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Summary. This paper gives a flexible approach to proving the Central 
Limit Theorem (C.L.T.) for triangular arrays of dependent random vari- 
ables (r.v.s) which satisfy a weak 'mixing' condition called f-mixing. 
Roughly speaking, an array of real r.v.s is said to be f-mixing if linear com- 
binations of its 'past' and 'future' are asymptotically independent. All the 
usual mixing conditions (such as strong mixing, absolute regularity, uni- 
form mixing, p-mixing and 0-mixing) are special cases of f-mixing. Linear 
processes are shown to be f-mixing under weak conditions. The main result 
makes no assumption of stationarity. A secondary result generalises a 
C.L.T. that Rosenblatt gave for strong mixing samples which are 'nearly 
second order stationary'. 

w I. Summary 

In this paper we consider conditions for the C i . T .  to hold for the sum 

nN 

S N= ~ XjN 
j=l 

where {XjN: j =  1, ..., nN, N =  1, 2 . . . .  } is a triangular array of dependent real 
r.v.s. That is, we consider conditions under which 

(SN--ESN)/(var(SN))~-~ JV(0, 1) as N ~ .  

Our basic condition, f-mixing, is defined at the beginning of w There are 
many mixing approaches in use in the literature, such as c~-mixing (strong 
mixing), fl-mixing (absolute regularity), qS-mixing (uniform strong mixing), p- 
mixing and 0-mixing. (See for example Theorem 8.3 of Billingsley (1971), 
Theorems 18.5.1-18.5.4 of Ibragimov and Linnik (1971), Theorems 2.1 and 2.2 
of Ibragimov (1975) and Corollary 1 of Yoshihara (1978).) Like these con- 
ditions, f-mixing requires the asymptotic decoupling of the 'past '  and the 
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'future'. However, unlike these conditions, f-mixing does not require in- 
variance under transformations of the form 

{XIN } ~ {fiN(Xiu)} where {fu} are one to one functions, 

so that f-mixing is more widely applicable. 
Our main C.L.T. is Theorem2.1 and the special case of Corollary2.1. 

Variants of these results are given in Theorems 2.2 and 2.3 for processes which 
are 'nearly second order stationary'. Theorem2.1 requires a moment in- 
equality, conditions for which are given in Propositions 2.1, 2.2 and 2.3. In 
particular Theorem 2.1 requires that for Some e>0  the 2+e  absolute moment 
of S N be finite, whereas Theorems 2.2 and 2.3 do not. 

The theorems also require that var (SN)/n N be bounded above or below, or 
be 'slowly varying' or 'very slowly varying' in n N. These conditions are shown 
to hold in w 4 under weak conditions called r-mixing. 

Conditions for a linear process to be f-mixing are considered in w 5 and 
compared with those required for e-mixing (strong mixing). In particular a 
class of first-order autoregressive processes is exhibited which is Y-mixing but 
not e-mixing nor fl-mixing (absolutely regular). 

Finally in w 6 we briefly consider the relationship of #-mixing, r-mixing and 
its variants, and c~-mixing - in particular for Gaussian processes. 

The notions of (-mixing and the results given in this paper may be 
extended to 'spatial arrays' {XjN } where j is now an integer vector - as has 
been done for 4-mixing, for example, by Deo (1976). 

We now introduce some notation that we shall require. In particular we 
extend the standard mixing concepts to non-stationary triangular arrays; c.f. 
Withers (1975). 

Consider a series of random processes 

(1.1) Y ' = { ~ ,  N > I }  where XN={XjN, mN<j<nN}, 

not necessarily real, defined on some probability space (~, d ,  P), with m N, n N 
integers such that 

--oo<mN<nN<oo and nN--mN--+oo as X--*oo. 

For any (not necessarily real) r.v.s Y, Z we set 

~ ( Y ) = t h e  a-algebra generated by Y 

(1.2) c~(Y, Z)=sup]P(Ac~B)-P(A)P(B)[, where sup is over all A in Jg(Y) and 
all B in ~ ( Z ) ,  

(1.3) fl(Y, Z)=E suplP(B] Y)-P(B)J, where sup is over all B in ~'(Z),  

(1.4) r Z)=sup[P(B[A)-P(B)J, where sup is over A,B as in (1.2), 

(1.5) p(Y, Z)=sup[correlation(y, z)[, where sup is over r real 
r.v.s, y, and Jg(Z)-measurable real r.v.s, z, with finite variance. 
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Let  ' denote  the t ranspose  of a vector.  
For  Y=(Y1 ... .  , Yp)' eR  p, Z = ( Z  1 ... .  , Zq)' eR  q define 

(1.6) r(Y,Z)=sup correlation(a'Y,b'Z), where sup is over  all e e R  p, b e R  q 
such that  the corre la t ion is well-defined, 

(1.7) r*(Y,Z)=suplcorrelation(a'Y, b'Z)l, where sup is over  a e R  P, b e R  q with 
componen t s  0 or 1, 

and 

(1.8) r**(Y,Z)= correlation (~l Yj, ~ Z j )  . 

Thns r, r* and r**(Y,Z) depend only on covar tYz). 

N o w  define 

(1.9) aN(k ) = max  
mN<j<nN--k 

~({Xm,,N . . . .  , x~N}, {Xj+k,N,--., X,~N}), 
O<k<-nN--m N, 

~N(k), O__<k<~ (1.10) c~(k) = m a x  
{N:k <nN--m~} 

and analogous ly  define 

(1.11) fin(k), fl(k), 4N(k), (o(k), oN(k), p(k), rN(k), r(k), 

r~(k), r*(k), r**(k), and r**(k). 

The  coefficients c~(k), fl(k), ~b(k), p(k) and r(k) are called the k-th strong-mixing, 
absolutely regular, uniform mixing maximal correlation, and maximal linear cor- 
relation coefficients respectively, of  3f. 

Similarly, aN(k ) . . . .  , rN(k ) are called the k-th strong-mixing . . . .  , and  maximal 
linear correlation coefficients of 3( N. W h e n  {XjN-Xa}  is second-order  sta- 
t ionary,  define 

a k+a+b ) 
correlation (~ X j, ~ X j , 0 ~ k <  oo, 

k + a  

r*** (k) = l im sup 

so that  r*** (k) < r** (k). 
W h e n  {XjN=--Xj} is s ta t ionary,  the definitions of ~(k), fi(k), O(k), p(k), and 

r(k) do not  depend on the choice of m N or n N : - - m N = n N = o e  yields the 
definitions of c~, ~b, p in Ib r ag imov  and Linnik  (1971) and I b r a g i m o v  (1975), 
while m N = 1, n N = 0o yield the definit ion of q5 on p. 26 of Billingsley (1971). 

It  is well k n o w n  tha t  

(1.12) 

and 

0.13) 

4~(Y, z)  # p(Y, z)  < 2 ~,(Y, z)~ 

4aN(k)<pN(k)=2dPN(k)~ and 4~(k)<p(k)<20(k) ~. 
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Also 

(1.14) ~(Y , z )<~(~ , z ) ,  /~(k)<~(k), /~(k)<~(k). 

Clearly, for Y, Z real r.v.s 

(1.15) r**(Y, Z)<_r*(Y, z )<r(Y,  z)<-_p(Y, Z)<= 1 

so that 0 =< r** (k) =< r* (k) < r (k) < p (k) < 1. 
For (Y, Z) Gaussian, by Theorems 1, 2 of Kolmogorov and Rozanov (1960), 

p(Y, Z)=r(Y, Z) and 4c~(Y, Z) <r(Y, Z) < sin {2~e(Y, Z)} <2roe(Y, Z). 
Hence if ~N is Gaussian, the analogous statements hold for {pN(k), ru(k), 

~u(k)} and for {p(k), r(k), e(k)}. (Their proofs do not require stationarity.) 
Unlike {e(k), fl(k), ~b(k), p(k)}, the coefficients {r(k), r*(k), r**(k)} are not 

invariant to transformations of type {Xju}~{f~N(XjN)} where {fju} are one to 
one measurable functions. Thus a condition on {r(k)} will generally be much 
weaker than the same condition on {p(k)}. Processes, such as Gaussian ones, 
for which r(k), p(k) and e(k) are equivalent, are exceptional. 

The set of processes Y" is said to be a-mixing (or strong mixing) if e (k)~0  
as k~oo, fi-mixing (or absolutely regular) if f l(k)~0 as k~oo ,  and O-mixing (or 
uniformly strong mixing) if ~b(k)--,0 as k ~ .  Likewise p-mixing, r-mixing, r*- 
mixing, r**-mixing and r* * *-mixing may be defined. 

One may also define 'complex' versions of p and r. In particular, set 

pc(Y, Z ) = s u p  [EyZ I where sup is over all J/[(Y)-measurable 

complex r.v.s, y and JY(Z)-measurable complex r.v.s, z satisfying 

Ey=Ez=O,  gly[2=Elz[2=l. 

In w 6 we shall need 

Theorem 1.1. pc(Y, Z)=p(Y, Z). 

The proof follows from 

Lemma 1.1. Let ~ be a real Hilbert space with inner product ( . , . )  and norm 
H.]I. Let A: ~- - - ,H be a bounded linear operator. Let ocfc, { . , . ) c , A  c be their 
complexifications. Then the norm of A satisfies IIAll =sup  l ( f ,g) r  where sup is 
over f ,  g in ~ satisfying Ilfll = Ilgl] = 1. The analogous result holds for ]l/clio, the 
norm of A c in ~ .  Moreover, IIAll = IIAcll~. 

Proof. The proof is straightforward but tedious. []  

As usual, l-x] will denote the integral part of x. For X a real r.v. with finite 
mean, set 

a f(EIX-EXIP)I/P' l<p<oo, 
P=~esssup lX-EXI ,  p=oo. 
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w 2. C.L.T.s for d-Mixing Arrays 

Let f be a triangular array, as in (1.1), whose elements are real with finite 
means. Set 

n N  

(2.1) SN= ~ XjN, aZ=var(SN). 
j ~  rtt N 

To introduce the notion of d-mixing, set 

dr(k, u)= max sup Icovar(e i"v, e-iur)l 
mN<=j<=nN--k 

for u real, 0 < k < n N - m N, N > I, where 

j tIN 

P=r Y~ a~x,N, F=r 1 Y~ ~x , r ,  
d~mN d = j + k  

and by the covariance of complex r.v.s is meant 

sup is over {cSj=0 or 1} 

Now set 

(2.2) 

covar (11, Z) = E Y Z  - E Y E  Z. 

d(k,u)= sup dN(k,u), 0 < k < o o ,  u real. 
{N :k <n:v-rnN} 

Definition 2.I. The triangular array ~ is said to be d-mixing if for all real u, 
d(k, u)--+O as k--, co. 

Roughly speaking, this means that all zero-one linear combinations of the 
'past '  and the 'future'  observations are asymptotically independent. 

Definition 2.2. ~ is said to be strongly d-mixing if for all u there exists K(u)<  o0 
such that d(k, u)<d(k)K(u) where d(k)~O as k-+ co. 

For  example, if there exists O(k)J,O as k]'co such that for all u, d(k,u) 
= O(O(k)) as k-~ co, then ~ is strongly d-mixing with d(k)= O(k). 

One possible choice is 

d (k) = a (k). 

This is because dN(k , u )<16ar (k  ) and d(k, u)G16a(k) as follows from p. 307 of 
Ibragimov and Linnik (1971). 

Another possible choice is 
d(k) =/~(k). 

This is because by Lemma 1 of Yoshihara (1978), 

dN(k,u)<4fis(k ) and d(k,u)<4fi(k). 

Thus if a process is a-mixing or fl-mixing or p-mixing or qS-mixing or ~- 
mixing, then it is strongly d-mixing. 

Under certain regularity conditions 

IN(k,u)u-2--+r}(k) as  u ~ O .  
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If in fact as u-~O ((k, u)u-2/r*(k)-+l uniformly in k, then one may choose 

((k)=r*(k).  

In w 6 it will be shown that this choice is possible for Gaussian processes. 
These considerations suggest that this choice is possible for a variety of 
processes. 

Henceforth we assume m u = l  and suppress the dependence of nw on N. 
Define a+b 

SN(a,b)= ~ (XjN--EXjN), 0 ~ a ,  l<b<-n-a ,  
j = a + l  

~N(k) = sup Icovar (X~N , X~N)[, O<k<n, 

where sup is over {(,m: [ ( -m[>k,  l<_(<_n, 1<re<n}, 

j=k 
and 

Thus 

a(k)= max ~u(k). 
{N: k < n} 

cO 

a~/n <=2 CN(O ) <2 ~ g(k). 
0 

Theorem 2.1. The following conditions are sufficient for the C.L.T. to hold. 
For some ~ > 0 and 7 > O, f satisfies the moment inequality 

( 2 . 3 )  supE[SN(a,b)12+~=O(b 1+~/2+~) as b ~ ;  
a, N 

f is f-mixing and for all real u 

((k, u) = o (k-  o) 

either (A): a 2 ~  as N ~  

or (B): l + CN(0)= O ( ~ / n )  

as k - ~ ,  where 0=27/e;  

oo 

and ~ ~(j)< oo 
0 

as N ~ o o ,  

Note 2.1. Under (A) a~/n may approach 0, but not ~ .  Under (B) aZ/n may 
approach ~ (if 7 > 0) but not 0, and must behave like CN(0 ). 

The moment inequality (2.3) has been used by several authors; see for 
example Theorem 4.1 of Settling (1968) and Theorem 5.3 of Dvoretzky (1972). 
Conditions for it to hold are given after Theorem 2.3. Putting 7=0  in Theo- 
rem 2.1 yields the following result. 

Corollary 2.1. Suppose that f is (-mixing and for some s > O, 

sup,.N j=a+l"~b XJN 2+~ =O(b~-) as b ~ ,  

and that (A) or (B) of Theorem 2.1 hold. 
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Then the C.L.T. holds. 

The remaining C.L.T.s require f to be 'nearly second-order s ta t ionary 

Definition 2.3. f is said to be nearly second-order stationary (with respect to H) 
if for some function H( . )  of integral argument 

(2.4) sup[ESN(a,b)2/H(b)-ll---,O as b--,oo, N--*oo. 
a 

For example, if {X;N~_Xj} is second-order stationary, then it is nearly 
second-order stationary w.r.t. 

H(b )=var  

provided H( b ) >0  for all b. 
For the case XjN=_X~, this concept has been used by Rosenblatt (1956), 

Serfling (1968) and other authors. 
The next theorem weakens the moment  inequality of Corollary 2.1. 

Theorem 2.2. Suppose that f is ~-mixing, and nearly second-order stationary 
w.r.t. H. Suppose also that 

(2.5) limsup max ~ x2dFabN(X)--*O as ~ o o  
N ~ o o ,  b ~ c o  a Ixl> ~ 

where FabN(X)=P(SN(a,b)/lLSN(a,b)ll2<x), and that (A) or (B) of Theorem2.1 
holds. 

Then the C.L.T. is satisfied. 

Note 2.2. For f nearly second-order stationary, (2.5) is equivalent to (2.5) with 
IISN(a, b)ll2 replaced by H(b) ~, and is satisfied if for some e > 0  

(2.6) lira sup max E ]S N (a, b)[ 2 + ~/H (b) l + ~/2 < 0% 
N ~ o o , b ~ o o  a 

in which H(b) may be replaced by ESN(a , b) 2. 

The first part of the next result shows that if 2F is strongly ~'-mixing, then 
a2,/n must be slowly varying in n. Recall that h(.)  is said to be slowly varying if 

for ;~>0, h()~x)/h(x)~l as x ~ o o .  

If h(x) is only defined for x = 1, 2 . . . .  - as is the case in this section - then x 
and 2 in this definition are restricted to the values 1, 2, . . . .  

If the dependence among the observations is strong enough, the behaviour 
of S N is generally non-Gaussian - as illustrated by Taqqu (1975). If the 
dependence is strong but 'not  too strong', then an intermediate situation exists 
where the C.L.T. does not hold but the modified C.L.T. holds, that is there 
exists z s > 0 such that 

(SN-ESN)/z  N ~%W(0, 1) as N ~ o o .  

In this case r2 is called a normaliser. If z2 and ,[2 are both normalisers, then 

2 2 "CN/.~N~ 1 as N ~ o o .  
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Theorem 2.3. Suppose that 95 is #-mixing and nearly second-order stationary 
w.r.t. H, and that (2.5) holds, and 

either (I) H(b)-+oo as b ~ o o  and supH(a)/H(b)<oo, 
a<_b 

or (II) H is regularly varying of exponent 0 > O. 

Let h(b)=H(b)/b, b=1,2 . . . . .  

I f  f is strongly #-mixing, then h(.) is slowly varying and the modified 
holds. 
I f  h(.) has an extension to (0, oo) which is slowly varying, then the C.L.T. 

(a) 
C.L.T. 

(b) 
holds. 

(c) 
C.L.T. 

(d) 

I f  r*(j)~O as j--+ov and it is possible to choose #(j)-r*(j), then the 
holds. 
I f  for some w > 0  #(j, u)+r*(j)=O(j -~) for u real, and (II) holds, then the 

C.L.T. holds. 
If h(b)-=o -2 and 0 < a 2 < o o  - as is true under the conditions of Theorems 

4.1(b), 4.2(b) - then the extension to (0, oo) given by h(x)=o -2 is obviously slow- 
ly varying. Similarly the usually quoted examples of slowly varying functions 
of integral argument have slowly varying extensions on (0, oo). 

Theorem 4.1(a) shows that for {XjN=--Xj} second-order stationary such an 
extension exists if r***( j )~0  as j - - ,~ .  

Under (d), h(.) is actually 'very slowly varying' in the sense given in 
Theorem 4.2(a). 

The second part of Theorem 2.3(a) was proved by Rosenblatt (1956) for the 
case where X~u=X~, ;T is e-mixing, H( . )  is non-decreasing, and (2.6) holds. (A 
misprint in the statement of his result is corrected by Blum and Rosenblatt 
(1956).) 

Special cases of Theorem 2.3(b) with h(b)=-a 2 are given by Theorem5.3 
of Longnecker and Serfling (1978) and Theorem 2.1 of Gastwirth and Rubin 
(1975) - both assuming {XjN-X~} are bounded, a-mixing and stationary, and 
by Corollary 1 of Yoshihara (1978) - assuming {XiN =-X j} is fl-mixing. 

Various variations of these theorems are possible. For example, one may 
give conditions under which the modified C.L.T. holds but not the C.L.T. - or, 
in Theorem2.1(B), one may allow n/~v=O(n ~) by modifying the other con- 
ditions. 

We end this section by giving conditions for the moment inequality (2.3) to 
hold. 

A slight modification of the proofs of Theorems 2.1, 3.1, 3.2, 3.3 of Serfling 
(1968) gives the following results. 

Proposition 2.1. Suppose that 

max IIX~FI2+~ < oo, where 0<6=<00, 
jN 

and 

max ESN(a , b)Z/b < oo. 
a,b,N 
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(a) For 0 <_ ~ <_ 6 < oo the moment inequality holds with y = e(�89 + c3-1). 

(b) For 0 < ~, c3 = oo the moment inequality holds with 7 = el2. 

(c) Let ~N(a) be any vector r.v. determining (X1N, ..., Xau). 

A necessary and sufficient condition for the moment inequality to hold with y 
= 0 is that for some fl > 0 

(2.7) maxEIE{SN(a , b)21~N(a)} - E S N ( a  , b)2[l+a=O(b 1+~) as b~oo .  
a, N 

In particular this condition holds if for some 0 > 0 

(2.8) maxE ]E{SN(a, b)21NN(a)} -ESN(a ,  b)21---O(b a-~ 
a, N 

as b o o o .  

Note 2.3. In fact (2.3) with 3~=0 implies (2.7) with fi=e/2; conversely (2.7) 
implies (2.3) with 7 = 0 and e = min (1, 6, 2 fi). Also (2.8) ~ (2.7) if 0 < fl < 0 (5/(2 
+0+(5). 

Now consider the case where the sample fourth moments are bounded. For 
O < k < n  set 

c~S)(k)= max EX'~XbX'cX'd 
1 <a,b=a+k<_c<_dGn 

and 
C(N31) ( k ) :  max EX'aX'bX;X' a 

1 <a<<.b<c ,d=c+k<n  

where X) = X j N -  EXjN. 
For k=0 ,  1,2, .. set c(k; 1, 3)= sup (13) (sl) . (c N (k)+c N (k)). Thus 

{N: k < n} 

max c(k; 1, 3 )< 2 max  [IXjNII~, 
k j , N  

Proposition 2.2. Suppose that max [qX jNq[ 4 < ~ and 
jN 

b 

(2.9) ~ ( k + l ) c ( k ;  1 ,3)=O(b ~) as b--+oo where ~/>0. 
0 

Then the moment inequality (2.3) holds with e=2.  

For example, (2.9) holds if c(k; 1, 3)= O(k ~-2) and 7>0.  
Longnecker and Serfling (1978) have given a number of bounds for 

E INN(a, b)[ 2+~ for e an even integer. These usually yield a weaker result than 
Proposition 2.2, but can be strengthened considerably by the following. 

Lemma 2.1. In Lemma 4.1, Corollary 4.2 and (4.15) of Longnecker and Settling 
(1978), h=0.  Consequently in the righthand side of their Eqs. (4.10), (4.18), (4.20), 
(4.22), (4.27), (4.35), (4.39), (4.44) and (4.47) the exponent v/2 may be replaced by 1. 

It is also worth noting that their results remain valid with their b i redefined 
as any number greater than or equal to EX~. For example, with these changes 
their Corollary 4.6 now yields 
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Lemma 2i2. Suppose for  some positive even integer v, 

Kv =max IJXjNrL < o9. 
jU 

Then for  q > l ,  ESN(a , b)V<(v! fl(b, q )+D~)K~b v/~ where D v is a f ini te  constant 
depending only on v, 

0= 1 <q_<_3/2 
[q(2q-2)  -1, 3 / 2 < q ,  

~(b, q)= kZ= ~ k ~j2 -Vv(k)./(~/2-1) !//~ 

and f~( . )  is any function such that for  1 < i  1 < . . .  < i~<n.  

(2.10) [EXI, X'i ... X'i~r __<rain {fv(i2 - i~), f , ( i  4 - ia) . . . .  , f~(i~ - i  v_ a)} K~ 

where X '  i = X i N -  EXiN.  

Applying this result with v=4, f 4 ( k ) = c ( k ; 1 , 3 ) K g  4 and q = l  yields an 
alternative proof of Proposition 2.2. Another immediate application is 

Proposition2.3. Suppose that for  some even integer v > 4  fv ( . )  satisfies the 
inequality (2.10), and 

K~ =max IIXjNIIv < oo. 
jN 

(a) I f  ~ k~/2fv(k)< oo then the moment inequality is satisfied with 7=0 and 
k = l  

e = v - 2 .  

(b) I f  f d k  ) = O(k -~) where 0 < w < v/2, then the moment inequality is satisfied 
with y = v/2 - w and e = v - 2. 

w 3. Proofs of the C.L.T.s 

We shall use Bernstein's decomposition for SN: 

SN = s~v + s~ 
where 

k - 1  k 

j~O j=O 

(j+ 1)p+ jq 

~j = y~ X~ ,  
d~ jp+jq+ 1 

(j+ l)(p +q) 

~j = 2 XCN'  
: = ( j + l ) p + j q + l  

~k = ~, XtN 
kp+kq+ 1 

O < j < k - 1 ,  

O < j < k - 1 ,  
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and p, q, k are non-negative integers depending on N whose dependence on N is 
suppressed such that k(p + q) < n. 

The key to the C.L.T.s of this paper is the following result (c.f. the proof of 
Theorem 18.4.1 of Ibragimov and Linnik (1971)). 

Lemma 3.1. Suppose that E X  ~=_O. For u real and p, q, k as above, define 

J z 

(a) When 

(3.1) 

then the condition 

(3.2) 

is equivalent to 

(3.3) 

where Yj = exp (i u a~ 1 ~j). 

i t 2  a~2ESN ~ 0  as N ~ o o ,  

k - 1  

~r; 2 ~ E ~ I  
j = 0  

as N---,~ 

a~ 2 ~ covar(~s, ~j)---,0 as --,oo. 
O < s < j < = k - - 2  

(b) Suppose that the conditions (3.1) and (3.2) are satisfied and that 

(3.4) k-~oo as N-~oo 

and 
k - - 2  

(3.5) ~ ]f~,(j,u)l'--'0 as N--+oo for all real u. 
j - O  

Then the condition 
k - 1  

(3.6) for e>0,  ~ ~ z2dP(~ /aN<z)~O as N--,oo 
j==o Izl>~ 

holds if and only if both the C.L.T. holds and {a~l~j} are asymptotically 
negligible in the sense that 

k - 1  

for e>0,  maxP(i~ji>e~rN)~0 as N--,oo. 
j=o 

(c) I f  {p, q, k} are allowed to depend on u as well as N, and (3.1), (3.2), (3.4), 
(3.5), (3.6) hold for all real u, then the C.L.T. holds. 

(d) Condition (3.2) in (b) and (c) can be removed if a N is replaced throughout 
- including in the statement of the C.L.T. - by any ~N independent of u, such 
that 

2 '  2 for all u rN/2N~I as N ~  oo, where 
k - 1  

(3.v) E E CJ. 
j = O  
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Proof. For  O < j < k - 1  let Pj denote the probability measure generated by P 
treating {~0 . . . .  , ~j}, ~j+l ,-- . ,  ~k-1 as independent,  and let Ej denote E under 

(a) Condit ion (3.1) is equivalent to 

aN 2 E SN2---,,1 

under which condition (3.2) is equivalent to 

(E - Eo) S}2/(2 a 2) = L.H.S. (3.3)-.0. 

(b) By (3.1), a~ ~ S}=op(1) so that the C.L.T. is equivalent to 

(3.8) a~; 1 S~v ~ '  Jff(0, 1) as N-~ oo. 

For  W = exp (iu Su,/~ru) 

(E-Eo) W= ~, (Ej+~-Ej)  W =  2 covar~,j+, ~,  I-[ 
o o j + l  

= ~ \ ~  EY~lCovar ~ , ~ + 1 - - , 0  as N--.oe, by(3.5). 
o j 

Thus (3.8) is equivalent to (3.8) under Po, which with the asymptotic negligi- 
bility condition is equivalent to (3.6) by p. 103 of Gnedenko and Kolmogorov 
(1954). 

(c) By (3.2) and (3.6), o-~lS} z~,~A/'(0,1) as N ~ o e  under Po, so that 
E o W ~ e x p  ( -  uZ/2), and E W ~ e x p  ( -  U2/2). 

But IEexp(tuSN/aN)--EWI=EluSN/as]--*O by (3.1), so that 
E exp (iu SN/aN)-~ex p (-- U2/2). 

(d) This is proved similarly. [] 

Several other lemmas are required. When (2.4) holds, set h(b)=H(b)/b. 

Lemma 3.2. If  kp/n~l  as N - ~  and (2.4) holds, then (3.2) is equivalent to 

(3.9) h(p)/h(n)~ l as N~oe.  

k - 1  

Proof. Use a~=nh(n)(1 +o(1)) and ~ E ~  =kph(p)(1 +o(1)). 
0 

Lemma 3.3 L.H.S. (3.3) is bounded by 2a~ 2 kp CN(q + 1). 
k - - 2  j k - - 2  J + l  

Proof. o-~[L.H.S.(3.3)I< 2 2 [c~ ~j+~)l < 2 ~ A(s), 
j = 0  ~ = 0  j = 0  s = 1  

a + b -  J- 

=pFNp(sm+l--p) , m=p+q and /~b(a)= 2 gu(i). 
i = a  

Also A(s) <p2 ~u(sm + 1 -p). 
Hence 

j +  1 ( j+  1)m 

m Z A(s)<=P 
1 

[] 

where A (s) 

~N(i+l-p)<pZC~(q+l) and A(1)<pCN(q+l). 
m + l  

[] 
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Lemma 3.4. (a) If  q < p, 

(3.10) 

(b) Under (2.4), 

ES'~ 2 = O((p + k q) CN(O)). 

Fs _ O(k-~ + kH(q) H(p)- ~). T, N 2 ~ ~  __ 

k - 1  

Proof. (a) E(X+Y)Z<=2EX2+2EY 2. Set X =  ~ (j, Y=~k. 
0 

ESN(a, b) 2 < 2b CN(O ). 
Hence for j<k ,  E ~  <2q CN(o ) and E~ 2 <2(p +q) C~(o). 

k--1 

EX2= E E~{+2T, 
0 

where for m=p+q and 
a + b - 1  

j = a  O s  

is bounded absolutely by 

so that 

k - 1  

q E (k-s)f'Nq(PS), 
s = l  

Also, 

k--1 

ES~2 <(4(p+ q)+kq) CN(o)+ 2qk ~ FNq(PS) �9 
S = I  

The second term <2q2kp -1 Cs(o ). 

(b) Observe that z~=kH(p)(1 +o(1)) and 

k - 1  

Eq"•<gk ~  = ~ , ~  2 E 2 2 (i +2E(~ <2kZH(q)+4H(p)+4H(q). [] 
0 

Lemma 3.5. Let A, B be positive functions. 
(a) There exists p such that A(N)p -1 +B(N) -1 p~O as N--+oo 

if and only if 
(b) A(N)B(N)-I--,O as N~oo.  

I f  A(N), B(N) increase to oo as N~oo,  then conditions (a) and (b) imply 
(c) there exists p~oo such that A(p)n -1 + B(p) -1 n-~O as N~oo.  

Proof. Take p=A(N)~B(N) ~ in (a). In (c) take p such that nZ,~A(p)B(p). [] 

Lemma 3.6. I f  h(.) is slowly varying on (0, oo) then there exists L(.) on (0, oo) 
such that 

L(x) J, 0 as x ~ o0 
and 

h(xM(x))/h(x)~l as x~oo,  
whenever 

L(x) ~ > M(x) > L(x). 
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Proof. By Karamata's Representation Theorem - see for example Theorem 1.2 
of Seneta (1970) - the proof for M = L  amounts to proving that if e(.) is a 
continuous function such that e(x)-~O as x ~  ~ ,  then there exists L(.)  such that 

L(x)J,O and i e(t) t-1 dt-~O as x~" oo. The integral is bounded absolutely by 
xL(x) 

I~ = A (x L(x)) Ilog L(x)l 

where A(O=supJe(s)l+t -~ is continuous and strictly decreasing. Choose m~ 
s~t  

such that mJA(m~)=x and set L(x)=mJx. Then 

I~ = A (m~)[logA (m~)l J,0. 

The proof for general M follows similarly. [] 

Lemma 3.7. Suppose that Y( is nearly second order stationary and satisfies (2.5), 
and k-~ oo as N ~ oo. 

Then (3.6) holds with G N replaced by 2 N given by (3.7). 
Hence (3.2) implies (3.6). 

Proof. The first condition implies k E ~ z ~  uniformly in j, so that it suffices 
to prove 

k 

k -1 ~ ~ x2dFospN(x)--,O as N ~ o v  
j =  0 Ixl > ek�89 

where a s =j(p +q)+ 1. This is implied by 

max ~ x z dFapN(X)--+O a s  N ~  o% 
a Ixl>~k�89 

which holds since for e>0, c~>0 we may choose N(6), ((6), M(e, 6), such that 
for N>N(fi),  N>M(e ,  6) ek�89 and max ~ xZdFapN(X)<(~. [] 

a Ix[ > ~(6) 

Proof of Theorem 2.1. (A)Suppose 2Cu(0)<K.  Apply Lemma3.1 with k 
=[K-la2/(p+q)].  This satisfies k(p+q)<n. By Lemma 3.4, (3.1) holds if q/p 

+ p / e ~ O .  By Lemma 3.3, (3.3) holds if also q~oo since C u ( q + l ) <  ~ ~(j). 
q + l  

L.H.S. (3.5) <kl(q,u). Condition (3.6) holds if ~,~+~/2+~/,,2+~-m ,~1/ /~u --~. Hence it 
suffices to show that there exist sequences p=pu(u) and q=qN(U) such that as 
N---~ oo 

p-~ o.2 #(q, u) +p~a ;2  +qp-1 +q-a---,O 

where 3=1+27/e.  By Lemma3.5 it suffices to find q--,oo, such that n-~q ~ 
+n  ~-~ g'(q, u)<--,0. This holds by Lemma 3.5 since q~-a f(q, u)~0 as q~oo.  (B) 
is proved similarly using k = [n/(p + q)]. [] 

Proof of Theorem 2.2. This is as for Theorem 2.1, except that Lemma 3.7 is 
used to prove (3.6). [] 
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Proof of Theorem 2.3. We first prove the modified C.L.T. with z~=nh(p) for a 
suitable sequence p. By Lemmas 3.1, 3.7 with k=[n/(p+q)] this will be so if 

p-l q+k-t +kl(q, u)+'c~2 ES~2--+O. 

By Lemma 3.4(b) the last term is O(kH(q)H(p)-~+k-~). Hence it suffices to 
show there exist sequences p, q such that 

pn-l+p-l{q+nl(q,u)+nH(q)H(p)-l}~O as N ~ o o .  (3.11) 

Set 

R(j)= J '((j)+(logj)-l,  if f is strongly f-mixing; 
( f ( j ,u )+( log j )  -1 if h(.) is slowly varying on (0, oo). 

Choose q ~  as n~oo  slowly varying and (if (I) holds) such that for n large 

H(q) (log q)~ < H(n�89 -~ 

and (if h is slowly varying on (0, ~)) L(n)<R(q)~<l for L(.)  in Lemma 3.6. 
(The first condition is possible since H(b)~ oo as b-~ oo.) 

Let p = K pl where K > 0 is an arbitrary integer and P l = [nR(q) ~] + 1. Then 
(3.11) holds. Hence if f is strongly #-mixing the modified C.L.T. holds with 
normaliser nh(Kpl ) and hence h(p~)/h(Kpl)---,1 as n-- ,~.  Also there exists 
no<O�9 such that {Pl} takes all the values no, no+l, no+2, ..., so that h(.) is 
slowly varying. This proves (a). For (b), by Lemma 3.7, ~/a~--,1 so that the 
C.L.T. holds. 

(c) Let ~={YjN} be a Gaussian array with covariances as for X. By 
Theorem 6.1 we may choose 

~(j, ~d)=r*(j), where {(j, :Y)=E(j). 

For Pl above set p l=p l ( f ) .  By (a), ~r and ~ both satisfy the modified C.L.T. 
with normaliser nh(p) where p =p j  (r*). Hence nh(p)/a~l .  

(d) Condition (3.11) is satisfied by q = [nb], p = In C] if b =(1 + 2w)-1 and (1 
+w)b<c<l. Hence, by Theorem 6.1, for N as in (c), 5 c and N both satisfy the 
modified C.L.T. with normaliser nh(p). Hence nh(p)/a~l .  [] 

Note 3.1. Theorems 2.1-2.3 remain true if ~f(j, u) is redefined as any function 
such that for u real and O<j<n, EN(j,u)<l(j,u)+eN(u ) and eN(U ) is a function 
such that the sequence k=kN(u ) used in Lemma3.1 satisfies ~N(U)kN(U)-~O as 
N ~ oo for u real. 

Proof of Proposition 2.2. This follows from 

summed over 
ESN(a, bff <4[ E EX;X'eX'~X'r 

a+l<-b<-c<_d<_e<f<a+b 
a+b  

<4!  ~ ~ min(c~3)(i), c~l)(k)) 
c = a + l  O<=i,j,k<b 

b - 1  

< 4 ! b  2 ~ ( 1 3 )  ( 3 1 )  _ = (k+l)(c N (k)+c;~ (k))-AN(b), 
k=O 

say. 
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Here X~ denotes XjN--EXjN. [] 

Proof of Lemma 2.1. By the line above their (4.3), T~<TI/2, so that A < B  
where A=ET~, B=ET]/2. Set 2=h/v. By the definition of h, 2 maximises 
AXB 1-~ subject to 0<2_<1-2 /7 .  Hence 2=0.  Substituting h = 0  into their 
(4.15) yields Lemma2.1. [] 

w 4. The Variance of  a Sum 

The C.L.T.s of w require the ratio a2/n to be bounded away from 0 or co, or 
~2/n~h(n) where h(.) is slowly varying, or has an extension to (0, oo) which is 
slowly varying, or is in a certain sense very slowly varying. In this section it is 
shown that these requirements are satisfied under fairly weak conditions when 
5F is approximately second-order stationary. Recall that 

0 < r*(j) <r(j) < p(j) < m i n  (1, 2 ~b(j) ~) 

and that if 

(4.1) {XjN~Xj} is second-order stationary, 

then 0 <r***(j) <r*(j). 

Theorem 4.1. Suppose that (4.1) holds. Let f be the spectral density of {Xi}. 
(a) Suppose that o-2 < oo, and ~2~oo as N--.oo, and r***(j)~0 as j~oo.  

Then h(n)=o-~v/n is slowly varying and has an extension to the real line which is 
slowly varying. 

(b) The condition 

(4.2) o-2/n-+a2 as N~oo  

holds if and only if 

(4.3) a z-~ ~ covar (Xo, X )  exists. 

(c) Suppose that f (.) is right-continuous at 0 and left-continuous at O. Then 
(4.2) holds with 

a 2 = ~rf(O +) + rcf(O-). 

o o  

(d) Suppose that ~ r(20 < oe. Then f ( . )  is continuous. 
0 

Note 4.1. Under (4.1), if covar(X o, X ) ~ 0  as j ~ o o  then by Theorem 18.2.2 of 
Ibragimov and Linnik (1971) - referred to hence as IL - either o-2--+oe as 
N - ~  or o -2 is bounded. 

Note 4.2. In w 6 it is shown that the condition in (a) 

r***(j')~O as j ~  

is satisfied if Y" is c~-mixing and satisfies (2.5). 
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Proof. (a) follows from Lemma 4.1 below. 
n 

(b) ~r2-a~/n=2n -1 ~ s  s if and only i f s j=  ~ covar (X 0, X~) exists. 
1 i = j  

(e) Apply the argument on pp. 322, 323 of IL to I - n ,  0) and (0, n] sep- 
arately. 

(d) Let { Yj} be a stationary Gaussian process With 
covar(Y o, Y~)=-covar(Xo, Xs). Apply Theorem2.2 of Ibragimov (1975) to {Yj} 
and use the fact that for { Y~}, p = r. [] 

Theorem 4.2. (a) Suppose that {X~N } is nearly second-order stationary, that is, 
for some h(.) 

sup[ESN(a,b)2b-lh(b)-l-l[--,O as b~oo, N---,oo. 
a 

Suppose also that H satisfies (II) of Theorem2.3 and r*( j )~0 as j~oo.  Then 
h(. ) is slowly varying. 

I f  also 

(4.4) r*( j )=O(j  -w) where w>O 

and c lies in ((1 + co)/(l + 2w), 1) then 

(*) h([n~])/h(n)-+l as n-+oo. 

(b) Suppose that 

6N = m a x  I c o v a r  ( X iN , X j N  ) - -  Co ( i - - j ) [ - - > 0  
ii 

as N--+ oo 

and 
c~ 

~ o ( j )  < oo where ~o(j) =max  Co(i). 
0 i ~ j  

Then a~/n~ ~ CoO" ) as N~oo. 
- oo  

Proof. (a) This follows by applying the proof of Theorem 2.3(d) to ~J defined 
in its proof. Condition (2.6) holds for ~J with e=2. 

(b) follows from a~/n= ~ (1-j/n)AjN where Leo(j)--AsNI<~N. [] 
[jl<n 

Note 4.3. (a) above gives conditions for (*) to hold for all c in [5, i ]  for some 
in (0, 1). If in fact for some 8 in (0, 1)(*) holds uniformly for c in [~, 1] then 
h(.) is very slowly varying in the sense that (*) holds for all c in (0, 1). For 
example, by Dini's Theorem, (*) holds uniformly for c in [5, 1] if h(.) is non- 
decreasing and for c in [5, 1], h([nC])/h(n)$1 as n~oo. 

How weak are the mixing conditions of these two theorems? 

Example 4.1. Suppose that (4.1) holds and ~c is a-mixing. By Theorem 18.1.1 of 
IL, if 

(S N-  ESN)/cr N ~> Z, some r.v., 
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then Z has a stable distribution, with exponent a, say, and ~rZ=n2/ah(n) where 
h is slowly varying. Hence if a+2 ,  r*(j)+-,0 as j~oo .  

Example4.2. Suppose that (4.1) holds and covar(X0, Xj)=j-~L( j )  where L is 
slowly varying and 0 < e < l .  Then a~=n27~h(n) where h is slowly varying, and 
hence r*(j)++0 as j ~ o o .  

This case has been studied by Yaqqu (1975) when X~=-G(Yj) and {Y~} is 
Gaussian: Z in Example 4.1 is generally not normally distributed, so that in 
general a =~ 2. 

Example 4.3. If (4.1) holds and f is continuous and bounded away from 0 then 
r ( j )~0 as j--,oo; if also f(k) is bounded then r(j)=O(j-k). This follows by 
Theorem 4 of Kolmogorov and Rozanov (1960). More generally, by Bedzanjan 
(1975) we have 

Example 4.4. If  (4.1) holds and f is bounded away from 0 and f~) satisfies a 
Lipschitz condition of order fl, O < f i < l ,  then r(j)=O(j-k-P). (He also gives 
conditions for r(j)= O(e-J~).) 

It would be preferable to give sufficient conditions for the mixing require- 
ments of these theorems simply in terms of the 'maximal covariances' {c(j)}. 

The following suggests that the condition 

(4.5) c(j) = o ( j -  ~-~) 

where w > 0 implies that 

(4.6) r (j) = O ( j-  ~), 

and hence that (4.4) holds. 

Example 4.5. According to p. 292 of Taqqu (1975) for v>0, c(j)=(1 + Ijl) -~ is a 
correlation kernel. But if 0 < v -  1 = k + fi where k = 0, 1, ... and 0 < fi < 1, then 
ftk) satisfies a Lipschitz condition of order fl where f is the spectral density of 
{c(j)= IJ]-~}. This is because by (1) p. 10 of Erdelyi (1954), 

oo 

f (x )  = 2 ~ y -  ~ cos xy  dy = (2 ~) - 1 F(v) - ~ sec (v g/2) x v - 1 
0 

Of course the condition (4.5) implies that G~v/n is bounded - and is also 
bounded away from 0, for example if f ( 0 - ) > 0  or f ( 0 + ) > 0  by Theorem 4.1(c). 
This suggests that (4.6) with w > 0  actually implies that h(.) is bounded away 
from 0, c~ for nearly second-order stationary samples. (This is true under (4.1) 
by (c) and (d) of Theorem 4.1.) 

The following results of Sarason (1971) is interesting, but of doubtful 
practical value. 

Example 4.6. Under (4.1), r ( j )~0  as j ~  oo if and only if 

f(2) = [P(X)[ 2 exp {u(2) + ~(2)} 
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where P is a polynomial, ~ is the Hilbert transform of v, and u, v are real 
functions continuous on the unit circle. 

We conjecture that when g(k) decreases moderately slowly - as in Exam- 
ple4.5 with v>2, then r**(k), r*(k), r(k) are all equivalent to k~(k), but that if 
~(k) decreases rapidly then r**(k), r*(k), r(k) are all equivalent to ~(k). (The 
latter holds for example if g(k)=O(e -~1') for 2 suitably large and (4.1) holds 
and 0 < covar (Xo, X~), since then for k sufficiently large 

0 < . . .  < c o r r ( X  1 + aXo, X k + bXk+ 1) < c o r r ( X  1 + aXo, Xk) < corr(Xo, X~).) 

The proof of Theorem 4.1(a) is completed by 

Lemma 4.1. Suppose that (4.1) holds and {X j} has spectral density f()~). Set 

O(x)= i sin(x2/2)2 
-~ sin(2/2) 2 f(2)d2, 

h (x) = ~ (x)/x. 
Then 

(a) ~g = ~,(n). 
(b) O(ax)<a2O(x) for a an integer. 

Suppose that a~ < oo. 
(c) If  au~ oo as N--+ oo, then 

(4.7) r (x)/O (Ix]) ~ 1 as x~oo.  

(d) I f  ~--,oo and r***(j)~0 as j~oo,  then 

(4.8) h is slowly varying of integral argument 

and 

(4.9) there exists co>0 such that for 0 < c < c o ,  h(jc)/h(j)<c ~, if j and jc  
are integers. 

(e) Conditions (4.7) and (4.8) imply 

(4.10) h(2x)/h(x)~l as x--+oo for 0 < 2  rational. 

(f) Conditions (4.7) and (4.9) imply 

(4.11) r 3/2 where r 

and 

(4.12) 01 and 02 are continuous where 01(2)=liminfO(2x)/O(x). 
X ~ Ct3 

(g) Conditions (4.10) and (4.12) imply that h is slowly varying. 

Proof. (a) is well known. 

(b) [sin(ax)l <lasinx[ .  

(c) The last two lines of p. 329 of IL are incorrect: in the second to last 
line a factor 1-2sin2(ax2/2) should be inserted in the first integrand, and 
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hence 

(4.13) [tk((a + e)x)-O(ax)I < O(ex) + t~(2ex)~ O(2ax)~/2 

<O(ex)+O(ex)~O(2ax) ~ by(b) .  

C.S. Withers  

Put a = l ,  e=[x] /x-1 ,  ?z=(n/2)2O(1). Then for 10[<1, 0 (0 )<7  z. Hence 

l 0  ( Ix ] )  - ~, (x) f ___ ~ 2. + 2 ~ r ( x ? .  

Hence ~,(x)~ 0(Ix]), as asserted without proof on p. 329 of IL. 
(d) and (e) are proved on pp. 326-330 of IL. 
(t) I fp  is a positive integer and x ~ o o  then by (b), 

h(2x) = 2" h(2-P2x) ,,~2Ph([2-P2x]) < h([x]) 2PK -~ 

if K<c o where K=[2-P2x]/[x],,~2-P2. Given 2 > 0  choose p so that 
Co/2<2-P2<c o. Hence for x large, 

h(2 x)/h(x) < 23p/2 2-~(1 + o(1)) < 2(2/%) 3/2 (1 + o (1)) 

so that (4.11) holds. By (4.13) f o r j = l ,  2 

[ ~gj(a + e) - Oi(a) I < ~2 (e) + 02 (e) 4 02 (2 a) ~--+0 

as e--*0 by (4.11). 
(g) By (4.10), ~k1(2)=02(2)=2 for 2 rational and hence for all 2>0.  []  

w 5. Conditions for a Linear Process to be d-Mixing 

Gorodetskii (1977) and Withers (1981) give conditions for a linear process to 
be strong-mixing. This section gives conditions for a linear process to be 
strongly d-mixing. These conditions are shown to be much less stringent than 
those required for strong-mixing. In particular the densities of the random 
variables generating the process need not exist. 

We consider the general linear process 

(5.1) XjN=ZjN-[-glNZj_I,N-I-g2NZj_2,N-4-.. .  , l <=j<=n, N>=I 

where {giN} are constants and {ZjN } independent real r.v.s such that this sum 
converges in probability. This is true for example, if for some ~ > 0 

maxE[ZjNI~ and ~,lgjNI6<oe. 
J j 

Theorem 5.1. For 0 < 6 < 1 

n--k oz t 
d~v(k,u)<--2 [ul6~ 2 J  [gk~J-~,Nl6+(n--k)j~=,lgJNI ~ maxE [Z iN[ ~ 

LJ= 1 = J 
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Proof. Let F = a N t ~  bjXj where bj=O o r  1 and we drop the subscript N. 
m + k  

Then F = F o + F  1 where F 1 depends on Zm+l, ...,Zm+ k and 

a,Fo=b,,+k(gkZm+gk+lZ,,_l+ . . . )+ bin+k+ 1 (gk+ 1 Z,, + gk+ 2 Zm-~ + ...) 

+...  + b,(g,-mZm + g,-,n + * Zm- * + "  ")" 

n 

Hence F 1 is independent of (Fo, P ) where P = a ~ l ~ a j X j  and {aj} are arbitrary 
1 

constants. But for 111 independent of (Yo, X), 

covar(e ix, e -iro -it1) = E e i'*'1E eiX(e it~ -- E e it~ 

is bounded by E leiY~176 < 2 E  111o1 a. 
Hence 4(k,u)<2lulaElFol a. Now use I~a, la<y'la, I a. [] 
From Theorem 5.1 one may easily obtain 

Corollary 53. Suppose that for some 8 in (0, 1-1 

max E IZjNI a < c~ 
jN 

(5.2) 

and n/a 2 is bounded. I f  

(5.3) 

then one may choose 

and 

maxlgkN[=O(k-X) as k--+c~ 
N 

In  2-a('z+�89 )~<2/8 
(zv(k)=ln-a/2 gn(n), ),=Z/8 

[n-a/2k 2-a'~', 2>2/8 

~k 2 -  a(-~+�89 ' ,~ =l= 2/8 

{(k)=(k-a/2 dn(k), 2=2/8. 

/ f  max [gk, N[ = O (e-*k) as k ~ oo, one may choose 
N 

gw(k) =n  -a/2 e- *ak, 
and 

g(k) = k -a/2 e -xak. 

Corollary 5.1 illustrates that the conditions of Gorodetskii (1977) and Wi- 
thers (1981) for a linear process to be strong-mixing are much stronger than 
the condition that it be strongly d-mixing. In particular under (5.2) and (5.3) 
the linear process is strongly g-mixing if 2>2 /8 - �89  whereas the above con- 
ditions for strong-mixing require 2>  2/6 + 1. 

The above choice of g(k) should be improveable since Diananda (1953) 
proved the C.L.T. for the linear process with {gjN-gj} for the case of 
{ZjN-Zj} stationary and m-dependent when ~ lgjl < oo. 
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Corollary 5.1 also illustrates that one can often obtain a bound of the form 
~v(k, u) <= K(u) fN(k) where 

fN(k)=n-aM(k)  

where a > 0 so that one may choose 

?(k)=k-aM(k) .  

It may be thought that considerable information is being lost in passing 
from fN(k) to {(k). However, this form of fN(k) does not enable Theorem 2.1, for 
example, to be improved. 

The following result gives a class of first-order autoregressive schemes 
which are strongly E-mixing - in fact with Y(k) decreasing exponentially, but 
are neither strong-mixing nor absolutely regular. 

Theorem 5.2. Consider the autoregressive process 

X j  N~_Zj N Av(_)aiNp-  1 X j_ 1,N 

where p> 1 is a positive integer, {ajN } are given integers, and {ZjN } are inde- 
pendent r.v.s taking only the values O, 1, 2, ..., p -  1 and such that 

maxE  tZjNI < o~. 
jN 

Then one may choose 

f N ( k ) : n - ~ p  -k, ~ (k )=k-~p  -k . 

However, if for some k P(ZoN=k) is bounded away from 0 and 1, say e< P(ZoN 
= k ) <  1 - e  where e>0,  then a(k)=>aN(k)~e-e 2 and fi(k)>__flN(k)>=2(e-e2). 

Proof. The first part follows from Corollary 5.1 with 6 =  1, eZ=p. To prove the 
second part, note that (Zjs, Zj_I,N . . . .  , ZoN, ...) is a generalisation of the p- 
adic expansion of XjN, and is obtainable uniquely from XjN. Hence for k 
= 0, 1, ..., p - 1, j < 1 the event 

A = {ZjN = k} E J ~ ( X  1 N) ('l ~//~({X 1 + k,N . . . . .  XnN}) 

p-1 
so that aN(k ) > max max PiN(k)(1 - piN(k)) => e-- e 2 where piN(k) = P(ZjN = k). The 

j__<l k=0 
same is true for fin (k)/2. [] 

Since an autoregressive scheme is a linear process it follows that not all 
linear processes are strong-mixing. The latter is also true for ~f a stationary 
Gaussian process with spectral density f :  it is a linear process if and only if f 
is absolutely continuous (by Theorem 16.2.1 of IL), while it is strong-mixing if 
and only if the conditions of Example 4.6 hold. 

w 6. Further Comparison of ~-Mixing and ~r 

The proof of the C.L.T. when the observations are a-mixing typically rests on 
the following choice of bounds: 



Central Limit Theorems for Dependent Variables. I. 531 

(6.1) ~N(k) =< 10K~p aN(k) 1 - 2iv <= 10Kv2 a(k)l- 2/p; 

(6.2) 10K p 

(6.3) IN (k, u) <_ 16 a N (k) <= 16 a (k) 

n 

where KNp=max]IXjNIIp, Kp=maxKNp , - (6.2) being used to verify the mo- 
j ~ l  N 

merit inequality via Proposition 2.2; c.f. IL. 
We have shown that the above bounds for fN(k,u) may be very crude. The 

same is true of the bounds in (6.1), (6.2) - even if Kp< ~ for p < ~ .  This is true 
even for those rather exceptional processes - such as Gaussian processes - for 
which a(k) and r(k) are equivalent. If {XjN } is Gaussian, then 

<__ 3 
and 

KNp <= MP ~ ~N(o) ~ 

where M = s u p  [IN(0, 1)H/p~< ~ .  
p > l  

If {XjN} is Gaussian then, as noted in w p(k)=r(k) so that one may 
choose f (k)= r(k). The next result improves this. 

Theorem 6.1. I f  {XjN } is Gaussian then [(k,u)<=r*(k). 

Proof. Icovar(ei"P,e-i"r)[<p~(P,F)=r(P,F) by Theorem 1.1, and Kolmogorov 
and Rozanov (1960). Hence ~N(k,u)<=r*(k). [] 

A comparison of r***(k) and a(k) is afforded by 

Theorem 6.2. Suppose {XjN--Xj}  is second-order stationary and nN=--N. Let 
FN(X) = P((S N -  ESN)/a N <= x), 

A(z)=limsup ~ x2dFw(x) 
N ~  Ixl>z 

and 
G p(e) = 4 ~1 - 2/p + 6 A(e- 1/p)~. 

Then r***(k)<_inf@(a(k)). Hence if (2.5) holds, that is, if A(z)---~O as z--~oo, then 
P 

r***(k)~0 as a(k)~0. 

I f  the C.L.T. holds then there exists a o > 0 such that for a(k)< a o 

(6.4) r*** (k) _< 219 a(k) log c~(k)- *. 

m m + k + n  

Proof. Set ~ - -~Xj ,  ~= ~ Xj, ~N=~I(]~[_<N),~M=~I(I~[=<M) where 1(.) is 
1 m + k  

the indicator function. By the analog of (17.2.5) of IL - which should have 
lEaN'N[ added to its R.H.S. - and the equations following applied with b=0,  
one obtains 

Icovar(~, 0l < 4 M N  a + 3 ~- a, a,~ {Am(M/am) + A,(N/ao) -~} 

where AN(Z)= S x2 dFx(x) and ~=a(k). 
Ixl>z 



532 C.S. Withers 

Setting M = % ~-  l/p, N = a, a -  lip yields 

r***(k) <_ G,(a). 

Now set X = l o g e  -1, O=2/(4+logX),  p=XO.  Hence o~l-2/p-=e4-o:X. Suppose 
that the C.L.T. holds, so that 

A(z)=2z(2rc)-~e-Z2/2(l+o(1)) as z~co .  
Hence 

r***(k)<=4e4c~(X +o(l))  o~--+0 

< 2 1 9 a X  for e < % ,  say. [] 

It seems plausible that if ~ is a Gaussian array with covariances the same 
as Y', then 

a(k,Y/)<a(k,;~) where c~(k,Y')=e(k). 

This would imply quite generally that 

r(k) <2~c~(k), 

- a stronger relationship than (6.4). We now show that 

r ( k )  = 0 ( ~ ( k )  1 - 2/~) 

for a large class of processes satisfying K~ < Go. 

Theorem 6.3. Suppose that for some positive even integer v, f , ( . )  satisfies (2.10) 
and oo 

~ k  ~/2 - ~f,(k) < oo. 
1 

Suppose also that max EX~N < o% and 
jN 

(6.5) inf ~ciX~N c >0. 
N, {c j} 

Then r (k) = 0 (o:(k) ~ - 2/~). 

Note 6.1. Assumption (6.5) holds provided not 'too many' covariances of f are 
'large' and negative. 

Proof Under the conditions of Lemma2.2 with q = l  one actually has the 
stronger result: 

~l CJ Zj N 2 <=(v!fl(n, 1)+D~)I/~K, cj 

;) = 0 c~ by assumption, so that by (6.5) 

Tn v~ ~i CjXjN 2 MN~=SU p ~ c j X j N  is bounded. 
(c j} 

But r(k)< lOa(k)a-2/'M~v,. [] 
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Corollary 6.1. Suppose that for  some positive even integer v and some p > v 

oO 

rnax E }X iNJv < oo and ~ ]s < oo 
jN 1 

and (6.5)  holds. 
Then r ( k )  = O (~(k)  1 - 2/v). 

Proof. T a k e  fv(k)= IOK~Kp~(k) 1-~/v. [] 
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