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1. Introduction 

The development of Young's measures theory has a long story. Obviously it goes 
back to L. C. Young [48-50]. The first aim was to give a description of the limits 
of minimizing sequences in the calculus of variations and, further, in the optimal 
control theory (see J. Warga [47] and A. Ghouila-Houri [30]. See the 20th problem 
of Hilbert quoted in I. Ekeland and R. Temam's book [27, Comments to chapters 9 
and 10]). More recently, H. Berliocchi and J. M. Lasry [17] extended the theory so 
as to make it work without compactness and, with some economical applications in 
view, were daring enough to consider affine functions taking the value +oe.  Then, 
E. J. Balder [3, 5, 8] gave the parametric version of the Prohorov theorem and lower 
semicontinuity theorems which make the theory very efficient and applicable. 

Most of  the properties of weakly convergent sequences in L 1 which are not 
strongly convergent must have been understood by C. Olech [36] and L. Tartar 
[39, 40] many years ago. Particularly, L. Tartar showed the usefulness of Young 
measures in this question. But the Visintin theorem [46] brought a new result and 
its proof using Young measures, due to E. J. Balder [6], allows many extensions. 
For the use of Young measures in PDE and Mechanics, see L. C. Evans [29], M. 
Chipot and D. Kinderlehrer [24] and D. Kinderlehrer and P. Pedregal [33, 34]. 

In Section 3 we recall some properties of weakly convergent sequences. 
In Section 4 we show that some frightening results of Measure theory used 

in Young measures theory are rather natural. The weak convergence of measures 
corresponds, when the spaces are intervals [a, b] and [c, d], to what could be con- 
vergence of black and white photographs on the rectangle [a, b] x [c, d]. The disin- 
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tegration of a bounded positive measure on [a, b] x [c, d] is roughly speaking what 
happens to the image before TV transmission: it is scanned (then the television set 
builds the image line after line). 

In Section 5 we give some examples of Young measures, specially of limit 
Young measures which are nonassociated to functions. 

In Section 6 we give some theorems about Young measures connected to our 
problem. We refer to our course [43], but most of the results come from one of the 
Balder's numerous papers [3-11 ]. 

In Section 7 we give the Visintin and Balder theorems and give some ideas on 
their proofs. 

In Section 8 we show that the hypotheses of the Visintin and Balder theorems 
are only sufficient conditions and we give a variant of Girardi's criterion. 

2. Notations and Preliminaries 

In the following f~ denotes an open subset of ~N, # the Lebesgue measure on fL 
All results extend to abstract measure spaces. Let L 1 (f~, #; ~d) denote the Banach 
space of integrable functions. For a sequence in L 1 ( ~  # ;  Nd), ?~n ~ U ,  means u n 
converges to u weakly, that is 

Let 5~ denote the Dirac measure at x, S d-1 the unit sphere of ~d. 

DEFINITION. Let C be a closed convex subset of a normed linear space and 
y E C'. The point y is a denting point of C if 

W > O, y ¢ e6(C\B(y,  ~)). 

NOTATIONS. 0extC for the set of extreme points of C, 0dent C for the set of denting 
points of  C. 

A denting point is always an extreme point. In finite dimension an extreme point 
is a denting point [42, Lemme 1 p. 5.4]. 

3. Weak and Strong Convergence 

It is well-known that in L 1 strong convergence implies weak convergence but the 
converse does not hold. 

EXAMPLE. Let ~2 = [0, 1], d = 1 and u~(x) = sin nx. Then u n converges 
weakly but not strongly to u ~ 0 since ]l un IlL 1---~ 2/:r. 
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The purpose of  this paper is to review some theorems which bring light on this 
phenomenon. The following observations are very useful. 

If u ~ ~ u, one can say: 

(1) (un)n is norm bounded in L I (this holds because the index set is N, this is not 
valid for generalized sequences). It is a consequence of the Banach-Steinhans 
theorem. 

(2) (un)~ is uniformly integrable. This is stronger than (1). It is a consequence of 
the Dunford-Pettis theorem. 

(3) One knows (Lebesgue-Vitali theorem) that, if (un)n is uniformly integrable 
(and It(ft) is finite), its strong convergence is equivalent to its convergence in 
measure: 

v c  > o,  I t ( { x  e a :11 - 11 > - - +  o. 

4. Definition of Young Measures 

In this section and the two following, we intend to present some basic results of 
Young measures trying to avoid measure theory technicalities. 

DEFINITION. A Young measure on ft × 1~ a is a positive measure ~- on f t x  IRa 
such that for any Borel set A C f~, T(A x I~ a) = #(A). For any measurable 
function u : f~ -+ t~ a, the Young measure associated to u is the (unique) Young 
measure carried by the graph of u. (Another definition of u is: for any Borel set B, 
u(A x B)  = # ( A  Cl u - l ( B ) ) . )  

There exist Young measures not associated to functions. 
The Young measure u associated to u represents the amount of chalk (or ink) 

laid down when drawing the graph of u with the 'law' 

v (A  x ]~d) = It(A). (YML) 

The following figure depicts this law for the function sin z (Figure 1). The limit 
Young measure obtained when the frequency tends to +cx~ will be given in the next 
section. 

We want to present disintegration very simply. Let us think of f~ x I~ a as a 
rectangle [a, b] x [c, d]. A Young measure r can represent a black and white pho- 
tograph. Above any x there is a conditional distribution rx (which is a probability 
measure on ~d). In some sense this corresponds to the scanning of the image before 
TV transmission (exchange vertical and horizontal). Then the television set builds 
the image line after line in accordance to the formula: 

= f[6:  ® dz! 9- 

T h e  measure 7 and the family (Tx)xea are two ways of description of the 
same image. The second way does not imply the existence of stochastic events 
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Fig. 1. Thickness according to (YML) 

or of a player having a random strategy. For a short proof of the existence of 
disintegration see L. C. Evans [29]. See also [41, 43]. The family (7-x)~Ea is very 
useful: the barycenter of  7-x will be used later. 

The notion of  weak convergence of Young measures (for a precise definition 
see the references) is essential. It is called the narrow convergence. If ~2 x 1~ a was 
exactly [a, b] x [c, d], this notion would be nothing else but convergence of  images 
(recall that a sequence (A n)n of measures on a compact metric space K converges 
weakly to A if for all real continuous function p on K, fK P dan ~ fK P dA). 

5. Examples of Young Measures 

In this section we give some examples of Young measures, specially of Young mea- 
sures associated to functions which converge to a Young measure non associated to 
a function. In the following examples, f~ = [0, 1] and # is the Lebesgue measure. 
They all are particular cases of  the following. Let u 1 be a periodic function on 
with period 1 and u'~(x) = ut(nx). Then (as soon as u 1 is measurable) the Young 
measures u n converge to a limit 7- whose disintegration ~-x is constant and verifies 
for any real bounded measurable function on 

fRP d~'x = f[[o,1]P(ul(x)) dx" 

EXAMPLE 1. The Rademacher functions on [0, 1], 

un(x) = +1 i f x  E , 2n 

for all even k, un(x) = - 1  otherwise, have a limit 7- which has not a density. Its 
disintegration is given by 

1 
= + 
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EXAMPLE 2. The functions, u'~(x)  = n x  (rood. 1) on [0, 1], have as limit the 
Lebesgue measure on the square [0, 1] z. 

EXAMPLE 3. Let f~ = [0, 1], d = 1 and u ~ ( x )  = sin(nx). One can prove that the 
Young measure u n associated to u n converges to 7- where r is carried by f~ x] - 1, 1 [ 
and has the density 

1 

6. Some Properties of Young Measures Connected to Oscillations 

In this section we give some properties of Young measures connected to our 
problem. The Young measure associated to u r~ (resp. u) is denoted by u r~ (resp. u). 
A general Young measure is denoted by 7-. 

PROPOSITION 1. I f  u ~ and  u are Young measures  assoc ia ted  to the measurab l e  

func t ions  u n and  u, then 

u n ~ u n a r r o w l y  ~ u n ~ u in  m e a s u r e .  

Re ference .  [43, Prop. 6]. 

THEOREM 2. S u p p o s e  u n --~ u in L 1 ( t2, It; IRa ). 

(1) There  exist  a s u b s e q u e n c e  (nk  )k and  a Young measure  r such  that  u TM --+ r.  

Then  a.e. the disbztegrat ion 7-x has a barycen ter  bar( Tx ), u (  x ) = bar(Tz) and  

II u - u IlL 1----+ / II Y - q.L(x) II T(d(x ,  y) ) .  
Jf~ ×R d 

Moreover ,  i f  Tx is a.e. a Dirac  measure ,  then v = u and  u TM --+ u strongly. 

(2) I f  u n does  no t  converge  strongly, there exist  a subsequence  (nk  )k and  a Young 

m e a s u r e  7- as in (1) a b o v e  such  that  7" is not  assoc ia ted  to a func t ion .  

(3) u n --+ u s trongly  <=> u n --+ u narrowly .  

Re ferences .  For the first part of (1) [43, Th. 19]. The convergence of tl un~ - 

u IlL1 has been noticed by E. J. Balder [3, 10] and follows from [43, Th.17] applied 
to the integrand on f~ / IR d, (x, y) HII y - ~(x) II. Finally (3) follows from 
Proposition 1 and the Lebesgue-Vitali theorem. 

When u '~ 7c~ u and u ~ 74 u, a limit measure r as in Part 2 of Th. 2 contains 
information about the asymptotic osillatory behaviour of the subsequence (u TM )k. 
This is specially meaningful in Mechanics when the energy ftmction is not quasi- 
convex in the sense of C. B. Morrey [35]. The material may appear in two phases (or 
more). Papers by J. L. Ericksen [28], D. Kinderlehrer and others [24, 33, 34] treat 
crystals. Similar phenomenons were already studied in Control Theory (when some 
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convexity is lacking) under the name of Relaxation. For example when controlling 
a rocket, it may happen that an optimal control would need a velocity between the 
full power and zero power of the engines. But this may be technically impossible. 
Approximated optimal controls are obtained by high frequency switches between 
full and zero power (even if the control space is the compact connected convex 
space [0, 1] nonexistence may happen when the system is governed by a nonlinear 
differential equation). Recent works by J. P. Raymond, A. Cellina [23], E. J. Balder 
are devoted to special cases of existence without convexity. 

If u n 74 u, u n 74 u and u ~ --~ r with r nonassociated to a function, there 
exists a measurable set A with #(A) > 0 such that Vx E A, 7x is not a Dirac 
measure. Then one can expect that above A, in some sense (it would be valuable to 
give this a precise meaning), the functions u ~k oscillate with 'frequencies tending 
to +cx~' (see Figure 2). 

7. Visintin and Balder Theorems 

THEOREM 3. (Visintin). Let  f o r  any x C f~, F(x) be a closed convex subset  o f ~  a, 
u n (n E N) and u funct ions  in Ll(f2, #; I~ d) such that u n ~ u weakly  andVn ,  a.e. 
u n ( x )  E F(x). Then 

(i) a.e. u(x) E F(x),  
(ii) moreover  ifa.e,  u ( x )  C 0extF(x), then u n --+ u strongly. 

Ideas o f  the proo f (w i thou t  Young measures). First (i) follows from the fact that 
the strongly closed convex set {v E Ll(f~,#;l~a): a.e. v ( x )  E F(x)} is weakly 
closed. Other possibility: invoke the Mazur lemma. 

For (ii) suppose #(ft)  < +c~ and imagine first the worse situation. That is the 
whole sequence verifies for some c > 0: 

v x  e 11  'Xx) - I1> c. 
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Then, from u(x)  E 0extP(Z) ~--- 0dentF(X) and the Hahn-Banach theorem, there 
existp(x)  E S d-1 and c~(x) such that 

( p ( z ) ,  - > > o. (*) 

Thanks to a measurable choice theorem one may assume p E L ~ .  By integration 
of (*) one gets a contradiction with u ~ ~ u. A more refined discussion is required 
in the general case. 

Let us consider now the general case. Suppose to simplify u -- O. If u ~ does 
not converge in measure to u, Be > O, 3~7 > O, such that for infinitely many n, 

~({x e a :11 u ~ ( x ) I I -  > ~}) >- ~, (**) 

so we may suppose that all the sequence verifies (**). Let 

V n = l f ~ n u n ~  W n = U n - -  v n  

where 

am = {x e a :11 d .  

Since (v n, w~)n is uniformly integrable we may suppose that it converges weakly 
to (v, w). But v n + w ~ = u n converges to 0. Hence a.e. 1/2(v(x )  + w(x) )  = O. 
Moreover since v and w are still selectors o f t  and 0 E 0extF(x), one has v = w = 0. 

Now, when vn(x)  ¢ O, vn(x )  f[ ~--d(P(x)\B(0, e)). It remains to continue with 
a more refined construction than above. 

REMARK. Still more sophisticated truncation methods (initiated by T. 
Rzeguchowski [38]) are used in the paper with A. Amrani and C. Castaing [1, 
2]. See also H. Benabdellah's papers [14-16]. 

NOTATION. For a sequence (Yn)r~ in I~ a, Ls(y~) denotes the set of limit points of 
the sequence. It is the Painlevd-Kuratowski limit sup of the singletons {Yn}. 

THEOREM 4. (Balder). Let u r~ (n E N) and u functions in L 1 ([2, #; I~ a ) such that 
u ~ ~ u weakly. Then 

G) a.e. u(x)  E -C6(Ls(un(x))) 
(jj) moreover ifa.e, u(x)  E Oext'Cd(Ls(u~(x)) ), then u n ~ u strongly. 

COMPARISON. The Balder theorem is stronger than Visintin's one, since, as soon 
as C 2 C Cl ,  y E 0extC 1 and y E C2, then y E 0extC2. Here -d-6(Ls(un(x))) is 
contained in F(x),  so u(x)  E OextF(x) ~ u(x)  E Oex(d-d(Ls(un(x) ) ). 

Ideas o f  the proo f  First (j) is easy to prove with Young measures because if -r 
is the Young measure given by Part 1 of Th. 2, ~-~ is a.e. carried by Ls(un(x))  (see 



364 M~CrmU VALADIER 

[43, Prop. 15, p. 166]). A proof  of  (j) without Young measures has been given in [2, 
Th. 8, p. 176]. For (jj), Balder 's  idea is that if u nk --~ ~-, since ~'x has as barycenter  
the extreme point u (x )  of-d-6(Ls(un(x))),  then "rx = 6u(x), hence 7- is equal to u 
the Young measure associated to u. So, by Part 1 of  Th. 2, u n ~ u strongly. 

A consequence o f  the Nsintin theorem. One can recover from Visintin's theorem 
in L 1 the following result. I f p  E ]1, oe[, if I~ a is equipped with a strictly convex 
norm, if u n --~ u in L p, if 11 u ILL/) ~ lim sup I1 un lILy, then u ~ ~ u strongly. The 
proof  does not use uniform convexity arguments. See [46, Th. 3], [42, Cor. 11], 
[14-16].  

8. More Discussion 

The Balder theorem gives a sufficient condition, not a necessary condition. 

EXAMPLE.  Let f2 = [0, 1], d = 1 and for k E N, p C {0, ..., 2 ~ - 1}, 

vr~ = lr_e_ p+11 i f n  = 2k + p .  
[2 k '  2 k J 

Then II ILL1= 2 -k  tends to 0 and it is easy to see, and classical (this is the most  
usual example of  a sequence converging in measure but not a.e.), that for any x in 
f~ ,Ls (vn (x ) )  = {0, 1}. T h e n i f u  n = v n if  n is even, - v ~  if  n is odd, II u~ ILL,--' 0 
a n d L s ( u n ( x ) )  = { - 1 , 0 ,  1}. So, w i t h u  = 0 ,  

VX C f~, u ( x )  ~ Oext-d-d(Ls(un(x))). 

COMMENT.  If  u n -+ u there exists a subsequence such that u ~k (x)  -+ u (x )  
a.e. Then Ls (u  n~ (x)) = {u(x)},  hence Balder 's  condition is satisfied for such a 
subsequence: u(x )  C 0extg-6(Ls(u "k (x))). But  this condition is not necessary for 
the whole  sequence. 

Even for subsequences the Visintin condition is not a necessary condition. 

EXAMPLE.  Let  r ~ be the Rademacher  functions, an E ]0, oc[, an --+ O, and 
u n = a n  T n .  

Then, for any subsequence,  0 E int[g-6{u ~k (x) : k E N] because 

sup u nk (x) > 0 a.e. 
kEN 

(Consider the Lebesgue  measure on [0, 1] as a probability. The events {u ~k _< 0} 
have probability 1/2 and are independent so have a negligible intersection) and, 
symmetrically, 

inf u n~ (x) < 0 a.e. 
kEN 
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The  fo l lowing  cr i ter ion is no t  easy  to handle  but  gives  a necessa ry  and sufficient  

condi t ion .  One  is expec t ing  for  o ther  criterions. 

T H E O R E M  5. (Gi ra rd i -Ba lder -Valad ie r ) .  Suppose u n ~ u in L t (f~, #; Ra). Then 

u ~ ~ u strongly i f  and only i f  the fol lowing criterion is verified: Ve > O, VA  C f~ 
with # ( A )  > O, 3 N  E N, 3 B  C A with # ( B )  > O, such that Vn > N ,  

1£ 1£ 
References. M. Girardi  [31, 32], E.J. Ba lde r  [10], M. Valadier  [45], For  fur ther  

results,  see B. Bernouss i  [18], E.J. Balder,  M. Girardi  and V. Jalby [12]. 
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