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1. Introduction 

Let E be a linear space paired with its dual E ~ by the bilinear form ( , ) ,  C be a 
convex subset of E and F be a multivalued operator defined on C with values 
in E~(0 ¢ F ( z )  C E ~ for all z E C). This operator is said to be 

monotone on C if  

(x~ -- x*l,z2 -- x l )  >>.0, whenever xi E C, x~ ff F(x~),  i = 1 , 2 ;  

pseudomonotone on C i f  

(x~, x2 - Xl} > O, whenever xi E C, 

x* E F ( x i )  i :  1,2, and (x *t,x 2 - x l}  > 0 ;  

quasimonotone on C i f  

(X~, X 2 --  Z l )  >/ 0, whenever xi E C, 

z* E F(:ri), i = 1 , 2 ,  and (X*l,Z2 - Zl) > 0 .  

It is clear that F is pseudomonotone when it is monotone, quasimonotone when 
it is pseudomonotone. 

A strong connection exists between convexity and monotonicity, for instance 
the subdifferential of a convex function is a monotone operator. Similar con- 
nections exist between generalized convexity and generalized monotonicity, the 



352 J. R CROUZEIX AND A. HASSOUNI 

gradient of a pseudoconvex (quasiconvex) function is pseudomonotone (quasi- 
monotone). For these connections and the interest of generalized monotonicity, 
the reader is referred to [5-9] and [11-17]. 

This paper addresses the question of  the generalized monotonicity of a sepa- 
rable product of operators. The operator F is defined on C = C~ x C2 × ".- x Up 
by 

F ( x l ,  x 2 , . . . ,  Xp) -~- (F1 (Xl )  , . F 2 ( z 2 ) , . . . ,  fi'p(Xp)), 

where Ui is a convex set of a linear space Ei and F/ is a multivalued oper- 
ator defined on Ci with values in E~ the dual of Ei. We assume, of course, 
p /> 2, U/ nonempty and Fi nonnull on Ci. It is clear that all Fi are mono- 
tone (pseudomonotone, quasimonotone) when F is monotone (pseudomonotone, 
quasimonotone). 

In an earlier paper [2], we analyzed this problem in the very particular case 
where for all i, E~ has a finite dimension, F / i s  univalued and continuous. It was 
shown that if F is quasimonotone on C, then all factors Fi, except perhaps one, 
are monotone. A necessary and sufficient condition involves the monotonicity 
indices of F~, a concept introduced in [2]. 

We deal now with a quite more general context: Ei has not necessarily a finite 
dimension, Fi is not continuous and multivalued. The topological structures, 
when needed, are minimal. The interior of a convex set is taken in a geometrical 
sense: x E int(C) if for all d E E,  there exists s > 0 so that x + sd E C. The 
duality between E and E '  needs only the condition: if x* is a nonnull element 
of E ', then there exists x E E such that (x, x*) ¢ 0. 

Despite this very general context, we obtain the same results as in [2], the 
proofs of the main results are essentially different. 

The concept of the monotonicity index will be the main tool of this paper, 
as it was in our earlier paper. It is derived from the concept of convexity index 
introduced by Debreu and Koopmans [4], and revisited by Crouzeix and Lind- 
berg [3]. These convexity indices appear in necessary and/or sufficient conditions 
for a separable sum of functions to be quasiconvex, a problem of a special inter- 
est in economics, in particular in consumer theory. The works of Crouzeix and 
Lindberg [3] and Debreu and Koopmans [4] are concerned with the quasicon- 
cavity of a utility function which is a separable sum of functions. The present 
paper corresponds to the generalized monotonicity of a demand map which is 
a separable product of operators, a more general context since the approach of 
the behaviour of  a consumer by demand maps is more general than the one by 
utility functions. 

This paper is organized as follows. In Section 2, we list some results on 
the continuous and univalued case and the convexity indices of functions. In 
Section 3, we define what we call k-monotone operators, then we define the 
monotonicity index of an operator. Section 4 establishes the necessary and suffi- 
cient conditions for the generalized monotonicity of a separable product of two 
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operators. These conditions are generalized to more than two factors in the last 
section. 

2. The Continuous and Univalued Case 

Throughout this section, we give a brief 'digest' of the notation and results 
contained in our earlier paper [2]. 

Let C be an open convex subset of I~ '~, F: C --+ R n be univalued and con- 
tinuous on C. For all a E C, d C I~ n, define 

and 

Ia,d = {t C ]~: a + td E C}, 

Fa,d(t) = (F(a + td),d),  t E Ia,d, 

~0 t fa,d(t) = Fa,d(s) ds. 

The continuity of F ensures the existence of fa,d. Then we define re(F) ,  the 
monotonicity index of F as 

re(F) = ianfd[m(Fa,d): a e C ,d  e Rn], (2.1) 

where m(Fa,d) = C(fa,d), the convexity index of fa,d, such as that defined in [3] 
(see also [4] for an earlier and equivalent definition): 

C(fa,d) = Sup[,:  # 7~ 0, # exp(--#fa,d) is concave]. 

With by convention, the supremum is taken equal to - c o  if no # 5£ 0 exists 
satisfying the condition. 

Let now D be an open convex set of R p, G: D ~ R p be a univalued and 
continuous operator. Define H: C x D -+ ]I~ n+p by 

H(x ,  y) = (F(x) ,  G(y)). 

Then ([2, Theorem 4.1]) 

H is quasimonotone if and only if re(F) + m(G)  ) O. (2.2) 

In the particular case where F is the gradient of a function f and G the gradient 
of another function g, H is the gradient of the function h: 

h(x, v) = f ( x )  + g(v), v) e C × D. 

Then (2.2) is related to a necessary and sufficient condition for the quasiconvexity 
o f h o n C x D  [3, 4] 

h is quasiconvex if and only if c ( f )  + c(g) ) O. (2.3) 
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In the next sections, (2.2) will serve as a basis for the extension of the mono- 
tonicity index to multivalued operators. 

3. K-Monotone Opera tors  

For any k ~ 0, define 

1 
Gk(t) = ~ ,  t ~ I ,  I = (0, co). (3.1) 

Then by relations (2.2) to (2.4) 

m(Gk)  = rn(Gk, a) = - k  for any a E I.  

Now, let F be a multivalued operator defined on a convex set C. Condition 
(2.2) suggests thinking for the monotonicity index of F of a formula like 

re (F)  = Sup[k: Hk is quasimonotone on C x I], (3.2) 

where Hk is the multivalued operator defined by 

Hk(x,t) = ( F ( x ) , a k ( t ) ) ,  C C, t C I .  

Indeed (3.2) is equivalent to (2.2) when F is continuous and univalued. Formula 
(3.2) leads to the following definition: 

We say that F is k-monotone on C when Hk is quasimonotone on C x I.  

THEOREM 3.1 (Characterization of k-monotone operators). F is k-monotone on 
C if and only if F is pseudomonotone on C and 

1 1 
>~ k whenever xi E C, 

< x ; ,  x j  - xo>  - xo> 

x* E F(zi) i  = O, 1 and (x;, Xl - -  X0} > 0. ( 3 . 3 )  

Proof (i) F is k-monotone on C if and only if 

- xo} > / -  ~1-~ (tl - t o ) ,  whenever xi E C, x~ E f ( x i ) ,  
rvv I (3.4) 

1 to).  t i E I  f o r i = O ,  1 and ( z~ ,Zl -XO)  > - k - ~ o ( t l -  

This condition is equivalent to 

* # whenever zi E C, x* E F(zi),  (Xl '  Xl -- 2:0) ) 1 - k---'--~' 

for i = 0 , 1  

and (x~),Xl-XO) > #  and l - k # > 0 .  (3.5) 
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To prove (3.5), f rom (3.4), take to = 1 and tl = 1 - k#. To prove (3.4) from 
(3.5) take # = - 1 / k ( t l / t o  - 1) (then 1 - k#  = t l / t o  > 0). 

When k is positive, consider the function # ~-+ #(1 - h#)  -1 on the interval 
( - c o ,  k - I ) ,  when k is negative, take the same function, but on the interval 
(k -1 , co). This function increases on its domain and condition (3.5) is equivalent 
to 

(x; ,  xl - xo) whenever  x~ C C, 
( x~ ,x l  - xo) >1 1 - k ( x ; , x l  - xo) '  

x* E F ( x i ) ,  i = 0 , 1 ,  and 1 > k ( x ; , x l - x 0 ) .  (3.6) 

(ii) Assume that F is k-monotone and (x; ,  xl - x0) > 0. To prove that 
(x~, xl  - xo) is positive, it suffices to take # positive small enough in order to 
have (x~, xl  - x0) > # and 1 - k#  > 0, then apply (3.5). It remains to prove 
(3.3). For this, we consider two cases: 

(a) h is negative. Then 1 > k(x•, xl  - zo) and by (3.6) we have: 

(X*I ,Xl  -- XO) -- ( X ; , X l  -- ZO) ~ h ( x ; , x l  - Z O ) ( X ~ , Z 1  -- ZO), 

from which (3.3) holds. 
(b) h is positive. Notice that k(x~,  xo - Xl) is negative. Hence, by (3.6), we 

have, 

(X~,  X 0 - -  Xl}  
(x;, x o  - z l )  >/ 

1 - h ( z ~ , x o  - x l )  

and (3.3) holds as well. 
(iii) Assume that F is pseudomonotone,  (3.3) holds and 1 > k ( x ; ,  x l  - x o ) .  

(a) If  (x; ,  xl - x0) 4 0 and (x~, xl - x0) /> 0, then (3.6) is obvious. 
(b) If  (x; ,  xl - x0) is positive, then (3.3) implies (3.6). 
(c) If (x~, Xl - x0) < 0, then (x~, x0 - Xl) > 0. Permute x0 and xl ,  then (3.6) 

holds again. 
[] 

C O R O L L A R Y  3.2. (i) I f  F is k-monotone on C and k > r, then F is r-monotone 
on  C .  

(ii) 15' is monotone on C i f  and only i f  F is k-monotone on C f o r  all negative k. 
P r o o f  (i) A direct consequence of  the theorem. 
(ii) Assume that F is monotone. Then 

X • ( 1, z i  - x o ) / >  (Xo, z~ - zo) for  all Xl, xo ~ C, 

from what (3.3) holds for all negative k. Conversely, assume that F is pseudo- 
* F ( x i ) ,  i 0 ,1 ,  a r e s o t h a t  monotone but not monotone. Then xi C C, x i E = 
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If (x~, x l - x 0 )  is positive, (x~, x l - x 0 )  is also positive by pseudomonotonicity 
and 

1 1 
< 0 .  

(x~ ,x l  - x0) ( ~ , ~ 1  - ~0) 

Hence, F is not k-monotone for some negative k. 
If not, (x~, Xl - x0) is negative and 

(X~,X O - x l )  < (X~,XO -- Xl) .  

It is the same case as just above. [] 

We notice that (3.3) gives an equivalent definition of the k-monotonicity of an 
operator which can be applied even when k = 0. We can now precise (3.2). 

Let F be an operator defined on a convex set C. The monotonicity index of 
F on C is given by 

- 0 o ,  if F is not pseudomonotone on C, 

re(F) = Sup[k: F is k-monotone on C], otherwise. 

We notice that F is re(F) -monotone when re(F) is finite, and re(F) = +oo 
when F is null on C. On the other hand, by Corollary 3.2, F is monotone if and 
only if re(F) >10. 

Expression (2.1) relates the monotonicity index of F to monotonicity indices 
of operators of one variable. We now seek a similar relation for multivalued 
operators. 

As in Section 2, define 

and 

Ia,d = {~ ~ R: a + td ~ C }  

Ea,d(~) = {(x*,  d>: x* e F ( a  + td)) ,  t e Io,d. 

Clearly, F is monotone (pseudomonotone, quasimonotone, k-monotone) on C, 
if and only if for all a C C, d E E; Fa,d is so on Ia,d. 

Assume that F is pseudomonotone on C, then Fa,d is also pseudomonotone 
on Ia,d. Hence, ta, d and ta+d exist so that 

- c ~  < tZ, d .< ~o+d <~ + ~ ,  

Fa,d( t ) C ( - -00 ,  0) for  all t E Ia,d f-) (--oo,  t :d )  , 

Fa,d(t) = 0  

Fa,~(t) C [0, ~ )  

F~,~(t) C ( -oo,  0] 

- + 

for all t E Ia,d n (ta,d, ~a,d), 

+ oo) for all t E Ia,a n (ta,a, , 

for all t 6 Ia,d N (t~,d, oc), 

for all t E Ia,d n (--oo, t :d  ). 
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Before going further, we give an example: 

EXAMPLES. E = C = R 

! i f t ¢ 0 ,  t 
F l ( t )  = [ -1 ,10]  i f t  = 0 .  

l_ if t < - 1 ,  t 
( - 1 , 0 )  if t =  - 1 ,  

Fa(t) = 0 if - l < t < 0 ,  

[0, 1] if t = 0, 

l + v ~  i f t  > 0 .  

Then F1 and F2 are pseudomonotone on R. 

Next, define 

[ta+d , 00) if (0, Oe) 7~ 0, I + F( t+d)n 
a,d : fa,d N (t+d, 00) otherwise, 

and F~d defined on I+d by 

F+d(t) = Fa,d(t) N (0, ~ ) .  

Then, by Theorem 3.1, 

rn(F)  = inf[rn(F+d): I + a,d a,d ¢ O]. (3.7) 

This relation corresponds to relation (2.1). It suggests the analysis of the positive 
operators which are defined on intervals of IR. 

Thus, we consider a multivalued operator qS: I --+ (0, c~), where I is any 
interval of R. If I is the empty set or a singleton, then rn(q~) = +eo.  Assume 
that the interior of I is not empty, then the definition of rn(~b) and Theorem 3,1 
imply 

[ (: m(~b) = inf (tl - to) 

The introduction of the selections of ~b simplifies the analysis of its mono- 
tonicity index. The map E: I -+ R is said to be a selection of q~ if it is a 
singlevalued operator such that: 

E(t)  E~b(t) for a l l t E I .  
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The operator q5 is k-monotone (quasimonotone, pseudomonotone) if and only if 
all its selections are k-monotone (quasimonotone, pseudomonotone). 

Let E be a selection of qS, to be in the interior of I and cr be defined by 

or(t) = E(s)  ds, t E I (3.9) 
) 

when this integral exists. 

THEOREM 3.3. (i) Assume that ~ is k-monotone (k E R), then for any selection 
E of  0 and any t E I, we have 

l imsupE(s )  ~< Inf[t*: t* E ¢(t)] ~< E(t) 
s$t 

~< Sup[t*: t* E ¢(t)] ~ t iminfE(s ) .  (3.10) 
sSt 

(When t is a bound of  I, only one inequality subsists.) 
(ii) Assume in addition that ~ is bounded on any closed interval contained in 

the interior of  L then cr is well defined and does not depend on the selection E, 
cr is finite on the interior of  I but possibly infinite at the bounds of  the interval. 

Proof. Let us consider the function 

t 
0 ( t ) -  E(~) kt, t E ± .  

Then 0 is nondecreasing on I and 

l imsup0(s )  ,<. 0(1) <~ l iminf0(s) .  
sTt sSt 

Since E is any selection of q~, we have 
[ 

l imsup0(s )  ~< I n f / -  - - -  
s~t k 

I-  

I - - -  - 
Sup 

I .  

from which (3.10) follows. 

1 q 
kt: t* ~(t)l ~ O(t) 

t* ~ ¢ J 

1 kt: t* E qS(t)l ~< l iminf0(s) ,  
~* sSt 

The function 0 is a function of finite variation because it is monotone, hence 
E is also a function of finite variation because it is bounded. Consequently, E can 
be expressed as the difference of two nondecreasing functions and is integrable. 
It is clear that cr does not depend on the selection E. 

The above proof works for all real k. The results are obvious, when k is 
nonnegative, since E is then nondecreasing. [] 

The function o- can be not defined when 4) is only k-monotone for k < O. 
Consider for instance I = (O, ec) and cannot be q5 be defined by 

1 i f O < t . . <  1, 

qS(t) = t 1 if 1 < t. 
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It is easily seen that ¢ is ( -  1)-monotone, hence by definition of the k-monotonicity, 
the operator H = (¢, G - l )  is quasimonotone. This shows the limits of the 
approach followed in our earlier paper where the proofs were based on the exis- 
tence of the function cr and the conditions for the quasiconvexity for the separable 
sum of functions. In the example, cr does not exist, but H is quasimonotone. 

When o- is well defined we have: 

THEOREM 3.4. I f  (3.10) holds and ~ is well defined, then 

= 

Proof. (i) If re(C) = c(cr) = - o o ,  there is nothing to prove, 
(ii) Assume that re(C) > - o o  and let us prove that re(C) ~< c(o-). Let k 

be such that - o o  < k ~< re(C) and let E be any selection o f  ¢. Then E is 
k-monotone. Let t E I and s be small enough so that 

t + s ~ I  and 1 - k s E ( t ) > 0 .  

Since E is k-monotone, we have 

E ( t + s )  /> E(t) if s > 0 ,  
1 - k s x ( t )  

E ( t + s )  ~ E(t)  if s < 0 .  

Then by (3.9), in both cases we get 

1 i n ( 1  - ks (e)) 

and 

exp( -kcr ( t  + s)) 1> exp(-ko ' ( t ) )  - ksE(t)  exp(-kcr( t ) )  if k < 0, 

exp(-kcz( t  + s)) ~ e x p ( - k ~ ( t ) )  - ksE(t) exp(-kcr( t))  if k > 0. 

When k is negative, - k E ( t )  exp(-ker( t ) )  is a subgradient at t of the function 
exp(-ko-) .  This function is convex, since it is locally subdifferentiable at any 
point. Similarly, the function is concave when k is positive. Henceforth, k ~< c(cr) 
for any k ~< re(C). 

(iii) Assume that - o o  < c(cy) and let us prove that re(C) >i c(~r). Let k be 
such that - o o  < k <~ c(o-). Condition (3.10) and relation (3.8) show that the 
monotonicity indices of ¢ on I and its interior are the same. Without loss of 
generality, we assume in the sequel that I is open. Then condition (2.3) implies 
that the function 

O(z,u) = or (x)+  l l n u  

is quasiconvex on I x (0, 0o). 
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The function e x p ( - k o )  admits derivatives on the right and on the left at any 
point (since it is convex or concave). Hence, o- admits right and left derivatives 
too. On the other hand, by construction 

~' (x) ~< z ~< a '  _ +(x) for a n y x E I a n d  z E ¢ ( x ) .  (3.11) 

Now let any x, y E I and u, v E (0, c~). We consider the function 

~(t)  = 0(5 + t ( y -  ~), ~ + t ( ~ -  u)). 

Then # is quasiconvex. Hence 

#~_ (1)/> 0, whenever #~_ (0) > 0. 

It follows that if y >/x, one has 

1 u ) / > 0  ~'- (y)(v - 5) + ~ ( v  - 

l ( v  - u) > o, whenever ~ ( ~ ) ( y  - ~) + k~ 

and if y < x, one has 

1 u ) > ~ o  
~'+(v)(y  - ~) + ~v (~ - 

! ( v  - u) > o. whenever cd_ (x)(y - x) + ku 

Taking into account of (3.11), we deduce that ¢ is k-monotone. [] 

We close this section in relating the k-monotone operators to the so-called r- 
convex functions introduced by Avriel [1]. 

Let r > 0, f is said to be r-convex if e x p ( - r f )  is convex. 
We extend this definition to negative r by saying that f is r-convex (r < 0) 

if e x p ( - r f )  is concave. 
Then it is easily seen that a differentiable function f is r-convex if and only 

if V f  is ( - r ) -monotone.  

4. The Case of Two Factors 

In this section, C(D) is a nonempty convex subset of a linear space X(Y),  
F(x) c X', F(x) ¢ ~J for all x E X(G(y) C Y', G(y) ~ (~ for all y E Y). We 
consider the multivalued operator defined on C × D by 

H(x ,y )=(F(x) ,G(y) )  for a l l x E C ,  y E D .  
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THEOREM4.1 .  Assume t h a t - c ~  < re(F) ,  - o o  < re (G)and  r e ( F ) +  
re(G) >/0. Then H is pseudomonotone on C x D. 

Proof. The assumptions - c ~  < re(F) and - e o  < re(G) imply that F and G 
are pseudomonotone. If both F and G are monotone, then H is monotone and 
therefore pseudomonotone. If not, r e (F)  and re(G) are nonnull. Take k = re (F) ,  
then re (G) />  - k .  

Assume, for contradiction, that H is not pseudomonotone. Then x~ E C, 
Yi E D, x~ E F(x~) and y* C G(yi), i = O, 1, exist so that 

(:4, ~1 - xo) + (v~, v l -  vo) > o (4.1) 

and 

(x~,xl - Xo) + (y~,yl - yo) ~< 0. (4.2) 

At least one of the terms in (4.1) is positive, say for instance, (x;, xi - x0). 
Then (x~, xl - xo) is positive, by pseudomonotonicity of F.  Then (4.2) implies 
that (y~, Yo - Yl ) is positive and finally, by pseudomonotonicity of G, (y~, Y0 - Yl ) 
is also positive. (4.1) and (4.2) become 

1 1 
0 > (4.3) 

( X ; ,  X 1 - -  X0) (Y; ,  Y0 - -  V l ) '  

and 

1 1 
0/> (4.4) 

On the other hand, since r e (F)  ~< k and re(G) <~ - k  

1 1 

( x ~ , z o -  xl)  (~; ,x0 - xl) 
>/k, (4.5) 

and 

1 1 

(vr,vo - vl) ( v ~ , v 0 -  Vl) 
) - k .  (4.6) 

The contradiction is obtained by adding (4.3), (4.4), (4.5) and (4.6). [] 

Theorem 4.1 gives a sufficient condition for the pseudomonotonicity of H and 
therefore for the quasimonotonicity of H.  The proof of a necessary condition is 
more complex and needs several steps. 

PROPOSITION 4.2. Assume that H is quasimonotone on C x D, F and G 
nonnull and C, D have nonempty interiors. Then F and G are pseudomonotone. 
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Proof (i) Firstly, we prove that at least one of the operators F or G is pseudo- 
* F(x i )  and * E G ( y i ) ,  i = l , 2 ,  exist monotone. If not, xi E C, yi E D, x~ E y~ 

so that 

< x ; , : ~  - xo) > o and ( x ~ , ~  - xo) = O, 

(Yt, Y o - Y l )  > 0  and ( Y ~ , Y o - Y i ) = O .  

Then 

(x~,xl - x0) + (y~,yl - Y0) > 0, and 

(277, Xl --  X0) "4- (y~,  Yl --  Y0) < 0 

which is in contradiction with H quasimonotone. 
(ii) Assume now that F is pseudomonotone and G is not. 
F is nonnull on in t (C) ,x l  E int(C) and x~ E F ( x l )  exist so that x~ ¢ 0. 

Then we take x0 E C such that 

(x~,xo - ~ l )  > 0, 

and for any ~ E (0, 1), xt = xo + t(xl - xo). 
Since F is pseudomonotone, we have 

and 

(x~,xt-zo) <0  if x~EF(zo) 

(x~ ,x t -  xo} <0  if x~[ E F(xt). 

We now express that G is not pseudomonotone. There are Yi E D and y~ E G(yi) 
such that 

(Y~ ,Y l  -- YO) > 0 and ( y ~ , y l  - YO) ~- O. 

For t positive small enough, we have 

(~;, ~ -  ~o) + (y~, y~ - yo) > o, 

but 

( x ; ,  x t  - xo )  + (yT , y~ - yo)  < o. 

This is in contradiction with the pseudomonotonicity of H. [] 

Remark. The assumptions are necessary. For a counter-example consider: 

c = ~ x {o}, D = R, 

F ( x l , O ) = ( O )  { v#~-~ i f y < O '  
1 and G ( y ) =  0 i f y />O.  
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Then H is quasimonotone but not pseudomonotone on C x D, F and G are 
non-null, but the interior of C is empty. 

In the next four propositions, we consider two real functions 0: I -+ (0, e~) 
and #: J -+ (0, ee), where I and J are two nondegenerate intervals of the real 
line. 

Let ~ = (0, #) be defined 

~ ( t , ~ )  = (o( t ) ,  ~(~)), 

and for t E I , u  E J 

1 1 

~(~) = 0(~)' ~(~) = ~ ( ~ )  

PROPOSITION 4.3. Assume that ~ is quasimonotone. Then for  all u, t, A,  (~ and 
A such that 

> 0 ,  ~ > 0 ,  u a n d u - A E J ;  ~ a n d ~ + 6 E I ,  A =  Ar(~) > 1, 

one has 

~(~- A) ,r(t + 6) 
t> - -  (4.7) s(~) at(t) 

Set: 

Proof. Let u, t, A and ~ be such that 

3 > 0 ,  2 x > 0 ,  u a n d u - A E J ;  t a n d t + 3 E I .  

A = O ( t ) 6 - # ( ' u ) A  and B = 0 ( t + 6 ) 6 - # ( u - A ) A .  

Then ~ quasimonotone implies that 

B / > 0 ,  w h e n e v e r A > 0 .  

Notice that A > 0 is equivalent to A > 1, while B >/0 is equivalent to 

s ( ~ -  A) r ( t +  6) 
s(~) ~ ( t )  

[] 

PROPOSITION 4.4. Assume that the operator ~ is quasimonotone. Then )~br all 
E I and u E J (except the upper bounds o f  the intervals), one has 

l iminf r ( t  + 3) <~ r(t),  
&o 

l iminfs (u  + A) ~ s(@. 
2x;0 
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Pro@ We shall prove the statement for r. It is enough to prove that for any 
k > 1, there is a sequence {Sn} of positive reals converging to 0 such that 

r(t+5 ) 
~< k for all n. (4.8) r(t) 

Let a, b E J such that a < b and A E (1, k). There exists no > 0 such that 

8(a) 

For n > no, set An = ( b -  a) /n  and for i = 0, 1 , . . . , n ;  up = a + iAn. Then 
we have: ({)n 

i=1 8 ( u n )  8(b) < (4.9)  

We determine ~n by the following procedure: 

(a) Start with i = n, 
(b) If s (u  n) > / s ( u n l ) ,  then take fin = up (then s(gZn - An)/s(f~n) ~ 1). Stop. 

• I fnot ,  we have s(u~_l) > s(u2) >1 s(b) for j = i , i +  1 , . . . , n .  
• If i >  1 s e t i = i - 1  and go to(b) .  
,, If not, i = 1 and s(u~) > s(u~) > . . .  > s(u n) = s(b) . 

It results from (4.9) that i/> 1 exists so that 

s(u~_l) k 

Take ~2n = u p. 
End of the procedure. 

In all cases, we have 

< ~ and S(gn) >1 s(b). 

Take 5,, = ~r( t )An/s (gn) .  It is clear that {Sn} converges to 0. Expression (4.7) 
implies that: 

k S(~n - An) r ( t  + 5n) 
- > > , for all n/> no 

s ( ~ )  ~r(t)  

from what (4.8) follows. [] 

PROPOSITION 4.5. Assume that the operator ~ is quasimonotone. Then for all 
t C I and u E J (except the lower bounds of the intervals), one has 

l im in f r ( t  - a) >/r( t )  
55o 
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and 

l iminf s(u - A)/> s(u). 
A$O 

Proof. We shall prove the statement for s. Firstly, we prove the existence of 
some { E int(I) such that 

lim sup O(t) < +oo. (4.10) 
t-+t- 

Let t E in t ( I ) ,u  and A be such that A > 0 and u , u + A  E J.  Take 5 > 0 small 
enough in order to have /z(u)A > 0(t)5. Let {&} any sequence of positive 
reals converging to & Since ~ is quasimonotone one has for n large enough 
#(u  + A ) A  >10(t - & ) & .  Then 

+ A)A 
limsup O(t') <<. 
t,~(t-~) 5 

Take { = t - 5. 
Assume now for contradiction that 

s(u) > l iminf s(u - A). 
2x$0 

Then there exist kl E (0, 1) and a decreasing sequence {An} of positive reals 
converging to 0 such that 

- & )  
~< kl .  

Take A, ~2 and n0 such that 

3 ,>  1, k 2 = A k l  < 1 and { +  AAr~°r(t-) E I .  
s (u)( l  - k2) 

t n Then for n >/no we construct a sequence { i }i by 

t~ = { and for i >1 O, t~+l = tr~ + s(u~ -" 

The sequence is well defined. Indeed, it can be proved by induction that for all 
i one has 

AA~r(t-) (1 + k2 + ' - - +  k~) <~ t +  s(u)(1 - k2) < tp+  < 

and 
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To see this, notice that 

Then by Proposition 4.3, one has 

as)  + 6 n) 

From which the result follows. 
Now we construct a sequence {tn) by taking tn = t~. Then {tn} converges 

to t-and {r(~r~)} to 0 in contradiction to (4.10). [] 

Recall that the upper and lower Dini derivatives of a function f at x0 following 
a direction h E E are defined as 

limsup f ( x  0 + Ah) - f (xo)  f~_(xo, h) 
),$o A ' 

H_(x0, h) = l iminf f (xo  + Ah) - f (xo)  
A~o A 

The next proposition makes use of the famous Dini theorem. 

DINI'S THEOREM (Theorem 7.2, Saks [ 10]). If  f is a finite function defined on 
I such that 

(i) limsup6$0 f ( t  - 6) <. f ( t )  <<. limsup6$0 f ( t  + 6) at every t E I. 
(ii) f~_ (t, 1) >/0 at every point t except at most at those of an enumerable set. 

Then f is monotone nondecreasing. 

PROPOSITION 4.6. I f  ~ is quasimonotone on I x J, then re(O) + re(p) >10. 
Proof. Assume for contradiction that ~ is quasimonotone and re(O) + re(p) < O. 

Without loss of generality, we assume that m(#)  < 0. There exist kl and k2 such 
that 0 < kz < kx, re(O) < kl -- k2 and m(#)  < - k i .  

We consider the functions: 

, ( t ) = - r ( t ) + ( k 2 - k l ) t ,  for all t E I ,  

X(u) = - s ( u )  + klu, for all u E J. 

We know by Proposition 4.2 that 0 and # are pseudomonotone. Hence, Theo- 
rem 3.1 and the definition of monotonicity indices imply that u and X are not 
nondecreasing. 

On the other hand, by Propositions 4.4 and 4.5, we have 

lim sup u(~ - 6) ~ u(t) <~ lim sup u(t + 5) at every t E int(I), 
650 &o 

lim sup X(u - 6) <. X(u) 4 lim sup X(u + 5) at every u E int(J). 
650 5.1.o 
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Hence, according to Dini's theorem, t-E int(I) and ~ E int(J) exist so that 

u~_(t-,1) < 0  and ' - X+(u, 1) < 0. 

Referring to the definitions of Dini derivatives, we deduce the existence of/X 
and 5 positive such that t- + 5 E I ,  ~ + zX ~ o r 

~(~+ a) - ~(~) 
> k 2 - / q  for all 5 E ( 0 , 8 )  

5 

and 

~(~ + zx) - ~(~) > < 
A 

for all A E (0, A). 

Without loss of generality, we assume that 

.< ~(~) " 

Let A E (0, £x), then 

s(~ + ix) > s(g) + klZX > s(g) + k2A > s(g). 

Take 

s(g + A) - k2A 

and 

_ A~(~)a A~(~) 
8(~ -}- A) 8(~ -'}- A ) -  /~2 A '  

then A > 1 and 5 E (0, 5). We have 

8(~) ~1A 
%1 ~(~ + A) ~(~ + A)' 

r ( ~ +  5) A 1(1 (k2 - kl > + )6)=  
At(t-) ;T5 

k lA  
s ( ~ + ~ )  

On the other hand, by Proposition 4.3 and since A = 5s(g + A)/Ar({) > 1, we 
have 

s(e) ~ ( f +  6) 

We have got a contradiction. 
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Now, we can establish the necessary condition for the quasimonotonicity of the 
operator H = (F, G). 

THEOREM 4.7. Assume that the interior of C(D) is nonempty in X(Y),  F(G) 
is nonnull on C(D) and H = (F, G) is quasimonotone on C × D. Then re(F) + 

> o. 
Proof. Assume for contradiction that re(F) + re(G) < 0. Since, 

re(F) = inf [m(F + g,)" I + ¢ {0], 
Xl ,dl 1, Xl ~dl 

re(G) = inf [rn(a + d ): I+  • •], 
x2~d 2 2~ 2 x2f12 

there exist (xl, dl) E C × X and (x2, d2) C D × Y, such that 

. (FLd 1) + <0+2,<) < 0. 

Then a selection {9 of F+di and a selection > of G+2,d= exist so that 

re(O) + m(#)  < 0. 

Consider { = (0, #). Then, by Proposition 4.6, { is not quasimonotone, in con- 
tradiction with H quasimonotone. [] 

5. More than Two Factors 

We consider now the general case 

F ( X l , X 2 , . . . , X p )  = ( F I ( X l )  , F 2 ( x 2 ) , . . . , F p ( X p ) )  

defined on C = C1 × C2 × . . .  × Cp with p/> 2 and for i = 1 , 2 , . . . , p ,  the set 
Ci is a convex set of E~ and Fi is a multivalued operator with values in E~. We 
assume that Fi is nonnull on Ci and Ci has a nonempty interior. 

Assume that F is quasimonotone, Theorem 4.7 implies that when p = 2, 
at least one of the operators is monotone. Hence, it is easily obtained that for 
p/> 2 all the operators except perhaps one are monotone. Necessary and sufficient 
conditions for the quasimonotonicity of  H would be obtained from Theorems 
4.1 and 4.7 by joining together the monotone factors. It remains to compute the 
monotonicity index of a product of monotone operators. 

PROPOSITION 5.1. Assume that for i = 1 ,2 , . . .  ,p (p /> 2) ,Fi  is monotone. 
Then F is monotone and 

1 1 1 1 

with the convention 1/0 = +c~. 
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Proof. It is clear that F is monotone. Hence, m ( F )  is nonnegative. Let us 
prove the formula for two factors, then the general formula will be deduced by 
induction. Consider the operator F = (F1, F2) when F1 and F2 are monotone. 
Then F is monotone and re (F)  >10. If re(F1) = 0 (re(F2) = 0), then re (F)  = 0 
and the inequality holds. On the other hand, FI and F2 are nonnull, so that we 
assume henceforth that 

0 < re(F1) < +oo and 0 < rn(Fz) < +oo. 

Let any 

(X, d) E (61 x C2) x ( E  1 x E2) , x = (xl, x2), d = (dl, d2), 

and 

Then 

Fl(xl,dl)(t) = (Fl(Xl  -~ td l ) ,  d l ) ,  

F2(x2,d2)(t ) = ( f2 (x2  -~ ~d2), d2), 

t E Ixl,dl, 

t E I~2,d 2. 

and 

c(f2(x:,d:)) = 

The same argument as used for the proof of Theorem 5.1 [2] gives the formula: 

1 1 1 

An immediate induction generalizes the formula to more than two factors. [] 

Our main theorem which generalizes Theorem 6.1 of [2] is as follows. 

= <F(x  + td) ,  d> 

= Fl(xl,dl)(t)  -~- F2(x2,dz)(t), t E Ix,d = Iz~,d, NIzz,d:.  

Since F(z,d), Fl(~,dl) and F2(~z,d:) are monotone, we can define f(~,d), fl(Xl,dl) 
and f:(z2,d2) 

/o f(x,d)(t) ---- F(x,d ) (u) du, t E Is,d, 

Z f l (z i ,d l ) ( t )  = Fl (z l ,dO(u)du ,  t E Ixl,al, 

fz(~2,d2)(t) = Fz(~2,d2)(u)du, t E Ix2,d 2. 

It is clear that fz ,d( t )  = f l (z , ,dl)( t )  + f2(zz,a2)(t). 
By Theorem 3.3, we have 

c(f(x,d)) = m(F(z,d)) ,  c(fl(x,,dx)) =- rn(Fl(xl,dl)) 
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THEOREM 5.2. (i) I f  F is quasimonotone on C, then one of  the following con- 
ditions holds: 

(a) all Fi are monotone. 
(b) all Fi except one are monotone and 

1 1 1 
- - + - - + . . . + - - ~ < 0 .  
m(F l )  re(F2) m(Fp) 

(ii) If  one of  the conditions (a) or (b) holds, then F is pseudomonotone and 

1 1 1 1 
- - -  + - -  + - . . + - -  ( 5 . 1 )  

m(F) m(F1)  m(F2)  m(Fp)" 

Proof. Assertion (i) is a direct consequence of Proposition 5.1 and Theo- 
rem 4.7. Conversely, if condition (a) holds, then F is monotone and therefore 
pseudomonotone and formula (5.1) follows from Proposition 5.1. Assume that 
condition (b) holds. Then the pseudomonotonicity of F follows from Proposi- 
tion 5.1 and Theorem 4.1. It remains to prove formula (5.1) when one of the fac- 
tors is not monotone. For k < 0, let the operator Gk be defined on I = (0, +oo) 
by 

1 
ok(t) = ~ .  

Then Gk is monotone and rn(Gk) = - k .  
Define now on C1 x C2 x . . .  x Cp x I the operator 

Hk(zl, x2, . . . ,  xp, t) = (FI (xl), F2(x2),. . . ,  F,(xp), ak(t)). 

Then by the first part of this theorem, Hk is quasimonotone (i.e. F is k-monotone) 
ff and only if 

1 1 1 1 
- - + - - + . . . +  - -  < ~ 0 .  
-~(F1) re(F2) ~(Fp) k 

Then (5.1) follows from the definition of re(F) .  [] 

Theorem 5.2 suggests an improvement the results obtained by Debreu and Koop- 
mans and Crouzeix and Lindberg for the generalized convexity of a separable 
sum of functions. But first, we recall the definition of pseudoconvexity for non 
differentiable functions. Let C be an open convex set of E, f :  C --+ I~ such that 
f admits directional derivatives at any a E C. Then f is said to be pseudoconvex 
if 

f ' ( a , x - a ) < O  w h e n e v e r x e C ,  a E C  and f ( x ) < f ( a ) .  

It is easy to see that f is pseudoconvex when c(f) > -oo.  
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Assume tha tp />  2 and for i = 1 ,2 , . . .  ,p Ci is an open convex subset of a 
linear space Ei and fi: Ci -+ R is not constant. We consider s to be defined on 
C = C~ x G~ x . . .  x Cp by 

s ( x i , x 2 , .  . . , xp )  = f ~ ( x l )  + f2(~2)  + . . .  + : / x P .  

We have 

THEOREM 5.3. (i) I f  s is quasiconvex on C, then one o f  the following conditions 
holds, 

(a) all fi  are convex; 
(b) all f i  except one are convex and 

1 1 1 
4fl--7 + ~ + + ~ ~ o. 

(ii) I f  one o f  the conditions (a) or (b) holds, then s is pseudoconvex and 

1 1 1 1 

4s-Z - c(f,) + ~727)~) + + 4fp--7 

Proof. This theorem was proved by Crouzeix and Lindberg [3] when Ei has 
a finite dimension and with quasiconvex instead of the pseudoconvex in (ii). 
Actually, the proof does not involve the dimension of the spaces Ei so that it 
suffices to prove that s is pseudoconvex when (a) or (b) holds. 

It suffices to consider two factors. An immediate induction would extend the 
result to the general case. 

If both functions f l  and f2 are convex, then s is convex and therefore pseudo- 
convex. If one of them is not convex, say f2, the other one, f l ,  is convex and 

c(f l )  + c(f2) /> O. 
If c(f~) + c(f2) > 0, then c(s) > - ~ ,  s is -c(s)-convex and therefore 

pseudoconvex. 
We are left with c( f l )  + c(f2) = 0. 
Let (x, d) E (C1 x C2) x (El x E2) with s(x)  > s ( x + d )  and x+d  ~ (C1 x C2). 

We must prove that 

s ' (x ,d)  = f [ ( x l , d t )  + f~(x2,d2) < O. 

The directional derivatives of f l  and f2 exist since c(f l )  and c(f2) are finite. 
Since c( f l )  is positive, the function xl , > e x p ( - c ( f l ) f l ( x l ) )  is concave. 
Hence, 

exp( - -c ( f l ) f l  (Xl + dl)) ~< e x p ( - c ( f l ) f l  (Xl))f[(Xl, dl), 

from what we deduce 

e x p ( - c ( f l ) ( f l ( X l  + dl) - f l (Xl)))  ~< 1 - c ( f l ) f [ ( x l , d l ) ,  

- c ( f l ) ( f l ( X l  + dl) - f l (Xl))  ~ ln(1 - c ( f l ) f~ (x l ,d l ) ) ,  (5.2) 
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-1  
f l ( X l  + d l )  -- f i ( X l )  ~> ~ ln(1 - c(fl)f[(zl,dl)). 

ok J1) 

Since c(f2)  is negative, the function x2 ,  > exp(-c(f2)f2(x2)) is convex.  Then 
we have: 

and 

exp(--c(f2)(f2(x2 + d2) - f 2 ( x 2 ) ) )  ~> (1 - c ( f 2 ) J ~ ( x 2 ,  d2)) ,  

- c ( f 2 ) ( f 2 ( x 2  + d2) - f 2 ( x 2 ) ) ) / >  ln(1 - c(f2)f~(x2, d2)) ,  

- - 1  
f2(x2 + d 2 ) -  f2(x2) >/ c-~2)ln(1- c(k)f~(x2, d2)). 

Recall that c ( f l )  = - c ( f 2 ) .  Add (5.2) and (5.3) then 

fl(xl + d l )  + f2(x2 + d2) - f l ( X l )  - f2(x2)  

1 1 + C(fl ) f~(x2,  d2) 

> c-7-(~l) lnf_c(f l) f[(xt ,dl)"  

Recall that s(xl + di,x2 + d2) < S(Xl,XZ). Hence, 

1 1 + C( f l ) f~(x2 ,  d2) 
C(f l )  In 1 < 0, - c ( f l ) f f ( x l , d l )  

from which we deduce that 

st(x,d) = f [ (Xl ,d l )  + f6(x2,  d2) < O. 

(5.3) 

(5.4) 

[] 
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