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Abstract. Let A,~, r~ = 1, 2 .... be nonempty subsets of a linear metric space E and C,~, n = 1,2, ... 
convex cones of E.  We consider the efficient sets Min(A,~, C,~) and the aim of this paper is to show 
that under suitable conditions, the convergence of A,~ and C~ to A and C respectively, implies the 
convergence of Min(A,~,C~) to Min(A, C) . Sever~(l illustrative examples are given which clarify 
the results. 
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1. In troduc t ion  

Throughout this paper E denotes a metric linear space. We recall [6] that given a 
nonempty set A C E, and a proper convex cone C C E, the set of efficient points 
of A is defined by: 

Min(A, C) = {a e A : a E a' + C implies a' C a + C} 

In the case where int C is nonempty, the set of weakly efficient points is defined by 

WMin(A, C) = {a C A : there is no a' E A with a e a' + i n t C }  

We say that C is pointed if C n - C  = {0}. In this case 

Min(A, C) = {a E A : a E a' + C implies a' = a} 

The question of how Min(A, C) and WMin(A, C) change under perturbations of 
A and C, has long been one of the most important and attractive topics in the theory 
of vector optimization and its applications. Today there exist a number of papers 
devoted to this question. Naccache [10], Tanino and Sawaragi [13] studied the case 
where E is a finite dimentional space. Lucchetti [9], Penot and Sterrla-Karwat [12], 
Luc [6], Dolecki and Malivert [5], and Attouch and Riahi [1] investigated more 
general cases, including a perturbation of the ordering cone. 

The purpose of our paper is to further study the stability of efficient sets 
Min(A, C) and WMin(A, C) when both A and C are under perturbations, by 
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using several convergence concepts of set-valued analysis. In the context of mul- 
ticriteria optimization these sets represent efficient values in the evaluation space. 
For the behavior of efficient solutions in the decision space, we refer the reader to 
[6, section 4, chapter 4] (see also [8]). 

Recall that given a sequence of subsets {An} in E ,  the Kuratowski-Painlev6 
lower and upper limits are defined as 

Li A,~ = {x E E : x = lira xn, Xn E An for all large n} 
n - - - r  O o  

LsAn = {x E E :  x = lira Xk,Xnk C Ank, 
k --+ o o  

nk a selection of the integers} 

The condition Ls An C A C Li An is referred to in the literature as the convergence 
of An to A in the sense of Kuratowski-Painlev~. 

Considering the limits in the weak topology rather than the norm topology, we 
denote the subsets described above by w-Ls As and w-Li An. If w-Ls An C A C 
Li An we say that A is the limit of An in the sense of Mosco. 

Let us mention a classical stability result [12, 5], which is close to what we want 
to develop in this paper: If An converges to A in the sense of Kuratowski-Painlev6 

then 

Ls WMin(An, C) C WMin (A, C). 

When the space E is finite-dimensional and A is closed this result is equivalent to 

say that if 

lim d(An,x) = d(A,x) for every x E E (W) 
n - - e - O O  

then one has also the inequality 

liminf d(WMin(An, C), x) > d(WMin(A, C), x) for all x in E. 

Note that a sequence {An} satisfying (W) is said converging to A in the sense 
of Wijsman. In this paper we study the infinite-dimensional case and further, we 
consider the case where the cone C is also under perturbations. 

The next section provides sufficient criteria for relations of the form 

liminf d(WMin(An, Cn),x) ) d(WMin(A,C), x) f o r e v e r y x  i n E  (1) 

o r  

liminf d(Min(Am Cry), x) I> d(Min(A, C), x) for every x in E.  

The other part of the convergence, namely 

limsup d(Min(An, Cn), x) < d(Min(A, C), x) for every x in E 

(2) 

(3) 
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in general, requires more severe assumptions and will be obtained for efficient sets 
only. Note that (3) is equivalent, even in the infinite-dimensional setting, to 

Min (A, C) C Li Min(An, Cn). (4) 

An assumption that usually plays a crucial role in this latter type of results is 
to suppose that U~=I Min (As, C~) is nonempty and relatively compact. A simple 
but useful observation is that such an assumption provides in fact a much stronger 
convergence than (3) or (4). To illustrate this point let us recall the Attouch-Wets 
topology. Bp denotes the ball centered at 0 and with radius p. Given x E E and 
two nonempty sets A and B,  define 

d(x,A) = inf d(x, a) (d(x, 0) = co), 
aEA 

e (A ,B )=supd(a ,B )  e ( ~ , A ) = 0  ( e ( O , 0 ) = 0 )  e ( A , ~ ) = c o ,  
aEA 

ep(A,B) : e(d N Bp, B) and hp(A,B) : max{%(A,B),ep(B,d)}.  

We shall say that the sequence A,~ converges to A in the Attouch-Wets sense if 

lira hp(A, An) = 0 for all p > 0. 
T/,,----~ O O  

There is another useful way to describe the upper part of the Attouch-Wets 
convergence. Indeed it can be shown [3] that a sequence An converges to A in this 
sense if and only if, for each nonempty bounded set B 

liminf d(An, B) >1 d(A, B). 

Here d(A, B) stands for inf,~A infbEB d(a, b), where we agree that d(A, B) = +co 
iff at least one of the two sets is empty. 

2. First Type of Convergence 

C~, n = 1,2, . . .  denote a sequence of convex cones in E,  and C~ = E\Cn the 
complementary sets of C,~. Unless otherwise specified, Min A and Min An will 
always stand for Min (A, C) and Min (Am, C~), respectively. 

THEOREM 2.1. Assume that every bounded subset of[J~_ t WMinAn, is rela- 
tively compact. If 

(i) Ls A,~, C A C Li A,~, 
(ii) Ls C~ C el (C c) 

then liminf d(WMinAn, B) >~ d(WMin A, B) for each bounded part B in E. 
If in addition, infinitely many An possess weakly efficient points, which are 

located in a bounded set, then WMin A is nonempty. 
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Proof  The conclusion of the Theorem is trivial if Iiminf d(WMin An, B) = c~. 
Therefore, it suffices to consider the case where this lower limit is finite. Suppose 
on the contrary that there is some bounded subset B C E with o~ = d(WMin A, B) 
(o~ possibly infinite) and some positive number 7 such that 

liminf d(WMin An, B) < 7 < a. 

By taking a subsequence of {An} if necessary we may assume that 
d(WMin A~, B)  < 7 for all n and, hence, there exists y~ E WMin An such 
that d(yn, B) < 7 for every n. By the compactness assumption, it can be assumed 
that a subsequence of {Yn} converges to some Yo C E.  From (i), one gets Yo C A. 
This point Yo cannot be a weakly efficient point of A because d(yo, B )  < 7 < a 
while d(WMin A, B) = o~. One can find some a E A such that Yo - a E in tC .  
Therefore Yo - a f[ cl(C c) and from (ii), using Ls C~ = Ls cl(C~), we have 

yo - a ¢ Ls cl(C ). (5) 

On the other hand (i) implies that there is a sequence {an),  a n  E An such that 
l i m n ~  an = a. Consequently l i m n ~  Yn - an = Yo - a and by (5) there exists 
n E N such that Yn - an f~ cl(C~). Thus Yn - an E in tCn,  contradicting the 
weak-efficiency of yn. 

Under the additional hypothesis of the Theorem, liminf d(WMin An, B) is a 
finite number, hence d(WMin A, B)  is finite too, and WMin A must be nonvoid. 

THEOREM 2.2. Assume that E is a reflexive space, Cn and C are pointed, convex 

cones. I f  
(i) w-Ls An C A C w-Li An,  
(ii) w-Ls C~ C C c U {0}, 

then liminf d(Min A~, x) >i d(Min A, x) for  every x E E. 
Proof  As  in the previous theorem, it is sufficient to consider x such that liminf 

d(Min An, x) is finite. Suppose that the result does not hold. By taking a subse- 
quence of  {An} if necessary we can find Yn C Min An and a positive number 7 
satisfying for all n, 

d(yn, x) < "7 < d(Min A, x).  

By the reflexivity of E,  it can be assumed that a subsequence of {Yn} weakly 
converges to some yo C E and by (i), Yo E A.  Since such Yo belongs to the closed 
ball centered at x with radius 7 we have for the weak limit Yo, d(yo, x)  < It' < 
d(Min A, x), and then Yo ~ Min A. Thus, there exists a E A such that 

y o - a  e c \ { 0 }  

Using A C w-Li A~, one may suppose the existence of an E An with 
w-limn--.c~an = a. We claim that there exists no > 0 with y~ - an C C,,\{0} 
for n ~ no, contradicting the efficiency ofyn.  Otherwise there is a subsequence of 
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{y~ - an}, Yn~ - an~ E CnCk U {0} and from the assumption (ii), Yo - a belongs 
to C c U {0}, a contradiction. [] 

From this theorem we easily deduce another result for weak efficiency, when 
Cn = C for all n. Recall that C is said to be polyhedral if it is the intersection of a 
finite number of half spaces. 

COROLLARY 2.1. Assume that E is a reflexive space and C is a polyhedral cone 
with a nonempty interior. I f  

(i) w-Ls A,~ c A C w-Li A,~, 

then l i m i n f  d(WMin(A~, C), x) ) d(WMin A, x) for  every x E E. 

Proof  Setting D = int C, one applies Theorem 2.2 with Cn = C = D. Note 
that weak efficiency with respect to C, coincides with efficiency with respect to D. 
Further C being polyhedral, D C is closed for the weak topology and the assumption 
(ii) of Theorem 2.2, w-Ls D c C D c U {0}, is satisfied. [] 

Condition (i) in Theorem 2.2 and Corollary 2.1 is Kuratowski-Painlev6 con- 
vergence with respect to the weak topology, which is clearly weaker than Mosco 
convergence. 

Recall that a Banach space E is said to be dual Kadec if for every sequence 
x~ in the dual of E,  weakly convergent to x*, with I[ x~ II=ll x* [l= 1 one 

* X* has lim~__,~ II xn - I1= 0. Borwein and Fitzpatrick [2] proved that if E is a 
reflexive, dual Kadec-Banach space, Mosco and Wijsman convergences coincide 
for sequences of dosed  nonempty convex subsets. Then we can deduce from 2.1 
the following result. 

COROLLARY 2.2. Assume that E is a reflexive dual Kadec-Banach space and 
C a polyhedral cone with a nonempty interior. I f  An n = 1, 2 . . . .  and A are 
closed convex sets such that l i m n - ~  d(An, x) = d(A, x) for  every x E E, then 
liminf d(WMin(A~, C), x) ) d(WMin A, x) for  every x E E. 

ff E is a Hilbert space the assumption of convexity on An can be relaxed as 
shown in the following result. 

THEOREM 2.3. Assume that E is a Hilbert space, C a polyhedral cone with a 
nonempty interior and A a nonempty closed convex set. I f  l i m n ~  d(An, x) = 
d(A,  x) for  every x E E, then liminf d(WMin(A,~, C), x) /> d(WMin A, x), for  
every x E E. 

Proof  As previously we prove the result at those points where 
liminf d(WMin(An, C), x) is finite. By supposing that the result is not true, one 
can find a positive number y such that 

Vno E N 3n  >1 no3y~ E WMin(A~, C) d(yn, x) < 7 < d(WMin A, x). 
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Since E is a reflexive space, it can be assumed that the sequence {y~ } weakly 
converges to some Yo E E,. Clearly, d(yo, x) < 7, and also 

d(yn, Yo) <_ d(yn, x)  + d(yo, x) < 2% (6) 

We claim that Yo E A. If not, using a separation theorem one can find a vector 
E E,  with fl ~ ll= 1, and a positive number r] such that 

(~, y} <_ (~, yo} - 27, for every y E A. (7) 

Set yt = yo + t~ with t > 0. Observe that the ball B(y t ,  t + ~7) does not meet A, 
because every y E B(y t ,  t + ~) satisfies the relation 

(~, y~ - y )  -<ll v - y~ tl < - t + 7 ,  

which implies 

(~, y} i> (~, yt} - (t + 7) >I (~, Yo} - 

and by (7), y !~ A. Furthermore, if t is sufficiently large, there exists no > 0 such 
that Yn E B(y t ,  t + 7) for all n >~ no. To see this, let us calculate d(yt,  Yn): 

II yt - yn 112=11 yo - Yn II 2 + t :  + 2t(~ c, Yo - Yn}. (8) 

From (6), one takes t such that II yn  - yo II 2<_ (2"r) 2 _< r~t and then, using 
limn~oo ({, Yo - Yn) = 0 ,  choose no ( depending on t), such that 

i t ,  yo - y~) <_ ~2 / (2 t ) ,  for  ~ > no. 

The value of (8) can now be estimated as 

11 yt - yn [12< re + t 2 + rl 2 <_ (t + ~)2, for n ) no. 

In this way, yn E B(y t ,  t + rl) for n >1 no and consequently d(A,~, yt) <_ t + rl. 
This and the fact that d(A,  yt) > t + r I contradict the assumption of the theorem at 
the point Yt saying that lim,~-+oo d(An,  Yt) = d(A,  Yt). Thus, we have shown that 
y o E A .  

Since d(yo, x) _< ~ < d(WMin A, x) the point yo cannot be a weakly efficient 
point of A, i.e. 

yo E a + i n t C  for some a E A. (9) 

Let an ~ An with l i m ~ o o  an = a. Since C is polyhedral and {y~} weakly 
converges to Yo, it follows from (9) that Yr~ E an + int C whenever n is large 
enough. This contradicts the fact that Yn E WMin(An, C) and completes the 
proof. [] 
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3. Second Type of  Convergence 

Another kind of convergence often considered for efficient sets, is the lower part 
of the Kuratowski-Painlev4 convergence, namely 

Min A C Li Min An. (10) 

Before mentioning two important results in that vein, we recall [6], that a set A C E 
is said to satisfy the domination property if, for every x E A, there is a E Min A 
such that x E a + C. 

THEOREM 3.1. [12, 5] Assume that the following conditions hold 

(i) Ls An C A C Li An, 
(ii) An satisfy the domination property for all large n, 
(iii) if  an E An is such that limn~oo an exists and en E Min An f) (an - C), 
then { en } admits a convergent subsequence, 

(iv) Ls Cn C C with C a closed pointed convex cone, 
then Min A C Li Min An. 

A similar result has been proved by Attouch and Riahi when E is a Banach 
space and the cone C is not under perturbations. In that latter result it is supposed 
that C is a closed convex cone satisfying the condition 

c c {x e E :  l(x) II x I[} (11) 

where e > 0 and l E E . ,  the topological dual of E. 

THEOREM 3.2. [I] Assume that the following conditions hold 

(i) Ls An C A C Li An, 
(a) infneN infxeA,~ l(x) > - -~ ,  
(b) for  every p > O, (UnENMin(An, C)) N Bp is relatively compact, then 
Min A C LiMin(An,C) .  

It can be observed that in a Banach space the conditions (11) and (a) imply the 
domination property (ii). Moreover, conditions (a) and (b) entail the compactness 
assumption (iii). 

Now we present sufficient criteria in order to obtain a convergence stronger 
than (4). 

THEOREM 3.3. Assume that the following conditions hold 

(i) Ls An C A C Li An, 
(ii) An satisfy the domination property for all large n, 
(iii) if  an E An is such that limn~oo an exists and en E Min An M (an - C), 
then {e~} admits a convergent subsequence, 

(iv) Ls Cn C C with C a closed pointed convex cone, 
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(v) for  every p > 0, Min A N B p is relatively compact. 
Then for  each p > O, l i m n ~  ep(Min A, Min An) = 0. 

Proof Suppose that the conclusion of Theorem does not hold, then there exist 
p > 0, e > 0 and a subsequence of {An}, denoted by {Xn}, such that 

Vk ep(Min A, Min AS) > e (12) 

Then for each k, there exists ek E Min A n Bp satisfying 

d(et~,Min AS) > e (13) 

By (v), {ek} admits a subsequence converging to some e C E and then from (13) 
there exists K > 0 such that 

d(e, Min AS) > e/2 for all k > K. (14) 

Using Theorem 3.1 we know that Min A C Li Min Ar~. Thus, for each k, ek = 
k t limk~oo e/k with e i C A i. It follows that for each k we can choose ei(k)k G Ai(k)¢ 

such that 

t ek -e}k)t< 1/k 

and then limk--,~ e~k ) = e which contradicts (14). [] 

The conclusion of Theorem 3.3 corresponds to the lower part of the Attouch- 
Wets convergence and it is known that it implies the lower part of the Kuratowski- 
Painlev6 convergence. The opposite implication, as proved here under assumption 
(v), can also be derived using a result of [11]. 

If we replace assumptions (iii) and (v) in 3.3, by 

(iii I) [..J,,c~_ t Min An is relatively compact, 

we get in addition to the conclusion of Theorem 3.3, that Min A is nonempty. More 
precisely we have 

THEOREM 3.4. Assume that the following conditions hold 

(i) L s A n C A C L i A n ,  
(ii) An satisfy the domination property for all large n, 
(iii~) [J~=l Min An is relatively compact, 
(iv) Ls Cn C C with C a closed pointed convex cone. 
Then Min A is nonempty, compactand limn--,oo e(Min A, Min An) = 0. 

Proof To show that Min A ~ (~, one sets 

Ao = Ls Min An. (15) 
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Since A ¢ q) and A C Li An, all A~ are nonempty for large n. Then from (ii) and 
(iii~), Ao is a nonempty compact set. In view of an existence theorem [7], the set 
Min Ao is nonempty. We claim that 

Min(Ao, C) C Min A. (16) 

In fact, let e E Min Ao. Then e E Ao C A. If e ~ Min A, there is a E A such that 
e E a + C\{0} .  By (i), there exist an E An with l i m n ~  an = a and by (ii), there 
exist en E Min An with an E en + C, n = 1,2, ... In view of (iii ~) we may assume 
that {en} converges to some eo E E. It is clear that eo E Ao. Moreover, from (iv), 
a E eo + C. Consequently, 

e e eo + o + c \ { 0 }  c eo + O\{0}.  

which contradicts the efficiency of e. Thus, Min A is nonempty. 
Now we prove that Min A is closed and, consequently, compact. Consider a 

sequence en E Min A such that l i m n _ ~  en = e. Since A is closed (from (i)), 
e E A. Suppose that e { Min A, then there exists x E A such that e - x E C\{0}.  
By ( i ) ,  x = l i m n - ~  an, an E An and from (ii) and (iii ~) there exists a sequence 
Yn~ E Min Ar~ f? (an~ - C), with l i m i ~  Yn~ = Y, n~ being a selection of integers. 
By (i),y E A a n d b y ( i v ) , x - y  E C.Therefore e - y  = ( e - x ) + ( x - y )  E C\{0}  
which contradicts the optimality of e. 

For the last conclusion of the Theorem, suppose on the contrary that there exist 
e > 0 and a subsequence {A~} of {An} such that 

e(Min A, Min A~) > e for all n > 0. (17) 

Then for each n there is e~ E Min A satisfying 

d(en,Min A~) > e. 

From the compacmess of Min A there exist e E Min A and no > 0 such that 

d(e, Min A~) > e for n > no. (18) 

As (iii ~) implies (iii), we have from Theorem 3.1 

Min A C Li Min A,~ 

which contradicts (18). 

Remark 3. I. The proof of Theorem 3.4 can be carried out in the same way by 
replacing the assumption (iii ~) by the weaker one: (iii H) the sequence {Min An }he5 ~ 
is compactoid. Under (iii~), Ls Min An is a nonempty compact set [4, Prop 3.1, 
Cor 4.13]. 

The conclusions of Theorem 3.4 can also be obtained under assumptions involv- 
ing the weak topology on E. 
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THEOREM 3.5. Suppose that the following conditions hoM 

(i) Ls An C A C w - Li An andA closed, nonempty, 
(ii) An satisfy the domination property for all large n, 
(iii 1) {JnC~=l Min An is relatively compact, 
(iv) w - Ls Cn C C with C a closed pointed convex cone. 
Then Min A is a nonempty compact subset and l imn- ,~ e(Min A, Min A,~) = 
0. 

Proof Setting Ao = Ls Min An we prove in a very similar way as in Theorem 
3.4 that Min A is a nonempty compact subset such that 0 # Min Ao C Min A. 

Now suppose that there exist e > 0 and a subsequence {Xn} of {An} such that 

e(Min A, Min A~) > e for n > 0 (19) 

As previouly we get from the compactness of  Min A that there exist e E Min A 
and no > 0 such that 

d(e, Min A~) > e for n > no. (20) 

On the other hand by (i), e = w - lira ak, ak E A~ k. By (ii), for each k E N,  
there exist ek E Min A~k A (ak - C) and (iif) entails that a subsequence of  {ek} 
converges to some x E Ls Min A ~ .  It follows from (i) that x E A and from (iv) 
that e - x C C. The efficiency of e implies e = x and then e E Ls Min A~k a 

contradiction with (17). [] 

In the last section, we propose some examples to clarify the role of  the assump- 

tions. 

4. Examples 

The first example shows that the condition (ii) in Theorem 2.2 cannot be relaxed 
even when Cn = C for all n C N. 

Let 12 be the space of sequences x = {xk} with ~ = 1  x~ < oo. The norm of/2 

is given by I IX]I = ( ~ = I  x~) 1/z. Let C be the cone of nonnegative vectors i.e. 

c = {x  = { x k ) :  xk o , k  = 1 ,2 , . . . } .  

Note that in this example int C = 0 so that we cannot consider weakly efficient 
points. Let a s, n = 1,2... be a sequence of  vectors in 12 with a s = {aN}, 

{ - 1 / ( 2 n )  k i f k - # n  
a N =  - 1 / 4  i f k = n  

and a ° = - ( l / x / 2 ,  l /x /4 ,  l / v @  1 / v ~ ,  ...). Set 

A = { t a ° : O < t < l }  and A n = A t _ J { a  ~} 
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As the sequence {a n } weakly converges to 0, condition (i) in Theorem 2.2 is 
satisfied. However we prove that liminf d(Min An, - a  °) < d(Min A, - a ° ) .  

We have Min A = {a ° } while for n >t 5, Min Ar~ = {a ° } U {an}. Thus 

d(Min A , - a  °) = d(a °, - a  °) = 211a°tl = 2. 

Let us calculate 

_ a  ° d ( a n , - a ° )  2 t i -  a°li 2 + llantl 2 - 2 < a n , > 

Observe that limn_+oo(a n, - a  °} = 0 because {an} weakly converges to O. There- 
fore 

lira d(a n, - a " )  2 
n...--> o o  

= I} -  a°tta + lim llan}! 2 
?Z---+OO 

= l + l i r n  1/4  2 +  ~ 1/(2n) zk < 1 + 1 / 4  2 . 
k= l,k¢n 

Finally for n/> 5 one has d(Min An,  - a  °) = Min(d(a °, - a ° ) ,  d(a n, - a ° )  ) and 

liminf d(Min A n , - a  °) <_ (1 + 1/16) 1/2 < 2. 

In this example C c U {0} is not weakly closed so that Theorem 2.2 does not apply. 
The second example shows that the compactness assumption (iii') in Theorem 

3.4 or Theorem 3.5 cannot be omitted. 
Let a n, n = 1,2, ... be elements of 12 which are given by a n = {a~} with 

- 1 / ( 2 n )  k if k e n  
a~ = - 1 if k = n 

Set A = {0} and An = {ta n " 0 <_ t < 1} f o r n  = 1,2, .... We haveMin  
An = {a n } and Min A = {0}. We show that 

and 

lim d(An,  x)  = d(A,  x) for every x E 12, 
n - - ~ ( x )  

lim d(0, Min An) > 0. 
n - - - + o o  

The first limit means that An converges to A in the sense of Wijsman, which 
implies conditions (i) of Theorem 3.4 and Theorem 3.5 (since A is closed). 

In fact, for any t E [0, 1] and any x = {xk} E 12, 

OO 

f i x  - t a n t t  2 = t lx l l  2 + t21t nlt 2 --  2 t  xk/(2 ) k --  2t n. 

k=l,k~n 
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As in the first example ,  one sees that l i m , ~  IIx - ta'~[l 2 = l[xll 2 + t 2 because 

l imn~c~ lla' [l z = 1. This means  that for every  x E 12, 

l im d ( A n , x )  = tlxlt = d ( A , x ) .  (21) 
n - - + o o  

We have  then 

l im d(O, M i n A n ) =  l im d(O,a n) = lira Ilan[I = 1. 
n- - -+OO n ' - -+OO n----~ OO 

In this example  the sequence {an} = {Min A~} does not admit  any convergent  

subsequence.  
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