 
equivalent metric. The identity (27) takes its simplest form for the metric g~v when 
~ = i. In this case 

(O~O(z, w))==V~28(z, w)- 2~ d~g O,g(z, g)Oyg(w, g ) ~ + W = .  (30)  

The validity of this equation for Riemann surfaces of genus h = 0, 1 can be shown 
directly. Let us consider the sphere (h = 0). Abelian differentials on the sphere are 
zero. As a consequence, the relation (27) takes the form 

( < G ( z , w ) ) ~ = V ? G ( z , w ) ,  h=0.  (31)  

It is readily verified that the Green's function 

G(~, w)=- in  I~-w[~ 
( l+l~l~)(t+lwl~),  

corresponding to the standard choice of the metric on the sphere (see, for example [3]), 
satisfies Eq. (31). 

In the case of a torus (h = i), ds 2 = 2dzdz, V = 2z~, w z = I. Therefore, Eq. (27) can 
be written in the form 

(8,G(z-w))==O,2G(z-w)+ t--- S gag OzG(z-g)SyG(w-g)+const, h=i. (32)  
T2 

The s c a l a r  G r e e n ' s  f u n c t i o n  on t h e  t o r u s  can be e x p r e s s e d  in  t e rms  o f  t h e  Riemann 0~ 
f u n c t i o n  [ 3 , 1 0 ] :  

v ( z_w)=qn l  O,(z-w; ~) [ ~ = 0/(0, ,) - h-~-~ (~-~-w+~)=" (33) 

To prove gq. (32), we note that the Weierstrass p function, p(z -- w) - 8~G(z -- w), is 
holomorphic when z ~ w and has the Laurent expansion 

1 
p(z--w) = (z__~)2 ~- regular terms. 

On the other hand, it is easy to show that the combination 

( O,G(z_w) ) ~ _ i._ I d2g BzG(Z-y) 8~G(w-g) (34) 
T2 
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is also holomorphic when z ~ w and possesses a pole the same as for p(z -- w). This 
means that the functions p(z - w) and (34) differ only by a constant, in complete 
agreement with our equation (32). 

Note that from the identity (32) we obtain a new integral representation for the 
Weierstrass function, though in terms of the function 01 . 

4. Second Equation for the Green's Function 

Unfortunately, the method presented in the previous section is ineffective for 
generalization of the second equation in (i). This may be due to the symmetry of the 
second relation with respect to interchange of z and w. However, the important property 
of conformal covariance inherent in the first equation of (27) suggests an alternative 
way of obtaining a second identity. Namely, it is necessary to augment the original 
"flat" expression (i) in such a way that the resulting equation possesses conformal 
covariance. 

Being guided by this principle, and also the existing symmetry with respect to the 
arguments, we arrive at the equation 

where ~ is a certain function that depends only on the complex structure of the 
Riemann surface. Using the expressions (8) and (A.7), we can readily verify that Eq. (35) 
is indeed covariant with respect to Weyl transformations. 

It should be noted that the covariance of the first relation (27) cannot be 
established by direct variation of each term in (27), since the last term can be rewritten 
in terms of the Green's function G(z, w) only in the form of an infinite series in Rg. 
This difficulty does not arise in the investigation of the transformation properties of 
the diagrams that generate the identity (27). 

Thus, the generalization of Eqs. (i) to the case of compact Riemann surfaces of 
arbitrary genus can be achieved by two alternative methods, a fact that, in our view, is 
interesting in its own right. 

The function ~z~ on the right-hand side of Eq. (35) can be related to the function 
~(~) (23). Namely, using the results of the previous section, we can readily show that 

~=iw/WIjW/. (36) 

An open question for us is still the function ~(~). It is possible that additional 
information is contained in the modular properties of the two-dimensional propagators. 

5. Conclusions 

The main results of our paper are the expressions (24), (27), and (35). We have 
investigated the general structure of the regularized scalar Green's function in the 
framework of proper-time regularization. As is shown in [i0], this regularization is 
well suited to compact surfaces and is free of infrared divergences. Not yet fully deter- 
mined is the function ~(~), which depends on the Teichm~ller parameters mi,...,m~_6. We 
suppose that an explicit expression for ~(~) can be fixed by modular invariance. It 
follows from (24) that the regularized propagator in the limit of coincident points is 
a constant for Riemann surfaces with the topology of the sphere and torus. Note that the 
technique considered in Sec. 2 is a generalization of the method developed in our paper 
[12] for noncompact surfaces. 

Further, on the basis of the two different approaches we have derived Eqs. (27) 
and (35), which relate the second (and higher) derivatives of the Green's function to the 
first derivatives. The first of them has been obtained from the condition of consistency 
(25) of two-dimensional quantum field theory. The source of the second is the principle 
of conformal covariance. 
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We hope that our results will be helpful in the calculation of loop corrections to 
string equations of motion in the framework of the o-model approach [13]. 

Appendix 

Our notation agrees with [3]. In particular, the covariant derivatives are defined in 
accordance with the rule 

(~') V"  v(n)  (T  n (dz) n) = (gz~) T z  ((g ) r n )  (dz) J', V ,  : T,,-,. T,,+ ~, (n ) : T n ~  T " - l ,  n # z~. n n+" 

(A.I) 

V(n) ( n T g  r n  (dz) n-1 

Here, T n is the space of tensor fields with n subscripts z. There are two types of 
Laplacian: 

(+) ' (") (-) =-2Vcz ~-~ ~ h0~A0(+)=~0(-L (A .2 )  

We in t roduce  the heat ke rne l s  assoc ia ted  w i t h  the opera to rs  'A.(• 

~n (+) (z, z'; s).. = e - ' A ~ ) l  (z, z')_. (A. 3) 

For small E, we have in the limit of coincident points the expansion 

t i •  
qZ,,c• z; s)_,, = - + R~+O(s), (A. 4) 

4~e i2~ 

where  Rg i s  t h e  s c a l a r  c u r v a t u r e .  

[8]). 

where ~IJ is the matrix of periods. 
satisfy the relation [8] 

Let A I and BI, I = i, ..., h, be a canonical basis for the first homology group (see 
Then in the space of holomorphic differentials there exists a basis such that 

r wJ=6~j, ~ wJ=~. ,  
A !  BI 

As a c o n s e q u e n c e ,  t h e  b a s i s  A b e l i a n  d i f f e r e n t i a l s  w I 

dZ z w~XffzJ=2(Im ~)~j. (A.5) 

Accordingly, the operator @~ (7) is a projector onto the space of holomorphic differentials 
and 

~ d2z~=h.  (A. 6) 

Under t h e  Weyl t r a n s f o r m a t i o n  dg~v = 2og~v , t h e  s c a l a r  c u r v a t u r e  v a r i e s  in  a c c o r d a n c e  
with the law 

~ s R g = - 2 o R g + h o a .  (A .7 )  

Under the Beltrami transformation, the transformation rule has the form 

6ARg=Vz2Ayz+h.c. (A .8 )  

LITERATURE CITED 

i. A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Nucl. Phys. B, 241, 333 
(1984); V. G. Knizhnik and A. B. Zamolodchikov, Nucl. Phys. B, 247, 83 (1984); 
S. Mathur, S. Mukhi, and A. Sen., Nucl. Phys. B, 312, 15 (1989). 

2. T. Eguchi and H. Ooguri, Nucl. Phys. B, 282, 308 (1986). 
3. E. D'Hoker and D. H. Phong, Rev. Mod. Phys., 60, 917 (1988). 
4. K.-J. Hamada and M. Takao, Nuc. Phys. B, 313, 80 (1989). 
5. L. Alvarez-Haume, G. Moore, and C. Vafa, Commun. Math. Phys., 106, 1 (1986); 

H. Sonoda, Phys.. Lett. B, 178, 390 (1986); V. G. Knizhnik, Phys. Lett. B, 180, 247 
(1986) .  

6. E. Verlinde and H. Verlinde, Nucl. Phys. B, 288, 357 (1987). 
7. M. I. Dugan and H. Sonoda, Nucl. Phys. B, 289, 227 (1987). 
8. D. Mumford, Lectures on Theta Functions [Russian translation], Mir, Moscow (1988). 

907 



9. A. M. Polyakov, Phys. Lett. B, I03, 207 (1981). 
I0. S. Ranjibar-Daemi, A. Salam, and I. A. Strathdee, Int. J. Mol. Phys. A, ~, 667 

(1987). 
ii. V. G. Knizhnik, "Multiloop amplitudes in the theory of quantum strings and complex 

geometry. Explicit expressions for the measure in terms of theta functions," 
Preprint 87-61R [in Russian], Institute of Theoretical Physics, Kiev (1987). 

12. S. M. Kuzenko and O. A. Solov'ev, Yad. Fiz., 51, 585 (1990). 
13. H. Ooguri and N. Sakai, Nucl. Phys. B, 312, 435 (1988). 

RANDOM WALKS IN ONE-DIMENSIONAL QUASICRYSTALS 

A. V. Letchikov 

It is shown that in some one-dimensional quasicrystals a random walk 
has nonclassical limiting behavior. 

The asymptotic properties of random walks in one-dimensional disordered media is a 
topical problem of research. It has been established that the grain boundaries of some 
alloys have a one-dimensional quasiperiodic structure (see [i]). Diffusion taking place 
along the grain boundary of such alloys (for example, oxidation) can be approximated by 
a random walk in one-dimensional quasicrystals. The classical behavior for this case is 
when the diffusing particle after an interval of time t has moved away from the initial 
position by an amount x(t) close to a Gaussian random variable with mean at and variance 
o2t (02 > 0). The constants a and o 2 are called the coefficients of linear drift and 
diffusion, respectively. In the case of classical behavior of the particle, even if there 
is no linear drift (i.e., a=0), the excursion x(t) has the order ~ as t § +~. The aim 
of the present note is to describe quasicrystals in which the opposite situation obtains 
-- the behavior of the particle is like the random walk in a random medium described by 
Sinai [2]. In this case, x(t) has the order (in t) d, where the constant ~ > 0 is found 
from the parameters of the quasicrystal. 

We consider a random walk on a one-dimensional lattice Z+ = {0, I, 2, ...} with 
reflecting screen on the left. The randomly walking particle can pass in unit time from 
the vertex nGZ+ only to the neighboring vertices. We denote the probability of transition 
from n to n + 1 by p(n), and from n to n -- 1 by q(n) = 1 -- p(n). The reflection from 
the screen on the left means that p(0) = i. We denote the position of the particle at 
time t~{0, l,...} by x(t). We assume that x(0) = 0. The behavior of such random walks 
completely depends on the sequence of numbers p = {p(n), n = i, 2, ...}. If it possesses 
a quasiperiodic structure, then we shall call the constructed random process a random 
walk in a one-dimensional quasicrystal. 

Suppose natural numbers k and ~ are given. We define the one-dimensional quasi- 
crystal p by a sequence of words {A~}~[~ , which consist of two symbols A and B. Each 
successive word in the sequence is formed from the two preceding words in accordance with 
the rule 

A m + 2 ~ A m + i . . .  A~+I A n . . .  A,~. 
�9 �9 �9 . .  

~ ~imes l times 

The  i n i t i a l  w o r d s  a r e  A z = B a n d  A 2, c o n s i s t i n g  o f  k s y m b o l s  A. I n  t h i s  s e q u e n c e ,  e a c h  
word is the start of the next one. Allowing m to tend to +~, we ultimately obtain an 
infinite word that is a sequence of symbols of two types. We write it in a chain and 
number the symbols: 

Bl, B2 . . . . .  B ~ , . . . .  ( 1 )  

F o r  a r b i t r a r y  p o s i t i v e  n u m b e r s  ~ a n d  $,  we d e f i n e  t h e  t r a n s i t i o n  p r o b a b i l i t i e s  p ( n )  o f  t h e  
r a n d o m  w a l k  i n  t h e  q u a s i c r y s t a l  i n  a c c o r d a n c e  w i t h  t h e  f o r m u l a  
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