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Abstract. Let A,,n=1, 2, ... be nonempty subsets of a linear metric space £ and C,, ,n = 1,2, ...
convex cones of E/ . We consider the efficient sets Min(A., C») and the aim of this paper is to show
that under suitable conditions, the convergence of A, and C,, to A and C respectively, implies the
convergence of Min(A,,Cr) to Min(A, C) . Several illustrative examples are given which clarify
the results.
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1. Introduction

Throughout this paper E denotes a metric linear space. We recall [6] that given a
nonempty set A C F, and a proper convex cone C C E, the set of efficient points
of A is defined by:

Min(A,C)={a € A:a€d + Cimpliesda’ € a+ C}

In the case where int C' is nonempty, the set of weakly efficient points is defined by
WMin(A,C)={a € A: thereisnoa’ € Awitha € ¢’ +intC}

We say that C is pointed if C N —C = {0}. In this case
Min(A,C)={a € A:a € a’ + C implies o’ = a}

The question of how Min(A4, C') and WMin(A, C') change under perturbations of
A and C, has long been one of the most important and attractive topics in the theory
of vector optimization and its applications. Today there exist a number of papers
devoted to this question. Naccache [10], Tanino and Sawaragi [13] studied the case
where E is a finite dimentional space. Lucchetti [9], Penot and Sterna-Karwat [12],
Luc [6], Dolecki and Malivert [5], and Attouch and Riahi [1] investigated more
general cases, including a perturbation of the ordering cone.

The purpose of our paper is to further study the stability of efficient sets
Min(4, C) and WMin(A4, C) when both A and C are under perturbations, by
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using several convergence concepts of set-valued analysis. In the context of mul-
ticriteria optimization these sets represent efficient values in the evaluation space.
For the behavior of efficient solutions in the decision space, we refer the reader to
[6, section 4, chapter 4] (see also [8]).

Recall that given a sequence of subsets {A,,} in E , the Kuratowski—Painlevé
lower and upper limits are defined as

LiA, = {z€F:z= nanéo T, Tn € Ay for all large n}
ILsA, = {z€E:z= klim Ty Tny, € Anys
—00
ny, a selection of the integers}

The conditionLs A,, C A C Li A, is referred to in the literature as the convergence
of A, to A in the sense of Kuratowski~Painlevé.

Considering the limits in the weak topology rather than the norm topology, we
denote the subsets described above by w-Ls 4, and w-Li A,. f w-Ls A, C A C
Li A,, we say that A is the limit of A, in the sense of Mosco.

Let us mention a classical stability result [12, 5], which is close to what we want
to develop in this paper: If A, converges to A in the sense of Kuratowski-Painlevé
then

Ls WMin(A4,,C) C WMin (4,0).

When the space E is finite-dimensional and A is closed this result is equivalent to
say that if

Jim d(An,z) = d(A,z) foreveryx € E (W)

then one has also the inequality
liminf d(WMin(Ay, C),z) > d(WMin(4, C), z) forall z in E.

Note that a sequence { Ay} satisfying (W) is said converging to A in the sense
of Wijsman. In this paper we study the infinite-dimensional case and further, we
consider the case where the cone C' is also under perturbations.

The next section provides sufficient criteria for relations of the form

liminf d(WMin(A,, Cy), z) = d(WMin(A4,C), ) forevery z in £ (1)
or

liminf d(Min(A,, Cy),z) > d(Min(A, C), z) forevery z in E. ?2)
The other part of the convergence, namely

limsup d(Min(A4,, Cy,),z) < d(Min(4, C), z) forevery z in £ (3)
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in general, requires more severe assumptions and will be obtained for efficient sets
only. Note that (3) is equivalent, even in the infinite-dimensional setting, to

Min (4,C) C LiMin(A,, Cy). 4)

An assumption that usually plays a crucial role in this latter type of results is
to suppose that | J52; Min (4, C,,) is nonempty and relatively compact. A simple
but useful observation is that such an assumption provides in fact a much stronger
convergence than (3) or (4). To illustrate this point let us recall the Attouch-Wets
topology. B, denotes the ball centered at 0 and with radius p. Given x € F and
two nonempty sets A and B, define

d(z, A) = fég d(z,a) (d(z,0) = o),

e(A,B) = Sug d(a,B) e(®,4)=0 (e(0,0)=0) e(4,0)= co,

ep(A,B) = E(A N B,, B) and h,(A, B) = max{e,(4, B),e,(B, A)}.
We shall say that the sequence A,, converges to A in the Attouch—Wets sense if

lim h,(4,A,)=0forallp> 0.

n—0Q

There is another useful way to describe the upper part of the Attouch—Wets
convergence. Indeed it can be shown [3] that a sequence A,, converges to A in this
sense if and only if, for each nonempty bounded set B

lminf d(A,, B) > d(A, B).

Here d( A, B) stands for inf,¢ 4 infyec 5 d(a, b), where we agree that d( A, B) = +co
iff at least one of the two sets is empty.

2. First Type of Convergence

Cn, n = 1,2,... denote a sequence of convex cones in F, and Cf = E\C, the
complementary sets of C,, . Unless otherwise specified, Min A and Min A,, will
always stand for Min (4, C) and Min (4, C,,), respectively.

THEOREM 2.1. Assume that every bounded subset of | Jooy W MinA,, is rela-
tively compact. If

B LsA, CACLiIA,,
(i) Ls C¢ C cl (C°)

then liminf d(WMinA,, B) > d(WMin A, B) for each bounded part B in E.
If, in addition, infinitely many A,, possess weakly efficient points, which are
located in a bounded set, then WMin A is nonempty.
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Proof. The conclusion of the Theorem is trivial if liminf d(WMin 4,,, B) = co.
Therefore, it suffices to consider the case where this lower limit is finite. Suppose
on the contrary that there is some bounded subset B C E with o = d(WMin 4, B)
(« possibly infinite) and some positive number « such that

liminf d(WMin A4,,, B) < v < a.

By taking a subsequence of {A,} if necessary we may assume that
d(WMin A,, B) < « for all n and, hence, there exists y, € WMin A, such
that d(yy, B) < -y for every n. By the compactness assumption, it can be assumed
that a subsequence of {y, } converges to some y, € E. From (i), one gets y, € A.
This point y, cannot be a weakly efficient point of A because d(y,, B) < 7 < «
while d(WMin A, B) = a. One can find some a € A such that y, — a € intC.
Therefore 4, — a & cl(C°) and from (ii), using Ls C = Ls cl(Cy, ), we have

Yo — G ¢ Ls d(c;,)' &)

On the other hand (i) implies that there is a sequence {an}, a, € Ay such that
lim,, 00 Gn, = a. Consequently limy, 00 Yn, — an = Y, — a and by (5) there exists
n € N such that y, — a, & cl(C%). Thus y, — an € intCy,, contradicting the
weak-efficiency of y,.

Under the additional hypothesis of the Theorem, liminf d(WMin A,, B) is a
finite number, hence d(WMin A, B) is finite too, and WMin A must be nonvoid.

THEOREM 2.2. Assume that E is a reflexive space, C,, and C are pointed, convex
cones. If

(i) w-Ls A, C A Cw-Li Ay,

(i) w-Ls CS C C°U {0},
then liminf d(Min A,,z) > d(Min A, z) for every z € E.

Proof. As in the previous theorem, it is sufficient to consider = such that liminf
d(Min Ay, z) is finite. Suppose that the result does not hold. By taking a subse-
quence of {A,} if necessary we can find y, € Min A,, and a positive number -y
satisfying for all n,

d(Yn, ) <y < d(Min A, z).

By the reflexivity of E, it can be assumed that a subsequence of {yn} weakly
converges to some ¥, € F and by (i), y, € A. Since such y, belongs to the closed
ball centered at z with radius v we have for the weak limit y,, d(y,,z) < v <
d(Min A, z), and then y, & Min A. Thus, there exists a € A such that

Yo — a € C\{0}.

Using A C w-Li A,, one may suppose the existence of a, € A, with
w-limy, »oo@n = a. We claim that there exists n, > 0 with y, — a, € C,\{0}
for n > n,, contradicting the efficiency of y,,. Otherwise there is a subsequence of
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{¥n — an}, Yn, — an, € C5, U {0} and from the assumption (ii), 3 — a belongs
to C° U {0}, a contradiction. O

From this theorem we easily deduce another result for weak efficiency, when
C,, = C for all n. Recall that C is said to be polyhedral if it is the intersection of a
finite number of half spaces.

COROLLARY 2.1. Assume that E is a reflexive space and C is a polyhedral cone
with a nonempty interior. If

(1) w-Ls A, C ACw-Li A,

then liminf d(WMin(A,, C),z) > d(WMin A, x) for everyz € E.

Proof. Setting D = int C, one applies Theorem 2.2 with C,, = C' = D. Note
that weak efficiency with respect to C, coincides with efficiency with respect to D.
Further C being polyhedral, D¢ is closed for the weak topology and the assumption
(ii) of Theorem 2.2, w-Ls D¢ C D° U {0}, is satisfied. O

Condition (i) in Theorem 2.2 and Corollary 2.1 is Kuratowski~Painlevé con-
vergence with respect to the weak topology, which is clearly weaker than Mosco
convergence.

Recall that a Banach space F is said to be dual Kadec if for every sequence
x} in the dual of F, weakly convergent to z*, with || z% ||=|| =* [|= 1 one
has lim, e || 2} — * ||= 0. Borwein and Fitzpatrick [2] proved that if F is a
reflexive, dual Kadec—Banach space, Mosco and Wijsman convergences coincide
for sequences of closed nonempty convex subsets. Then we can deduce from 2.1

the following result.

COROLLARY 2.2. Assume that E is a reflexive dual Kadec—-Banach space and
C a polyhedral cone with a nonempty interior. If A, n = 1, 2, ... and A are
closed convex sets such that im, oo d(An,x) = d(A,z) for every x € E, then
liminf d(WMin(A,, C),z) > d(WMin A, z) for every z € E.

If £ is a Hilbert space the assumption of convexity on A,, can be relaxed as
shown in the following result.

THEOREM 2.3. Assume that E is a Hilbert space, C a polyhedral cone with a
nonempty interior and A a nonempty closed convex set. If limy,_,oo d(Ap,z) =
d(A,x) for every x € E, then liminf d(WMin(A,,C),z) > d(WMin A, z), for
everyx € E,

Proof. As previously we prove the result at those points where
liminf d(WMin(A,, C),z) is finite. By supposing that the result is not true, one
can find a positive number -y such that

Vn, € N 3n > n,Jy, € WMin(A4,,, C) d(yn,x) <y < d(WMin A, z).
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Since F is a reflexive space, it can be assumed that the sequence {y,} weakly
converges to some y, € E. Clearly, d(y,,x) < v, and also

A(Yn, Yo) < d(Yn, ) + d(yo,z) < 2. (6)

We claim that y, € A. If not, using a separation theorem one can find a vector
& € E, with || £ ||= 1, and a positive number 7 such that

€ y) <& yo) —2n, foreveryy e A Q]

Set y; = vy, + t€ with ¢ > 0. Observe that the ball B(y:,t + 1) does not meet A,
because every y € B{y:,t + n) satisfies the relation

G-y <Ny—-unlt+n,
which implies
&y 2 &y —(E+n) 2 y) —n

and by (7), y € A. Furthermore, if ¢ is sufficiently large, there exists n, > 0 such
that y, € B(y;,t +n) forall n > n,. To see this, let us calculate d(yz, yn):

I v = 9 12=1l Yo = ¥n II* +2* + 2¢(€, Yo — yn)- (8)

From (6), one takes ¢ such that || yn — %o |>< (27)* < nt and then, using
limp,— o0 (&, Yo — ¥n) = 0, choose n, ( depending on t), such that

<€77J0 - yn> < 772/(275), forn > n,.
The value of (8) can now be estimated as
lye =y [P< mt+ 2 +7> < (@t +n)?,  forn > no.

In this way, yn € B(y;, t + 1) for n > n, and consequently d(An,yt) < ¢+ 7.
This and the fact that d(A, y¢) > t + 1 contradict the assumption of the theorem at
the point y; saying that lim,,—,cc d(An, y¢) = d(4,y;). Thus, we have shown that
Yo € A.

Since d(y,,z) < v < d(WMin A, z) the point y, cannot be a weakly efficient
point of A, i.e.

Yo € a + intC for some a € A. 9

Let a, € Ay with limp_.ooan, = a. Since C is polyhedral and {y,} weakly
converges to ,, it follows from (9) that y, € a, + int C' whenever n is large
enough. This contradicts the fact that y, € WMin(A4,,C) and completes the
proof. O
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3. Second Type of Convergence

Another kind of convergence often considered for efficient sets, is the lower part
of the Kuratowski—Painlevé convergence, namely

Min A C Li Min A,. (10)

Before mentioning two important results in that vein, we recall [6], thataset A C E
is said to satisfy the domination property if, for every z € A, there is @ € Min A
suchthatz € o + C.

THEOREM 3.1. [12, 5] Assume that the following conditions hold

(i) Ls A, CACLi A,

(i) A, satisfy the domination property for all large n,

(i) if an € Ay, is such that limy, .0 Gy, exists and e, € Min A, N (an, — C),
then {e,} admits a convergent subsequence,

(iv) Ls C,, C C with C a closed pointed convex cone,
then Min A C Li Min A,,.

A similar result has been proved by Attouch and Riahi when F is a Banach
space and the cone C' is not under perturbations. In that latter result it is supposed
that C' is a closed convex cone satisfying the condition

Cc{zeE:l(z)zelz|} (1
where ¢ > 0 and | € E', the topological dual of E.

THEOREM 3.2. [1] Assume that the following conditions hold

(i) Ls A, CACLiA,,

(@) infpen infzeq, I(x) > —o0,

(b) for every p > 0, (UpenMin(A4,,C)) N Bp is relatively compact, then
Min A C LiMin(A,,C).

It can be observed that in a Banach space the conditions (11) and (a) imply the
domination property (ii). Moreover, conditions (a) and (b) entail the compactness
assumption (iil).

Now we present sufficient criteria in order to obtain a convergence stronger
than (4).

THEOREM 3.3. Assume that the following conditions hold

HLlsA, CACLiA,

(ity A, satisfy the domination property for all large n,

(i) if an € Ay is such that limy, .o, oy, exists and e, € Min A, N (a, — C),
then {e,} admits a convergent subsequence,

@iv) Ls Cy, C C with C a closed pointed convex cone,
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(v) for every p > 0, Min A N Bp is relatively compact.
Then for each p > 0, lim,_,o €,(Min A,Min 4,) = 0.
Proof. Suppose that the conclusion of Theorem does not hold, then there exist
p > 0, e > 0 and a subsequence of {4, }, denoted by { A] }, such that
Vk e, (Min A,Min A}) > € (12)
Then for each k, there exists e € Min A N B, satisfying
d(eg,Min A4},) > € (13)

By (v), {ex} admits a subsequence converging to some ¢ € F and then from (13)
there exists K > O such that

d(e,Min A}) >¢€/2  forallk > K. (14)

Using Theorem 3.1 we know that Min A C LiMin A,,. Thus, for each k, e, =
limy,_, oo €f with ¥ € Al It follows that for each k we can choose eif’(k) € A;(k)

such that
| ex — ef(,c) < 1/k
and then limg_. o ef(k} = ¢ which contradicts (14). O

The conclusion of Theorem 3.3 corresponds to the lower part of the Attouch-
Wets convergence and it is known that it implies the lower part of the Kuratowski—
Painlevé convergence. The opposite implication, as proved here under assumption
(v), can also be derived using a result of [11].

If we replace assumptions (iii) and (v) in 3.3, by

(iti') U2, Min A, is relatively compact,

we get in addition to the conclusion of Theorem 3.3, that Min A is nonempty. More
precisely we have

THEOREM 3.4, Assume that the following conditions hold
() Ls A, C A C Li A,
(ii) Ay, satisfy the domination property for all large n,
(iii") UsZ; Min A, is relatively compact,
(iv) Ls C,, € C with C a closed pointed convex cone.
Then Min A is nonempty, compact and lim,_,., e(Min A,Min A,,) = 0.

Proof. To show that Min A # 0, one sets

A, = Ls Min 4,,. (15
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Since A #  and A C Li A, all A, are nonempty for large n. Then from (ii) and
(iii"), A, is a nonempty compact set. In view of an existence theorem [7], the set
Min A, is nonempty. We claim that

Min(A4,, C) C Min A. (16)

In fact, let ¢ € Min A,. Thene € A, C A. If e € Min A, there is @ € A such that
e € a+ C\{0}. By (i), there exist a, € A,, with lim,,,o a, = a and by (ii), there
existe, € Min A4, witha, € e, +C,n = 1,2, ... In view of (iii’) we may assume
that {e, } converges to some e, € E. It is clear that e, € A,. Moreover, from (iv),
a € e, + C. Consequently,

e € e, + C + C\{0} C e, + C\{0}.

which contradicts the efficiency of e. Thus, Min A is nonempty.

Now we prove that Min A is closed and, consequently, compact. Consider a
sequence e, € Min A such that lim, .., e, = e. Since A is closed (from (1)),
e € A. Suppose that e & Min A, then there exists z € A suchthate —z € C\{0}.
By (i), £ = lim,, o0 n, 6, € Ay, and from (ii) and (iil') there exists a sequence
Yn; € Min Ay, N (an, —C), with lim;_, Yn; = Y, n; being a selection of integers.
By(),y € Aandby (iv), z—y € C.Thereforee—~y = (e—z)+(z—y) € C\{0}
which contradicts the optimality of e.

For the last conclusion of the Theorem, suppose on the contrary that there exist
€ > 0 and a subsequence { A],} of {A,} such that

e(Min A,Min A4}) > eforalin > 0. a7
Then for each n there is e,, € Min A satisfying

d(en,Min AL) > e.
From the compactness of Min A there exist e € Min A and n, > 0 such that

d(e,Min A')) > ¢  forn > n,. (18)
As (iil’) implies (iii), we have from Theorem 3.1

Min A C LiMin A4,

which contradicts (18).

Remark 3.1. The proof of Theorem 3.4 can be carried out in the same way by
replacing the assumption (iii’) by the weaker one: (iii”) the sequence {Min A, } e N
is compactoid. Under (iii”), Ls Min 4,, is a nonempty compact set [4, Prop 3.1,
Cor4.13].

The conclusions of Theorem 3.4 can also be obtained under assumptions involv-
ing the weak topology on E.
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THEOREM 3.5. Suppose that the following conditions hold

(i) Ls A, C A Cw—LiA, and A closed, nonempty,
(ii) A, satisfy the domination property for all large n,
(iii") U2 Min A, is relatively compact,
(iv) w — Ls C,, C C with C a closed pointed convex cone.
Then Min A is a nonempty compact subset and lim,,_, o e(Min A,Min 4,,) =
0.
Proof. Setting A, = Ls Min A,, we prove in a very similar way as in Theorem
3.4 that Min A is a nonempty compact subset such that § # Min A, C Min A.
Now suppose that there exist ¢ > 0 and a subsequence { A}, } of {4, } such that

e(Min A,Min A4},) > eforn > 0 (19)

As previouly we get from the compactness of Min A4 that there exist e € Min A
and n, > 0 such that

d(e,Min A}) > € forn > n,. 0

On the other hand by (i), e = w — lim ag, ax € A}, .- By (i), for each k € N,
there exist e, € Min A}, N (ax — C) and (iii') entaﬂs that a subsequence of {e; }
converges to some x € Ls Min A . It follows from (i) that 2 € A and from (1v)
that e — z € C. The efficiency of e implies e = z and then e € Ls Min A

contradiction with (17). D

In the last section, we propose some examples to clarify the role of the assump-
tions.

4. Examples

The first example shows that the condition (ii) in Theorem 2.2 cannot be relaxed
even when C,, = C foralln € N.

Let I2 be the space of sequences z = {z} with } g2 z2 < oco. The norm of I?
is given by ||z]] = (52, 22)'/2. Let C be the cone of nonnegative vectors i.e.

C={z={zr}: 2z 20,k=12,..}

Note that in this example int C' = () so that we cannot consider weakly efficient
points. Let a”, n = 1,2... be a sequence of vectors in 2 with a™ = {az},

n_ —1/(2n)* ifk#n
“k—{—l/a, ifk=n

and a® = —(1/v/2,1/v/4,1/+/8,1/1/16, ...). Set
A={ta®:0<t<1} and A,=AU{a"}
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As the sequence {a”} weakly converges to 0, condition (i) in Theorem 2.2 is
satisfied. However we prove that liminf d(Min A,, —a°) < d(Min A4, —a°).

We have Min A = {a°} while forn > 5, Min 4,, = {a°} U {a"}. Thus

dMin 4, —a°) = d(a®, —a®) = 2||a’|] =2

Let us calculate
d(a™, =0 = || - a”|P+ la" | 2 < ", —a? >
Observe that lim, .o (a", —a°) = 0 because {a, } weakly converges to 0. There-

fore
2
i, dla”, ~a”)
| =l + lim_{la"|]?
_ . 2 2
-1+n1Ln010<1/4+ Z )<1+1/4
k=1,ksn
Finally for n > 5 one has d(Min A,, —a®) = Min(d(a°, —a°), d(a™, —a®)) and

liminf d(Min A,, —a°) < (1+1/16)1? < 2.
In this example C° U {0} is not weakly closed so that Theorem 2.2 does not apply
The second example shows that the compactness assumption (iii’) in Theorem

3.4 or Theorem 3.5 cannot be omitted.
be elements of I2 which are given by a™ = {a}} with

Leta™,n=1,2,...
[ =1/2n)* ifk#n
R | ifk=n
Set A = {0} and A, = {ta” : 0 <t < 1} forn = 1,2,....
n = {a™} and Min A = {0}. We show that
nlingo d(An,z) = d(A,z) forevery z € 2,

ar
We have Min

and
nl-lgéo d(0,Min 4,,) > 0.
The first limit means that A4,, converges to A in the sense of Wijsman, which
implies conditions (i) of Theorem 3.4 and Theorem 3.5 (since A is closed).
In fact, forany t € [0,1] and any = = {x;} € I%,
o0
> x/(2n)* - 2tx,.

ta|[? = Ifal? + £lfa"
k=1,k#n

1B
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As in the first example, one sees that lim,, .o, ||z — ta”|[> = ||z|*> + ¢ because
lim,, .o ||@”]|* = 1. This means that for every z € 12,

Jim d(An, z) = |[z]| = d(4, 7). @1
We have then
iz, (0, Min An) = lim d(0,a”) = Jig [la™l] = 1

In this example the sequence {a,} = {Min A,} does not admit any convergent
subsequence.
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