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We investigate the statistical mechanics of a complex field ~b whose dynamics is 
governed by the nonlinear Schr6dinger equation. Such fields describe, in 
suitable idealizations, Langmuir waves in a plasma, a propagating laser field in 
a nonlinear medium, and other phenomena. Their Hamiltonian 

H(~b) = f~ E � 8 9  ~ - ( i / p ) I ~ l q  dx 

is unbounded below and the system will, under certain conditions, develop (self- 
focusing) singularities in a finite time. We show that, when s is the circle and 
the L 2 norm of the field (which is conserved by the dynamics) is bounded by N, 
the Gibbs measure v obtained is absolutely continuous with respect to Wiener 
measure and normalizable if and only if p and N are such that classical 
solutions exist for all time--no collapse of the solitons. This measure is essen- 
tially the same as that of a one-dimensional version of the more realisitc 
Zakharov model of coupled Langmuir and ion acoustic waves in a plasma. We 
also obtain some properties of the Gibbs state, by both analytic and numerical 
methods, as N and the temperature are varied. 

KEY W O R D S :  Nonlinear Schr6dinger equation; statistical mechanics; 
unbounded Hamiltonians; singularities; Gibbs measures. 

1. I N T R O D U C T I O N  

1.1. General Background 

T h e  e s sence  o f  s t a t i s t i c a l  m e c h a n i c s  is t h e  r e p l a c e m e n t  of  t he  s t u d y  of  t he  

m i c r o s c o p i c  d y n a m i c a l  t r a j e c t o r y  of  a n  i n d i v i d u a l  m a c r o s c o p i c  s y s t e m  b y  
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the study of appropriate ensembles or probability measures on the phase 
space of the system. The success of this program, especially for systems in 
equilibrium, has made a virtue of necessity. Instead of trying to solve the 
initial value problem for a system containing a very large (say 10 23) num- 
ber of particles, which is clearly an impossible task even in principle, we 
obtain information about values of macroscopic observables by taking 
averages over Gibbs probability distributions containing only a few 
parameters (particle density, temperature, etc.). 

While the rigorous justification of the theory is still not fully 
understood, its success leaves no doubt about its utility. In fact, the results 
obtained from a suitable probability measure, which includes information 
about both typical behavior and fluctuations, are generally more relevant 
than the solution of a specific initial value problem for understanding the 
behavior of real systems. (1~ With this in mind, we present here an extension 
of the statistical mechanical formalism to a continuum field with a 
Hamiltonian that is unbounded below. The system models certain aspects 
of the behavior of a plasma excited by an electromagnetic field, say that of 
a laser (z-4) (this is our primary motivating example), as well as the 
propagation of a laser beam in a nonlinear medium and other phenomena 
(see Ref. 5 for references). 

To put our work in context, we recall first the structure of Gibbs 
distributions of particle systems. In classical mechanics (the quantum case 
is similar) the Gibbs probability distribution for finding a system consisting 
of N particles in a compact spatial region (2 is a set of microscopic states 
dX u is given by 

#(dXu)----ZN 1 exp[- f lH(XN) ] dX u 

where H is the Hamiltonian of the system, fl is the reciprocal temperature, 
and ZN is a normalization constant (also the partition function). Provided 
now that H(XN) is suitably bounded from below (H stability) and satisfies 
other reasonable conditions, (6) one can take the thermodynamic limit 
N-~ o% Ig2l-~ o% N/If2[--,p (where Ig21 is the volume of g?), the correct 
idealization of a macroscopic system, and obtain a well-defined measure on 
the resulting infinite-dimensional phase space. 

The situation becomes more complicated when the appropriate 
microscopic description of the system is in terms of a continuum field, say 
~b(x), x e g?. Such a description arises either when ~b represents a fundamen- 
tal field of nature, e.g., the electromagnetic or Yang-Mills field, or when ~b 
is itself a coarse-grained (reduced) description of the microscopic system, 
e.g., the density and/or velocity field of a fluid. While the statistical 
mechanical treatment of the latter "derivative" fields, which endows them 
with fluctuations, may appear at first sight artificial (first coarsening, then 
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refining), there are often very good reasons for wanting to focus attention 
on the collective variables of the field rather than on the atomic degrees of 
freedom--e.g., in fluid turbulence it is in the hydrodynamic modes that the 
interesting action takes place. 

The difficulties encountered in constructing statistical mechanical 
theories of fields are associated with the infinite number of degrees of 
freedom present already in a finite volume the ultraviolet problem. This 
causes no real trouble in the linear case, i.e., when the Hamiltonian is 
quadratic in the fields, since the degrees of freedom essentially 
decouple--say, in a Fourier representation--to give the free field. (One of 
the theory's first applications, the statistical treatment of blackbody 
radiation, is an example of such a field.) In the nonlinear case, comonly 
treated in Euclidean quantum field theory, the difficulties are indeed serious 
when the spatial dimension d is greater than three. For d ~  3, on the other 
hand, all can be made well for the type of polynomial Hamiltonian usually 
considered in field theory. These Hamiltonians are bounded from below 
and permit extensions of the usual tricks. {7) The situation is quite different 
when the Hamiltonian appropriate to the continuum field is not bounded 
below, the case we consider there. 

It is a priori clear that this situation can arise only when the system 
has, in the coarse-grained description provided by the collective modes, the 
potentiality for some kind of instability on the appropriate scale. This is 
indeed the case for many systems, including suitable plasmas irradiated 
with laser light. Here the collective modes represent Langmuir waves and 
the instability is the soliton or caviton collapse, which gives rise to plasma 
turbulence. The physics of the problem--including the reasons for 
expecting an equilibrium treatment of the collective modes to be of any 
relevance, even though the system is clearly not in thermodynamic 
equilibrium--are given in Section 3; there we also discuss the Zakharov 
model, which contains the ion acoustic waves in addition to Langmuir 
waves. Here we go on to describe our simpler model and some features of 
our approach to its statistical mechanics. 

1.2. Formulat ion of the Problem 

We construct and study equilibrium Gibbs measures of systems whose 
microscopic state is modeled by a complex continuum field r depending 
on one space dimension. We take the domain/2 to be the interval [0, L], 
with periodic boundary conditions, and consider Hamiltonians of the form 

H(#)=5 Ir --1 Ir (1.1) 
P 
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where the real and imaginary parts of r are the conjugate canonical 
variables and p will be assumed to satisfy p~> 3. The corresponding 
equation of motion for a time-dependent field u(x, t) ( =  [~b(x)](t)) is 

iu,= -uxx-]U] p 2U (1.2) 

with x ~ [0, L] ,  which is to be supplemented by boundary conditions 

u(O, t) = u(L, t), t ~ ~ (1.3) 

and an initial condition 

u(x,O)=Oo(X), O<~x<~L (1.4) 

Equation (1.2) will be referred to as the nonlinear SchrSdinger 
equation (NLSE)(8); it is a generalization of the usual case, for which p = 4. 
A related vector NLSE in d =  3 space dimensions and with p = 4 describes 
in certain regimes the Langmuir waves in a plasma, i.e., the time evolution 
of the envelope of the propagating electric field. For  the problem of a laser 
field propagating in a nonlinear medium, t corresponds to the space coor- 
dinate in the direction of propagation and d =  2, p = 4 is the physically 
relevant case. 

Starting from smooth initial data, solutions of the NLSE with p = 4 
and d>~ 2 can develop singularities in a finite time. On the other hand, in 
one dimension (1.2) is well known to be integrable for p = 4 .  (9) To get a 
singular behavior in one dimension similar to that encountered in the 
physically interesting cases, one must consider (1.2) with p/> 6. [Generally 
the critical value of p in dimension d is Pc = (2d+  4)/d.] This suggests, and 
there is in fact reason to believe, ~1~ that by studying (1.1) and (1.2) for 
p > 4 one may obtain insight into the behavior of the p = 4 system in high 
dimensions. 

Our basic problems then will be to investigate the existence and 
properties of Gibbs measures with formal densities Z l e x p [ - / ~ H ( r  
with H given in (1.1). A little thought shows that the unboundedness of 
H(r  from below makes this totally impossible without some additional 
restrictions. Fortunately there is a natural way to restrict the (infinite- 
dimensional) phase space of this system: we make use of the fact that (1.2) 
conserves, in addition to the energy, the L 2 n o r m  (analogous to the particle 
number) of the field: 

I: Ir dx (1.5) N(r 

We can therefore try to construct Gibbs measures with specified values of 
N or with a bound on N; this is exactly what we do in this paper. 
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We remark that these measures live on rather ragged field configurations 
~b(x) for which the classical energy is infinite; in fact, on Brownian 
paths. Physical and mathematical problems raised by these irregular 
configurations will be discussed in Sections 3 and 5. 

We do not attempt to go to an infinite-volume (thermodynamic) limit, 
however, as we would in the traditional case with a Hamiltonian bounded 
from below. The reason is that, due to the unboundedness of H, our system 
has a tendency to concentrate its field into local packets, driving the kinetic 
energy up and the potential energy down; the ground state of the system is 
a soliton (or caviton in plasma language) whose strength grows with iV. 
Now, if we tried to let N ~ ov as L --* ~ ,  keeping NIL fixed, the system 
would concentrate the available N and make the field blow up locally. This 
is just what happens for p > Pc even for finite N and is in fact what makes 
this model interesting for the study of plasma turbulence. 

The remainder of the paper is organized as follows. In Section 2 we 
describe some aspects of the behavior of the NLSE as a classical evolution 
equation (for the case d =  1 with periodic boundary conditions) and state 
our results on the existence of the statistical ensemble; we find that the 
conditions under which the ensemble is well defined correspond closely to 
conditions guaranteeing a well-defined classical evolution. In Section 3 we 
describe briefly some of the plasma physics underlying our model and 
related properties of the statistical ensemble. Section 4 is devoted to proofs 
of results given in preceding sections. Concluding in Section 5, we survey 
some open problems. 

2. S U M M A R Y  OF R E S U L T S  

2.1. The Init ial  V a l u e  Prob lem 

In this section we study the nonlinear Schr6dinger equation on a finite 
interval as an initial value problem. The conclusions we reach are slight 
modifications of known results, and will not in fact be used subsequently. 
Nevertheless, they form an important motivational background for the 
construction of the statistical ensemble to be given in Section 2.2: in a 
technical sense, because both sets of results depend critically on a standard 
interpolation inequality, and in a physical sense, because the conditions for 
the existence of a solution to the initial value problem are essentially the 
same as those for the existence of the ensemble. 

The problem we wish to study is given in (1.2)-(1.4). The two terms in 
the Hamiltonian (1.1) will be called, respectively, the kinetic and potential 
energy of the field, and we will assume that both these energies are finite 
for the initial field configuration ~bo(X). 
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Solutions of the initial value problem for (1.2) have been extensively 
studied in the case when the domain is the entire real line R (see in par- 
ticular Refs. 8 and 11). Many of these results extend readily to the problem 
on an interval; the most relevant will be summarized in Theorem 2.1 below. 
In brief, solutions always exist for a time period which may in general 
depend on the initial condition. Under further conditions on the degree of 
nonlinearity and on the L 2 norm (1.5) of the initial data, solutions will 
exist for all time. As will be discussed in Section 2.2, these conditions also 
guarantee the existence of the statistical ensemble. 

Before stating the theorem, we must establish some notation that will 
be used throughout this paper. We will in general be considering complex- 
valued functions defined either on the real line ~ or an interval I c ~ of 
length L, usually taken to be [0, L].  We use standard L u norms o n / ,  

and write IFq~llo, q for the corresponding norm on N. Finally, we let 
H 1 - H I ( I )  be the Sobolev spgce of functions with finite kinitic energy, that 
is, the space of functions ~b on I satisfying periodic boundary conditions 
and having finite norm 

We can now state precisely the relevant results for the initial value 
problem. In doing so, it is convenient to reformulate (1.2) and (1.4) as an 
integral equation: 

u( . , t )=U(t)Oo+i  U(t-s)(lu(. ,s)[ p 2u(. ,s))ds (2.1) 

where U(t)=exp(- i tHo)  with Ho = -d2/dx 2. Our theorem will deal with 
functions in H 1, so that that boundary condition (1.3) will be satisfied 
automatically. 

T h e o r e m  2.1. Suppose that p ~> 3 and that ~bo(X ) e H 1. Then: 

1. Equation (2.1) has a solution u(x, t), defined in some interval 
Itl < T, which lies in H 1 (as a function of x). 

2. If u(x, t)is a solution of (2.1) with u(., t ) e H  1, then H(u(., t)) and 
][u(-, t)l]2 2 are constant in time. 

3. There exists a constant N1, with 0 < N~ < ~ ,  such that: 

(a) If p < 6  or if p = 6  and II~o[l~<N1, we may take T = ~ .  
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(b) If p i> 6, there exists an initial value ~b 0 and a finite T such 
that l imr~r  [[Ux(', t ) ] [~=~.  If p > 6 ,  ]l~boi[ 2 may be chosen 
arbitrarily small; if p = 6 ,  IIq~ol12 2 may be chosen arbitrarily 
close to N~. 

4. The constant N1, which occurs in the critical case p = 6, satisfies 
No ~< N1 ~ 2No, where No is given by 

No = (3/C6) 1/2 = I1~11~ (2.2) 

Here C6 is the best possible constant in a certain interpolation inequality 
(4.1). 

Proof. See Section 4. 
We remark that in the corresponding theorem on ~, or on I with 

Dirichlet of Neumann boundary conditions, one has N1 =No;  it seems 
likely that this is true for periodic boundary conditions also, although we 
do not have a proof. In the corresponding result for the existence of the 
statistical ensemble, Theorem 2.3, the critical value of the L 2 norm in the 
case p = 6 is also No. 

2.2. The  Stat is t ica l  Ensemble  

We now wish to define a statistical ensemble for the system considered 
in the previous section, with formal (unnormalized) Gibbs measure 

exp[-/?H(~b)] H d(b(x) 
x e  EO, L]  

=exp (~fo  L Pdx)[exp L dx) x~Eo, Lldq)(x)l (2.3 

where &b denotes Lebesgue measure in the complex plane. Our goal in this 
section is to give (2.3) a precise meaning as a normalizable measure; we 
begin with a discussion of two preliminary difficulties. 

First, the "Lebesgue measure" [ I  d(~(x) is ill defined. Note, however, 
that the quantity in brackets on the right-hand side of (2.3) is a formal 
version of the well-known measure for a massless free field in the interval 
[-0, L];  this is a Wiener measure supported on continuous but not differen- 
tiable fields. (More precisely, the measure is a product of measures for the 
real and imaginary parts of ~b; each of these is a superposition of Brownian 
bridge measures, since we impose periodic boundary conditions.) 

Second, H fails badly to be bounded below. The problem is acute for 
large fields: if we scale ~b ~ ~b, the total energy H(~b) rapidly approaches 
negative infinity as ~ increases, and thus (2.3) cannot be normalizable. 
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Since the dynamics conserves the L 2 norm of ~b, however, it seems natural 
to consider either of two modified ensembles, in which we restrict to those 
~b that satisfy either 

li~b[I 2 = U (2.4) 

o r  

IIq~IL2~N (2.5) 

For technical simplicity, we wish to avoid the problem, inherent in (2.4), of 
restricting our Wiener measures to a sphere in L 2, and therefore adopt 
(2.5) in defining our ensemble. 

Remark 2. 1. More generally, one could consider measures of the 
form 

e-~H(r [ I  d~(x) 
x e  [0, LJ  

where (7 falls off sufficiently fast at infinity to ensure normalizability; (2.5) 
is of this form with G a characteristic function. The choice 

G( X) = e ~,,x 

yields the usual grand canonical ensemble, but a scaling argument as above 
shows that this will not be normalizable. For p < 6, a modified version, 
with 

G(X) = e -~xq  (2.6) 

q = ( p + 2 ) / ( 6 - p )  and sufficiently large /~ avoids this difficulty, as 
discussed in Remark 4.1 below. 

Remark 2.2. A lattice version of the ensemble (2.6) has been 
investigated numerically, in conjunction with J. O'Connell. In the spirit of 
the grand canonical ensemble, one would like to probe different values of 
]l~bl]2 2 by adjusting the "chemical potential" #. In the simulations, however, 
we find a sharp transition in typical behavior at a critical value #c 
corresponding roughly to that necessary for normalizability in the 
continuum. Above #,., the measure is concentrated near uniform field 
configurations with rather low values of I]~bll2; below #c, on configurations 
with almost all the field at one lattice site and with large values of liable2 2. 
(These typical states are metastable over a range of values near #c.) Thus, 
(2.6) does not appear suitable for investigating regions of moderate II~bH2 2. 
Numerical investigations of these regions using (2.4) are discussed in 
Section 3.3. 
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Thus, we will defne our Gibbs measure by 

Iexp ( ~  fo c I~lPdx)lz{r (2.7) 

where #~ is the appropriate version of the Wiener measure. We will show 
that (2.7) is well defined and normalizable when N and p are such that the 
dynamical problem, with arbitrary initial data ~b satisfying (2.5), has 
solitions (with finite kinetic energy) for all time, that is, when p < 6  or 
when p = 6 and N < No. 

There is a simple formal argument that indicates that this should be 
true. Under these restrictions on p and N, the interpolation inequalities of 
Section4, (4.2) (for p = 6 )  or (4.3) (for p < 6 ) ,  together with (2.5), 
immediately yield a lower bound for H on the space Hi:  

H(~) > �89 fo L l~'12dx-K~ 

Formally, this implies the normalizability of (2.7) via 

exp[- /?H(ql ) ]  [ I  dO(x)<~2 e x p -  2J0  t(~'12dx I-[ dfb(x) 
x e  [0, L]  .re [0, L]  

(2.8) 

since the right-hand side of (2.8) is again a well-defined Wiener measure. 
The goal is to transform this formal argument (which deals with smooth 
fields) into a rigorous argument for Wiener paths; the basic technique is 
always to integrate over a family of Wiener paths that are close to some 
smooth field to which the interpolation inequalities can be applied. 

We can now state our main result. Let C denote the set of continuous, 
complex-valued functions ~b on [0, L ] that satisfy ~b(0) = ~b(L), and let #~ 
be the Wiener measure on C corresponding to the bracketed terms in (2.3). 
(The measure #~ is defined formally in Section4.) Then we have the 
following result: 

T h e o r e m  2.2. The function 

(a) 
(b) 

Proof. 

Is in LI(C; #/~) if p < 6  and N<No. 
Is not in LI(C;#~) if p > 6  or if p = 6  and N>No. 

See Section 4. 
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Thus, when the parameters satisfy the hypotheses of case (a), we can 
define the partition function 

Z(fl, N) = fc  F(~) d#n((J ) (2.9) 

and a probability measure V~.N: 

dV#,u((9) = Z(~, N) 1 F(~)) d#fl(~)) (2.10) 

3. N A T U R E  OF STATIST ICAL STATES 

Having constructed statistical states for the NLSE, we now discuss 
their significance for the study of plasmas and describe some of their 
properties. We begin by recalling a more sophisticated model for a plasma 
and its relation to the NLSE. 

3.1. The Zakharov Mode l  

The collective response of a nearly collisionless plasma when the elec- 
tron temperature is much greater than the ion temperature is dominated by 
electron plasma waves (Langmuir waves) and ion acoustic waves. Under 
appropriate conditions (energy density of the waves small compared to 
particle thermal energy densities, and characteristic length scales large com- 
pared to a Debye length), Zakharov's model is a useful description of the 
nonlinear coupling of these collective modes. In one dimension, neglecting 
dissipation terms and using appropriate units, we can write the Zakharov 
equations (ZE) in the form 

iut = -uxx  + nu (3.1) 

nt, - cZnxx = c2( lul 2)xx (3.2) 

with u(x, t) the electrostatic envelope field, n(x, t) the ion density fluc- 
tuation field, and c the speed of sound in the plasma. In discussing these 
equations, we will again consider the case of periodic boundary conditions 
on the interval [0, L]. We note that solutions of the ZE preserve the L 2 

norm of u and the mean ion density field ~L n dx. 
Equation (3.2) can also be written in terms of an auxiliary field V(x, t) 

[a hydrodynamic flux for the transport of ions, constrained by 
~ V(x, t) dx = 03 as 

n, = - c 2 V x  (3.3a) 

and 

V, = -n~ - lu [~  (3.3b) 
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In the form (3.1), (3.3) these are Hamilton's equations for the Hamiltonian 

Hz=~f~[lUxlZ +~(n2-t-c2V2)+nlul2]dx (3.4) 

with (Re u, Im u) and (& V) as pairs of conjugate variables, where we write 
Fz= 2 1/2n and V= 2 l/2 ~X V dx. 

The nonlinear Schr6dinger equation (with p--= 4) is closely related to 
the Zakharov equations in several ways. First, in the adiabatic limit c --, o% 
(3.2) reduces to n = - l u l 2 +  K and (3.1) becomes equivalent to the NLSE 
(for rigorous results on this limit see Ref. 12). Second, any solution of the 
NLSE of the form u(x, t)= ei~'w(x) yields a solution of the ZE if n is taken 
to be n ( x ) = - L w ( x ) ] 2 ;  thus, the ZE and the NLSE have corresponding 
plane wave and soliton solutions. Finally, consider a formal Gibbs measure 
for the Hamiltonian (3.4): 

f l H Z  4, e , K { ~ l u l Z d x ~ N }  ~ [d2u(x) dFt(x)d~'(x)] (3.5) 
x 

Because the n and V fields appear quadratically in H z, we can integrate 
over ~ and V explicitly to compute the marginal distribution of the u field; 
this yields precisely the formal NLSE Gibbs measure (2.3). In this light the 
results of Section 2.2 may be regarded as a construction of the probability 
distribution for the electrostatic envelope field and ion density field in the 
Zakharov model. On the other hand, while the NLSE is completely 
integrable in the case p = 4, the Zakharov equations (so far as we know) 
are not; as a result, much more is known about solutions of the former. 

There have been other studies of the statistical mechanics of the NLSE 
and classical nonlinear field theories. In Ref. 13 (and references therein) 
attention is restricted to Hamiltonians that are bounded below. In Refs. 14 
and 15 an attempt is made to study Langmuir wave turbulence as a critical 
phenomenon. Only Ref. 14 is directly related to our work in that the 
starting point is the grand canonical ensemble. Here an ultraviolet cutoff is 
assumed, but infrared questions for the existence of the measure (the 
system is treated in Na) are not discussed. No distinction is made between 
different dimensions, and the fact that the exponent p = 4 is respectively 
subcritical, critical, and supercritical in dimensions one through three does 
not influence the analysis. The significance of the cutoff measure in the 
supercritical case is not made clear. 

In Ref. 16 the emphasis is different, in that the relationship between a 
statistical dynamical theory (the DIA of R. H. Kraichnan) and equilibrium 
statistical mechanics is explored. Also, attention was restricted to a Fourier 

822/50/3-4-13 
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truncation of the NLSE and only negative temperatures (so there is no 
tendency for soliton formation) are considered. 

As regards other field theories, we have little to say, except to point 
out that there have been many studies of the equilibrium statistical 
mechanics of the Fourier-truncated Euler and incompressible ideal MHD 
equations (see Ref. 17). In these models there is the unusual circumstance 
that while the dynamics is nonlinear, the equilibrium measure can be 
Gaussian. 

3.2. Physical  I n t e r p r e t a t i o n  of  the  Ensembles v~. N 

We now discuss the extent to which the ensembles constructed in 
Section 2.2 are applicable to the physics of real systems and what light they 
can shed on that physics. Of course, the one-dimensional nature of our 
model implies that any application to two- or three-dimensional systems 
can be at best qualitative. On the positive side we would like to stress again 
that the conditions (on p and N) for the existence of the measures v~. N are 
essentially the same as those for the existence of a global time evolution for 
the NLSE; by itself this suggests that the standard picture of a measure- 
preserving dynamics makes sense under these conditions. There are several 
difficulties with this simple picture, however. 

We first remark that, with probability one, field configurations in our 
ensembles have infinite kinetic energy �89 ~ luxl 2 dx. This is closely connected 
with a problem in applying the standard picture of the relation between the 
ensemble and the dynamics: we have in fact no dynamics defined on these 
singular configurations. (The problem of defining such a dynamics is dis- 
cussed further in Section 5.) This infinite energy also represents a problem 
for relating physical quantities calculated in our ensemble to those that 
might be measured in the real system; certainly we do not expect 
agreement for the kinetic energy or other quantities that depend on 
smoothness of the configurations. We argue, however, that microscopic 
processes in a physical system would provide an ultraviolet cutoff if 
included in a more realistic model and that, lacking this refined version, we 
expect that quantities with finite expectation in our model would accurately 
represent cutoff-independent quantities in a more realistic calculation. (In a 
plasma these processes can be dissipative, a point discussed briefly in 
Section 5.) 

A second interpretational problem is that the usual justification for the 
introduction of equilibrium ensembles, ergodicity of the dynamics, certainly 
does not apply to the NLSE in the integrable case p =4.  This comment 
does not hold for the NLSE with other values of p or for the ZE. On the 
other hand, one of us (H.A.R., in conjunction with G. Doolen) has studied 
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numerically the time evolution of solutions of the one-dimensional ZE, and 
the results suggest a lack of ergodicity even here: equipartition of kinetic 
energy into sound modes of different wavelengths seems to fail. In Section 5 
we discuss briefly a Langevin model which has formally the same invariant 
measure and may be ergodic, but also point out that this is not a realisitic 
model of dissipation in an excited plasma. 

A third and more serious difficulty is that the conditions on p and N 
under which our ensembles exist do not correspond, even qualitatively, to 
those of the most interesting physical systems. In the case of a plasma, for 
example, the space dimension d is 3 and the exponent p = 4 is greater than 
the corresponding critical exponent Pc=  10/3. Thus, there are classical 
initial conditions for which solutions do not exist for all time; the typical 
behavior is a self-focusing instability or collapse. Dissipative processes in a 
true plasma will eventually halt this collapse of the Langmuir wave packet, 
and the Zakharov model is expected to be relevant only during time inter- 
vals when these processes are not acting. To gain insight into the collapse 
in our statistical model, we would have to go beyond what we have done 
here. Some possible approaches are discussed in Section 5. For dimension 
two, the exponent p = 4 for the laser propagation problem is the critical 
value, and the existence theory for smooth solutions of the NLSE, together 
with our results for d =  1, p = 6, would suggest the existence of an No such 
that an ensemble exists for N <  No. 

Accepting for the moment some applicability of our ensembles to 
physical systems, or at the least to one-dimensional versions of them, we 
ask what information they can provide. In the numerical results mentioned 
above there appear to be qualtiatively different regimes of behavior for 
solutions of the ZE: at low energy the solution u(x, t) is typically (i.e., at 
typical times) fairly uniform as a function of x, while at high energy the 
typical solution is a single, stable soliton. At intermediate conditions there 
is a regime in which several solitons may coexist, and solitons continually 
coalesce and are created. The question of whether the existence of these 
different regimes might be related to a phase transition in the usual 
statistical mechanical sense has been a prime motivating factor in this 
paper. 

3.3. Phase Transi t ions  

We now turn to a discussion of the properties of the measures Vfl, N 

defined in (2.10). In particular, we wish to address the question of whether 
such states exhibit any phase transition as fl and N vary, corresponding to 
the qualitative differences noted in numerical studies. Such a transition 
could reveal itself in the context of a rigorous treatment of the ensemble 
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through a lack of analyticity of the partition function or other physical 
quantities along certain curves in the/3-N plane. 

We have done Monte Carlo studies on a lattice version of the ensem- 
ble studied in this paper--more specifically, of the ensemble with restriction 
(2.4), which we do not expect to differ significantly from the actually 
constructed ensemble with restriction (2.5). Here we see roughly two 
regimes in the/3-N plane: typical configurations show no spatial structure 
for low N or for low/3, and soliton-like structures at higher N and/3. One 
parameter used to distinguish these regimes is 

S=<I 0 '"4dx}/<I j '"2dx) 2 

where now <. > refers to a time average in the Monte Carlo stochastic 
process. When /3 is varied at large N, S shows a relatively sharp increase 
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from its high-temperature value (2 in the continuum, slightly less on the 
lattice) to the value SN corresponding to the single-soliton solution of the 
time-independent NLSE with L 2 norm N. Figure 1 is a plot of values of S 
versus a scaled temperature (/~N)-I, with p = 4, for several values of N; this 
scaling tends to bring the transitions into coincidence and is the one 
suggested by Proposition 3.1 below. We also seek to determine the general 
character of a typical field configuration by computing the quantity 

F ( x )  = < I,~(x)l= > 

where ~ is the translate of q~ for which the maximum magnitude occurs at a 
fixed point, say Xmax. At high temperature, fluctuations produce an 
artificial spike in F(x) at Xmax ; to eliminate this effect, we look at the ratio 
F(x)/Fo(x), where the subscript 0 identifies quantities computed in an 
ensemble with no potential energy term in the Hamiltonian. Figure 2 is a 
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plot of the quantity F(xmax)/Fo(xmax) , which represents a (normalized) 
height of the typical soliton, using the same horizontal scale as Fig. 1. 
Figures 3 and 4 present, for N = 80 and N = 30 respectively, the graphs of 
F(x)/Fo(x) for 14 different values of/~, ranging from 0.0005 to 4.096 and 
logarithmically equally spaced. For  reference, we give in Fig. 5 the graphs 
of Fo(x) for N = 80 at the same values of/~; since the model with no poten- 
tial energy is invariant under the scaling 0-* P(~, N--* pZN, fl ~ p 2fl, the 
graphs for other values of N are similar. (All data have been taken with 
p = 4 and L- -1 .0  and with 40 lattice sites. In Figs. 3-5 we take I to be the 
interval [0, L]  and choose Xma . = L/2.) A phase transition does not appear 
to be inconsistent with these data, but the numerical studies do not settle 
the point. 

Given the nature of the observed typical field configurations at low 
temperatures or high values of N, one might suspect the existence of 
measures not satisfying translation invariance, corresponding to concen- 
tration of the measure on fields near a particular soliton-like structure. The 
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translation-invariant measure Vn, N constructed in Section 2.2 could then be 
a convex superposition of non-translation-invariant measures. We see no 
mechanism for the generation of such measures, however. One might try to 
localize typical solitions by introducing an external potential into the 
Hamiltonian (1.1) via a term 7 S ~ V ( x ) ( ~ ( x ) d x ,  yielding a modified 
m e a s u r e  Vl3,N,),, and then consider the limit 7 ~ 0. The m e a s u r e  YI3,N,? will be 
absolutely continuous with respect to VB, N, however, and we will have 

{ [  fo ]} lim Vn, u, 7 = lim exp --/77 V(x )  (~(x) dx  vn, u = V~>N 
7 ~ 0  7 ~ 0  

(weakly) by the Lebesgue dominated convergence theorem. 
We finally discuss the analyticity of the measure in the parameters /7 

and N. Although we are unable to settle completely the question of 
analyticity, the following result limits the possible curves of critical points 
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Fig. 5. Field profiles for Hamil tonian  with no potential energy at N = 8 0  for 
0.0005 ~< fl ~< 4.096. 

in the fl-N plane to those of the form fiN = K, with K a constant. (This is 
the scaling used in Figs. 1 and 2.) We will treat only the partition function 
Z(fl, N) defined in (2.9), although our conclusions would apply equally to 
the expectations of physical observables. 

P r o p o s i t i o n  3.1. Suppose that p~<6 and that N > 0 .  Then 
Z(a, ~- IN)  is (real) analytic in a for ~ > 0 and, if p = 6, a - i N <  No. 

Proof. See Section 4. 

4.  P R O O F S  

In this section we give proofs of the theorems stated in Sections 2 
and 3. 
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All the results depend criticaly on a standard interpolation 
inequality ~18) relating various function norms. On R this has the form 

I]OHPp~Cp, ".l.'~t 02(P- 2)/2 w "~ 02(P + 2)/2 (4.1) 

where 2 < p < o0. Weinstein ~u) has shown that the best possible constant in 
(4.1) is 

P 

where ~ is a ground state for the equation 

(p-- 2)(~"--(p + 2)q) + ~ p- ~ =0  

that is, a nonzero solution with minimal L 2 norm. (4.1) implies a similar 
result on the interval l: 

Lernma 4.1. (a) If 2 < p ~< 6, then for any e > 0 there is a constant 
K~ > 0 such that, for ~b e H 1, 

[[~N p ~- (Cp + c,)[(~'[I (2p-2)/2[IOH(2 p+ 2)/2 _~_ K~ [t~b I[p (4.2) 

(b) If 2 < p < 6, then for any e > 0  there is a constant K', > 0 such 
that, for ~b e H 1, 

flail ,~ ~ ~ If~'ll N I1~11~ -2  + K; I1~11 f (4.3) 

ProoL For O eH1(I) we may be periodicity assume that lq~(0)[ 
K= I~(Z)l]<~L-~/211~(x)ll2. Choose f i > 0  and let d be the continuous 
functions on R which agrees with ~b on [0, L] ,  vanishes on ( - c o ,  - f i ]  and 
[ L + f i ,  o~), and is affine on I - -6 ,  0] and [L, L+6] .  Since 

and 

2 12 11~'1102 2 = I1r + ~  1~(0)I2 ~ II~'l[~ + ~-~ II~l 2 

(4.2) follows from (4.1) and the inequality (a-{-b)q<~aq-}-b q, valid for 
a, b ~>0 and q =  (p -2 ) /4 ,  by an appropriate choice of 6. Similarly, (4.3) 
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follows from the observation that for any ~t > 0 there is a K, > 0 such that 
(a+b)  q<~ ~lab q l + R ,b  q, and a choice of q. | 

Remark 4.1. The constant K~ varies (for small ~/) as q(P 2)/(p 6), so 
that, by taking q ~ II~bll2 (p-2), we may derive the inequality 

1 
-11r189 6111~11~ 2p+4)/~6 P)+ C211q~ll p 
P 

valid for p < 6 .  This is the point of departure for the proof of 
normalizability of the modified grand canonical ensemble discussed in 
Remark 2.1. 

We now sketch the proof of Theorem 2.1, emphasizing only those 
elements that differ from corresponding proofs on the entire line N. 

Proof of Theorem 2. 1. Parts 1 and 2. The fixed-point argument used 
to prove existence in Ref. 8, and the regularitzation argument used to prove 
the conservation laws, go through directly in the space H I =  Hi(I). 

Part 3(a), N1 >/No. The elegant discussion of Ref. 11 applies here, with 
No given by (2.2) and with the use of (4.2) or (4.3) instead of (4.1). Since 
the constant No will reoccur in our discussion of the statistical ensemble, 
and since the discussion is based on the important interpolation inequality, 
it seems worthwhile to repeat the argument here. We discuss only the 
critical case p = 6. The fixed-point argument of Ref. 8 will in fact prove 
existence globally in time if supplemented by an a priori bound on the H 1 
norm of the solution. But from (4.2) and the conservation laws, 

H(~o) = H(u(., t)) 

=�89 t)hl~-+llu(., t)ll~ 
>~ �89 - (No 2 + e)I1~o11~] Ilu~(., t)l122- e3~ 11r 

If 11r we may choose ~ so small that (No2+e)ll~bol[~--~<l, 
yielding the bound 

IlUx( ", 0112 ~< (1 - ~)-1 [H(~bo) + K3~ Hq~oll 6 ] 

Part 3(b), N~ ~< 2No. The argument of Glassey (19~ shows that Part 3(b) 
holds, with N I = N 0 ,  for the NLSE on ~, and has been extended by 
Kavian (2~ to certain bounded domains. In particular, Kavian shows that 
3(b) holds on the interval I with Dirichlet, Neumann, or periodic boundary 
conditions; his example gives N 1 ~< N o in the first two cases, but N1 ~< 2No 
in the periodic case of interest to us. It seems likely that N1 = No here also, 
but we do not have a proof. | 
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We next turn to the discussion of Theorem2.2, and begin by 
establishing some notation and defining the Wiener measures we will use. 
Recall that C denotes the set of continuous, complex-valued functions ~b on 
[0, L]  that satisfy ~b(0)= ~b(L); for any ~ e C let B~0p ) denote the ball 
{~b~Cl] l~b-~t ]~<e) .  We also denote by C ~'b the set of continuous 
functions on [0, L]  that satisfy ~b(0) = a, ~b(L) = b. 

Now define the measure/~,b;L on C ~'b as the natural restriction of the 
Wiener measure with diffusion constant fl-~, that is, as the measure with 
marginal distributions (see Ref. 21) 

Prob({~b]~(xi)~Ai,  1 <~i<~n}) 

n + l  

= p ~ ( a , b ) - ' [  I-[ p~-x~ ,(yi,  Y i _ , ) d y l . . . d y  n ,y l e a r  i = 1  

Here 0 = X o < X l  < .-. < x , < x , + l  = L ,  Al,..., A, are Borel subsets of C, dy 
is Lebesgue measure on C, Yo = a, y , + l  = b, and for y, y ' e  C, 

p~(y,  y') = (fl/2nx) e x p ( - f l [ y  - y'12/2x) 

Finally, define the measure /~  on C =  U ~  c C a'a -~ C x C ~176 as da x d/~ ,~ 
with da Lebesgue measure on C; equivalently, /~ has marginal 
distributions 

Prob({~bj(~(xl)eA i, 1 <~ i<~n+ 1}) 

n +  1 

= H=, v.  # 1 . . . # . + ,  (4.4) 

We will occasionally need the corresponding spaces and measures defined 
for real-valued paths; these will be denoted C~ b, a,b'L /~,~ , etc. In particular, 
for y, y '  e N, 

P~,13( Y, Y') =- ( f l / 2 7 z x )  1/2 exp( - - f l ly  - y'12/Zx) 

Before proving the theorem we give a minor technical result. 

L e m m a  4.2. For  any q > 0 there is an e > 0 such that, if ~b~, ~b 2 ~ C 
satisfy limb1-~b21]~ <e,  then 

for q = 2 ,  p. 

Proof. 

I pf~xllq q -  11~211qf < ~(ll~allq~ + 1) 

We omit the straightforward proof. 



678 Lebowitz, Rose, and Speer 

As a preliminary to the proof of the first part of Theorem 2.2, we must 
define some quantities associated with ordinary (real-valued) Brownian 
motion in one dimension with diffusion constant fl-1, and with paths co(x) 
satisfying co(0) = 0. Fix 0 > 0 and let T~(co) and S~(e~) be the times the path 
first hits y = 0 and [Yl = 0, respectively. Elementary calculations (see, e.g., 
Ref. 22) show that the random variables T~ and S~ have densities 

f ~( x ) = O(fl /2rcx3 ) 1/2 exp( - flO2 /2x ) (4.5) 

and 

g~(x) = 20 ([3/2rcx3) m ~ ( -1 )k  exp{ - f l [ ( 2 k  + 1)012/2x} 
k = 0  

respectively, so that 

2c(f l)- l f~(x)  ~< gr <~ 2fB(x ) (4.6) 

for c ( f l ) = l - e x p ( - S f l O Z / 2 L ) .  Finally, for [ y [ < 0  and [ y ' l < 0  we let 
q}(y, y') be the transition density from y to y' in time x for Brownian 
motion with absorbing barriers at + 0;  that is, q satisfies 

213q~,x = qa, y'y, 

q~(y, y ' ) = f ( y -  y') 

qX(y, O) = q~(y, - 0 )  = 0 

Now suppose that co(x) is a real-valued continuous path satisfying 
co(O)=a, co (L)=a+IO for l � 9  (i.e., co�9176 we introduce variables 
that keep track of the way in which co attains values of the form a + jO, 
j �9 7/. Specifically, if D~,o is the set of numbers of this form, we define 
Uo(co), Ul(co) ..... UM(,o)+ 1(o9) inductively by 

U0(co) = 0 

and, if X~ - {x > Uk I CO(X) �9 D~,o, co(x) ~ CO(Ug) } is nonempty, 

Uk + 1(co)  = inf Xk 

We let M(co) be the smallest value of k for which Xk is empty,  and set 
UM(o~)+I(CO)=L. Finally, we define Fa(co) ..... FM~o~)(CO)�9 {--1, 1} by the 
condition 

CO(Uk)=~(Uk_I)+['kO, k =  1 ..... M 
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[Ca, a+lO ,sa, a+lO] As functions on the measure space ~ ~ ,,~,~ j, M, F, and U are 
random variables with joint distribution given by 

#~,~+t~ I~='/j ,  j = 0  ..... m, and 
~,fl 

uj<~ Uj<~ua+du2, j =  l ..... m}) 

=- 6~ L 10) -~ he(m, u) du~ dum (4.7) ~,~ p~,~(a, a + ...  

where 

h~(m, u)=  f i  [�89 g~(u j -u j  l)] q(~L-"')( O, O)dH1 ""dtlm 
j = l  

Finally, we let ~(co)~H~([0, L] )  be the piecewise linear interpolant that 
agrees with co at the points x = Uj(co); note that Ilco - ~(co)]] ~ < 20. 

Proof o f  Theorem 2 . 2 0 ) .  For a path ~b e C we let A(~b) -= ~b(0) and 
perform the construction of the preceding paragraph separately for 
~bR=Re~b and ~bT=Im~b, with l = 0  in each case, producing random 
variables MR-M(~bR), etc. Let tp(~b)=~(~bR)+_i~(~bI); ~, is a piecewise 
linear interpolant of ~b with [l~P(~b)-~bl[oo <2x/20.  Lemma 4.3 guarantees 
that we can, first, choose 0 small enough that for all ~b with I]~b]] 2 ~<N, 

~'N1, if p = 6  
]1~(~b)1t22 < [ N +  1, if p < 6  

where N < N1 < No, and second, by another application of Lemma 4.3 and 
use of Eq. (2.2) and the inequality (4.2) for p = 6, or (4.3) for p < 6, choose 
~/and then 0 so that 

! ! ! 
~- IlOll ~ < .m_- 1-(1 + ~z) II~(O)lt ~ + ~]  < ~  ( i  - ~) IP~(O)'It~ + K 
P P 

for constants 2, K >  0 which are independent of ~. Finally, observe that if 
Ip~H2~<N, then !(~(x)I2~N/L for  some x e [ 0 ,  L],  and since for all 
x ~ O , L ] ,  

I&(O) - ~ ( x ) l  ~ 0 [ ( M  R + 1) 2 q- ( M  I + 1) 2 ] I/2 

M R and M ~ must satisfy 

( M R )  2 A i- ( M I )  2 ~ c1 A 2  - -  c a (4.8) 

for appropriate constants c I and c2. 
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Because O(~b) depends on ~b only through the random variables A, M, 
U, and F, we have 

f d#,(O) 
~< f, lo,I] ~ N exp [fl(1 -- 2) I1 @(~b)' II ~/2 + K] d#~ 

~< (exp K) fc da ~ ~ f duR du' ~z~,o 6z,l,o p)(a, a) 1 
mR, m I yR, yl 

• {exp[fl(1 -2)II~(~b)'l[ 2/2] } he(m R, u R) he(m x, u ~) (4.9) 

Write 

and note that 

[10(~)'11] = 1]~(4")'LI] + II~(~I)'l]] 

M R 0 2 

l i ~ ( ~ R ) ' l l ] : j ~  1 U R _  UR_I 

Then (4.5), (4.6), and the easy estimate q~(y)<~ Cq;.#(y) for [Yl < 0 imply 
that 

{exp[fi(1 - 2) il~(q~R)']122/2] } he(m R, u R) 

<~ C[2-1/2C(2fi)]m~ h~(m R, u R) 

with a similar inequality for the terms involving the imaginary part. Thus, 
with an obvious estimate of the sum over 7, (4.9) becomes 

IcF(@) d#~(@) 

<~ CZeZ( fcda ~ [22-~/2C(2fl)]m"+m' 
rnR m I 

• f du R du I p~(a, a) -1 h;.~(m R, u R) h,ll~(m I, u I) (4.10) 

Now observe that the last line of (4.10) is, except for an incorrect nor- 
a , b ; L ( ( ~ a , b ~  realization factor, one contribution from (4.7) to # ~  t ~  ; =  1, where 

b =a+mnO + im~O [specifically, the contribution from terms for which 
7 ' ~ 7 n = 0  and m ~ = m n = 0  in (4.7)]. Hence 

fcF((J) d#~((~) 

<, CZeK fcda ~ [ du[22-'/Zc(2fi)] mR+m~ L a pe( , a)-lpL~(a, b) (4.]1) 
m R , m  I �9 
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Since 

L a P;m( , b )=  (2/7/2~)exp{ -ZflO2[(mR)2+ (m~)2]/2L} 
the sum over m R and m ~ in (4.11) is convergent; moreover, the lower 
bound (4.8) implies that the resulting integral over a also converges. Thus 

cF(O) dlx~((~) < oo i 

For the proof of the second part of the theorem we will need an 
Onsager-Machlup formula for the measure /~n (see Ref. 23 for further 
references). 

k e m m a  4.3. Suppose that ~ E C is absolutely continuous and that 
0' is of bounded variation on [0, L]; without loss of generality we redefine 
O'(L) so that O'(L)= Ip'(O). Then 

u~(B~(~0)) 

: {exp [ -  -f12 fo L 

~> {exp [ -  ~fo L 

It!s'(x)lZdx]} fn<(o)eXp(-flRe foOdlp')dlan(~b) 

10'(x)l 2 dxlexpE-fleV(t)')] }/xn(B~(0)) 
where V(qs') is the total variation of i)' on [0, L]. 

ProoL For n/>l  we introduce mesh points xk=kL/n,  O<~k<~n, 
and set 

BL")(~,) = {~eC[ 10(xk)-7s(xk)l <e,  l <~k<~n} 
Clearly #n(B,(~s))= limn _+ ~o #t~(B~")(0)). On the other hand, from (4.4) 

= p~(O, o) -~ f ~ p'i"(O(x,)+~,, O(x,_,)+ ~,_~)d~, ...a~~ 
Iz,I < ~ i = 1 

- - exp  , + , - , ,  - + , x ,  
i = 1  

i = 1  

- -  ~ ( X i _ l  )] I d],~fl(~) • [,k(x,) 
J 
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where Zo = z, by convention. But since ~ ' e  L 2, 

,!imo ~E.=I ]qJ(x , ) -~k(x,_, ) l :  = I~'(x)l: dx 

Moreover, if for ~b e C we let ~b (') be the piecewise linear interpolant of ~b on 
the mesh points, we have 

n L [~ (x i ) - iP (x i_ l ) ] [ fb (x i ) - fb (x i_ l ) ]= f~  Li=I 

--fo 

~,'(x) O~"l' (x) clx 

(J (" ) d~b ' 

Since ~,b/') ~ ~b uniformly as n ~ 0% the equality in the statement of the 
lemma follows from the dominated convergence theorem; the inequality is 
then immediate. | 

Proof of Theorem 2.2(b). For notational simplicity we replace the 
interval [0, L]  by the interval f -L~2 ,  L/2]. We may choose the ground 
state solution q~ of the NLS on ~ discussed in Section 2 so that it is positive 
and symmetric under reflection through the origin, lies in HI(~)c~ C~(~) ,  
and satisfies ]lq~ll~,p = (p/2)ll~'ql~ 2, II~Lqg,2 = No. Let ~ =  ~q~ for some c~ > 1; 
in the case p = 6  we choose a such that I1~t1~<N, while for p > 6 ,  ~ is 
arbitrary. Clearly, H(~) < 0. 

Now for any ~b defined on ~ and any p > 0 we define 

(T~O)(x) =p~/~ ~) ~(p~x) 

For ~b sufficiently regular that the corresponding norms are finite, both 
II~bllP, p and II~b'lt2,2 scale under T o as p(2p+4)/(p 2), while 11061102,2 and II~b"llo,1 
scale a s  p2(6--p)/(p--2) and p2p/(p-Z) respectively. Finally, we define ~p e H ' 
by 

~p(x) = (Tp~)(x), x e [ - L / Z ,  L/2] 

Thus, under the hypotheses of (b) we will have, for some positive constants 
E, r/l, A, B, and P0, and for all P > P o ,  

]l~plt22 < N -  r/1 

II~'~ll ~ ~< p(2p +4)/(~ 2) 8 

- -  H(l/l p) >/p(zp + 4)/(p - -  2)E 

v(~' . )  = I1~11, + o ( p )  < p=~/(~ =)a 

(4.12a) 

(4.12b) 

(4.12c) 

(4.12d) 
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We now apply Lemma 4.2, with ~bl = ~bp and q = rain{r/l, E/(2B)}, to 
produce an e for which the conclusions of that lemma hold. Then, from 
Lemma 4.3, for p > Po, 

fcF((~) d#~((~) 

~> f~r (f l  H~bll P) d/~a(q ~ ) 

>~ exp { fi [ - H( O p) - ~  llO fi P - eV(tp'p) - ~ l  } 

Then, as p ~ oc, we see from (4.12b) (4.12d) that F(~) ~ LI(C; #~). | 
Finally, we give the following result: 

Proof of Proposition 3. 7. We modify the Hamiltonian of (1.1) by 
introducing a complex coupling constant 2: 

g;.(~b)=2 I~'(x)l~ dx--I~(x)l ~ dx 
P 

Theorem 2.2 holds for this modified Hamiltonian, with the exception that if 
p = 6, then F e  L 1 requires 

N 2 Re 2 ~< N g (4.13) 

Moreover, the Lebesgue dominated convergence theorem shows that the 
corresponding partition function 

2(fl, N, 2)=fc[eXp(2~flp ll4)llP)]):{,~H,,,~<.~. , dlza(~)) (4.14) 

is analytic in 2 for fixed fl, N, for all 2 e C if p < 6, and for all 2 satisfying 
(4.13) if p = 6. 

Now a change of variables ~ = c~/2 o (e > 0 )  in (4.14) shows that 

Z(fl, N, 2) = 2(c~fl, e iN, ~(P 2)/22) 

In particular, taking 2 = a- (P 2)/2 and fl = 1 yields 

2(1, N, ~2-P)/2) = 2(~, c~ IN, 1 )=  Z(~, ~- IN)  

The result is immediate. II 

822/50/'3-4-14 
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5. OPEN QUESTIONS 

Many questions remain regarding the behavior of this and related 
models. Here are a few of them. 

1. Existence of equilibrium dynamics. The Gibbs measure constructed 
in Section 2.2 lives on Wiener paths, which, although continuous, are 
typically not differentiable. On the other hand, the dynamical theory 
sketched in Section 2.1 works for differentiable (specifically, H 1) functions. 
It would be desirable to define a dynamics on the Wiener paths for which 
the measure would be invariant, but we have been unable to do so. Note 
that, at least for the definition of a local (in time) dynamics, the source of 
difficulty is the nonlinearity itself and not the "wrong" sign of the potential 
energy. 

We remark that to apply a fixed-point method to (2.1) in a 
straightforward way (as in Section 2.1) one should replace the space H~(I) 
by a linear space X of functions on I such that: (i) the nonlinear map 
~b~ [~blP 2~b is continuous on X; (ii) the free time evolution U(t) is con- 
tinuous on X; (iii) almost every Wiener path lies in X, i.e., #~(C\X)=0 .  
The obvious candidates fail. Ha(I) satisfies (ii) for all cq but (i) only for 

>/1/2 and (iii) only for ~ < 1/2; L~176 satisfies (i) and (iii), but fails (ii) 
(as does C itself), as shown by the following argument, for which we thank 
E. Stein. Choose s ~ R so that 2gs/L 2 is irrational, and let 

so that 

4~U= 
Inl ~< N 

exp[ i( 2rcn/L )2s ] exp( 2~zinx/L ) 

U(s) ~N= ~ exp(2~inx/L) 
Inl <~ N 

Then IIU(s)~bmllo~=2N+l, but Hardy and Litttewood (24) show that 
IIq~ul[o~ = o(N). Thus, U(s) is unbounded on L ~. [In fact, an application, 
given in Ref. 25, of the closed graph theorem shows that U(s) cannot map 
L ~ to itself.] Incidentally, U(t) is bounded on L ~ (or C) for 2~t/L 2 
rational, because it acts in Fourier space as multiplication by the Fourier 
coefficients of a complex measure of finite total variation. (25'26) 

2. Extension to higher dimensions. The NLSE occurs naturally in 
various physical problems, including nonlinear optics as well as the plasma 
physics emphasized here, in which the position coordinate is two or three 
dimensional. The theory of smooth solutions extends readily to this case, at 
least on ~n.(8) It would be interesting to extend the construction of the 
Gibbs measure to these cases for the appropriate values of p and N; the 
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standard free field measures could play the role that Wiener measure has 
played here. We would of course have to deal with ultraviolet problems. 
Mathematically, these would lead to normal ordering of the fields in 
d =  2, as is usual in quantum field theory, (27) and to more complicated 
renormalizations in d =  3, but we do not have a physical interpretation of 
such manipulations in, for example, the plasma physics case. Nor  do we 
know whether the standard methods of constructive quantum field theory 
would suffice for Hamiltonians unbounded below. 

3. Properties of  the measure V~,N. Various additional questions 
remain open for the measures constructed in this paper. Are physical 
quantities in fact analytic in fl and N? What are the properties of the 
correlation functions? Is the measure normalizable in the critical case 
p = 6, N =  No? Can an ensemble be defined via (2.4), that is, by restricting 
the fields to lie on the surface of a sphere in L 2, and do the resulting 
measures differ significantly from those when the restriction is to the ball? 

4. Parameter ranges where collapse can occur. The ensembles as 
constructed here do not exist for p > 6 or for p = 6 and N >  No. Can a 
modified approach throw any light on the behavior of physical systems 
with parameters in this range? One approach would be the construction of 
a set X of nonzero Wiener measure, invariant under the dynamics, such 
that 

X should in some sense correspond to the set of field configurations giving 
rise to smooth solutions globally in time. (In the case p = 6  one would 
require that the set X\{~b[ ]l~bll22 ~< No} have nonzero Wiener measure.) The 
Gibbs ensemble could then be defined on X. One could also study modified 
versions of the interaction energy, introducing a cutoff at high field 
amplitudes to prevent collapse. For  example, the replacement of ~ [~b] 4 d2x 
by 

I~14 ,2 flV - 12 
has been used in the study of laser propagation in a nonlinear medium (2s) 
and a similar modification could be studied in one dimension. 

5. Stochastic dynamics. It is possible to introduce a stochastic 
dynamics for the Zakharov model which preserves the L 2 norm of the u 
field and has the Gibbs state (3.5) as an invariant measure. The simplest 
such model, which must also include a dissipative term, is achieved by 
modifying only (3.3a), retaining (3.1) and (3.3b) in their original form. If 
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~(k)  denotes the k t h  Fourier  coefficient of the field if, the modified (3.3a) 
is 

V(k ) ,  = ( - n x  + lulZ)(k) - 2p(k) V ( k )  + ~(k)  

for k =  _1,  ___2 ..... Here p ( k ) > 0  is the coefficient of dissipation in the k th  
mode  and {r are independently distributed white noise r andom 
variables with covariance 

E [ ~ ( k ) ( 0  ~ ( k ' ) ( t ' ) ]  = ~k,k' ~(t  -- C) 

In this model  it seems possible that  the Gibbs ensemble is the unique 
invariant  measure. As already mentioned, however, this introduct ion of  
steady Gaussian "microscopic noise" into the ZE  is not  physically com- 
plete, since in a real plasma there are other, intermittent, dissipative 
processes associated with collapse that  do not  satisfy a fluctuation- 
dissipation relation. 
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